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Abstract

Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate. Recent 

isotope-edited IR spectroscopy suggests that conformational heterogeneity exists within the 

Michaelis complex of LDH, and this heterogeneity affects the propensity toward the on-enzyme 

chemical step for each Michaelis substate. By combining molecular dynamics simulations with 

Markov and hidden Markov models, we obtained a detailed kinetic network of the substates of the 

Michaelis complex of LDH. The ensemble-average electric fields exerted onto the vibrational 

probe were calculated to provide a direct comparison with the vibrational spectroscopy. Structural 

features of the Michaelis substates were also analyzed on atomistic scales. Our work not only 

clearly demonstrates the conformational heterogeneity in the Michaelis complex of LDH and its 

coupling to the reactivities of the substates, but it also suggests a methodology to simultaneously 

resolve kinetics and structures on atomistic scales, which can be directly compared with the 

vibrational spectroscopy.
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 INTRODUCTION

It has been long recognized that proteins are highly dynamic entities and their structures are 

best described as an ensemble of interconverting conformations on different time scales. The 

same holds true for the enzyme–substrate (Michaelis) complex which contains an ensemble 

of interconverting conformations, each with its own reactivity (kcat) as shown by recent 

single-molecule experiments,1–3 despite that it is usually assumed as a single active 

conformation in virtually all the textbooks.

Lactate dehydrogenase catalyzes the interconversion of pyruvate and lactate, using the 

cofactors NADH and NAD+, respectively, and it has been studied to characterize the 

conformational heterogeneity in the Michaelis complex and the coupling of this 

heterogeneity to enzymatic catalysis.4–10 Recently, the conformational heterogeneity of the 

ternary complex of LDH (LDH·NADH·pyruvate) was revealed through isotope-edited IR 

spectroscopy.9 The C ＝ O stretching vibration of pyruvate was used as the vibrational 

probe, which is a direct measure of the strength of the electric field on the bond in a 

particular conformation and it is also highly correlated with the propensity toward the on-

enzyme chemical reaction of that conformation.11 For local high-frequency vibration such as 

the C ＝ O stretch, the vibration is assumed to behave as a one-dimensional oscillator. 

Vibrational Stark spectroscopy12 and theoretical computations13 have shown that the C ＝ O 

stretching vibration responds to electric fields in a linear fashion, as suggested by linear 

Stark effect theory,14 which is believed to be an intrinsic property of the oscillator. Recently, 

it has been shown that a good linear correlation can be captured between the C ＝ O 

frequencies and the ensemble-average electrostatic fields calculated by using the classical 

molecular dynamics (MD) with fixed-charge force fields.15

Isotope-edited IR spectroscopy has been proven to be a valuable tool to probe the 

conformational heterogeneity of the Michaelis complex and measure the reactivity of each 

Michaelis substate. Temperature-jump experiments combined with a kinetics model has 

been proposed for the Michaelis complex of LDH,10 in which four distinct Michaelis 

substates were resolved. However, structural information about degrees of freedom other 

than the probing carbonyl is mostly unknown. This information might shed light on 

important mechanisms such as how the enzyme interacts with the substrate in each 

Michaelis substate. It is a challenging problem to obtain a detailed kinetic network on 

atomistic scales for straightforward MD simulations, since the time scales of the involved 

motions range from nanosecond to microsecond, even millisecond. Markov state models 

(MSMs) have been shown to be able to reproduce long-time conformational dynamics of 

biomolecules using data from MD simulations that are individually much shorter. MSMs 

have been successfully applied to study the coupling of conformational dynamics of enzyme 

and substrate bindings in the lysine-, arginine-, ornithine-binding,16 choline-binding,17 and 

trypsin18 proteins.

Previously, we studied the catalytically relevant loop motions in purine nucleoside 

phosphorylase19 and lactate dehydrogenase20,21 using straighforward MD simulations. 

Recently, we estimated the free energy surface of the Michaelis complex of LDH using the 

cut-based free energy profile (FEP) method.22 Even though different substrate binding 
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modes were resolved, the basins on the FEP and the substates resolved by vibrational 

spectroscopy were only compared indirectly through hydrogen bond analysis. Due to the 

limitation of the method, the relaxation time scales of the system were underestimated by 

about 4 orders of magnitude. In this work, 80 μs trajectories of MD simulations have been 

analyzed with a Markov model which is further coarse-grained into a hidden Markov model 

(HMM) to obtain the metastable states. A total of 13 substates which differ in protein 

conformations as well as the substrate binding modes were resolved. The structural features 

of the substates were analyzed, and a kinetic network was established between them. The 

relaxation time scales are closer to the experimental values. Ensemble-average electric fields 

were calculated for each substate and compared with the vibrational spectroscopy to assign 

the IR bands to the Michaelis substates quantitatively. Our results not only support the 

experiment-observed conformational heterogeneity in the Michaelis complex of LDH but 

also provide a detailed view of the interactions between LDH and pyruvate in each observed 

Michaelis substate.

 METHODS

 Molecular Dynamics Simulations

The MD simulation and force field parameters are identical to the settings used in ref 22. 

The initial structure was built on the X-ray crystal structure of human heart LDH complexed 

with the cofactor NADH and the substrate mimic oxamate (PDB ID: 1I0Z). Two asymmetric 

units were included to form the tetramer model, and the substrate pyruvate was created by 

manually substituting the oxamate nitrogen atom with a carbon atom. The proteins and the 

cofactors were modeled using the CHARMM36 force field,23,24 and the force field 

parameters for pyruvate were obtained using the CHARMM general force field.25 The 

system was solvated in a cubic TIP3P26 water box, and neutralized with sodium ions. To 

prevent the substrate from diffusing too far away from the active site, a soft wall potential 

was added to the hydride donor–acceptor distance at 15 Å. A total of 25 independent 

simulations of 0.8 μs were conducted with different initial velocities using the NAMD 

program.27 The coordinate trajectories of each subunit in the tetramer were treated as 

independent trajectories and saved every 100 ps for analysis, resulting in a total simulation 

time of 80 μs (8 × 105 snapshots).

 Markov State Models

The first step of estimating an MSM is to transform the trajectories in Cartesian coordinate 

space into trajectories in a preselected feature space which can capture the conformational 

changes of the protein. After various descriptors were tested, we found that methods only 

including the backbone atoms (Cα) of the protein were not sufficient to resolve different 

conformations of the protein. Thus, we defined a feature set to describe the contacts between 

a set of 28 active site residues which includes the active site loop (residues 98–110 and 112), 

important active site residues (residues 138–139, 168, 193–195), and the contacting helix 

(residues 237–239, 242–243, and 246–248). First, the minimum inter-residue distance rmin, 

which is defined as the distance of the closest pair of heavy atoms between two residues, is 

calculated for each pair of the selected residues which are at least two residues apart from 

each other. The minimum inter-residue distance rmin can capture the conformational changes 
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involving the backbones as well as the side chains of the protein. Then, instead of using a 

cutoff value (step function) to turn rmin into a binary contact indicator, we used a continuous 

function

where tanh is the hyperbolic tangent function and r1/2 = 5 Å, to transform rmin into a contact 

value x between 0 and 1 which captures the degree of contact of two residues. Next, we 

exclude the pairs of residues which have no contact with each other (x < 0.02) through the 

whole trajectories. In this way, each snapshot of protein can be represented by a 261-

dimensional vector . Similar procedures were also applied to get the contact values 

between the carbonyl O of pyruvate and the selected active site residues, resulting in a 28-

dimensional vector  which was used as the input features to build the MSM to resolve 

different substrate binding states.

For the next step, a time-lagged independent component analysis (TICA)28,29 was performed 

on the featurized trajectories to find the slow linear subspace of the input features, and each 

TICA component was scaled according to its corresponding eigenvalue to obtain a kinetic 

map30 in which Euclidean distances are proportional to kinetic distances, providing an 

optimal space to perform clustering. When projecting the featurized trajectories, instead of 

keeping a selected number of TICA components, we chose to keep the TICA components 

which have eigenvectors that can account for 90% of the total variation in kinetic distance. 

Then, the k-means clustering method was employed to group the snapshots into microstates. 

Finally, the reversible transition matrix was estimated using the maximum likelihood 

estimator.31 All the estimations and analysis of MSM were done by using the PyEMMA 2 

program.32

We first analyzed the microstates obtained by using  combined with  as the input 

features, which contains the protein conformations as well as the substrate binding. While 

the microstates resolved different protein conformations, they did not distinguish different 

binding states of the substrate, because the protein motions are on much slower time scales 

than the substrate motions in the current simulation system. Thus, we obtained another set of 

500 microstates by using only  as the input features, and then manually dividing each 

microstate by giving each snapshot an additional label which incorporated the substrate 

binding states. We determined the substrate binding states of each snapshot by estimating a 

MSM with 500 microstates using only  as the input features, and lumping the 

microstates into four metastable states with the Perron cluster cluster analysis (PCCA) 

method.33,34 The metastable states were used as the label describing the substrate binding 

states. Thus, each microstate obtained by using  as the input features was further 

divided into up to four possible new microstates, which yielded a new set of 758 microstates. 

We calculated the implied relaxation time scales as a function of the lag time τ which 

showed that the time scales become constant starting at a lag time of ~30 ns (Figure S4a). 

Therefore, τ = 30 ns was used as the lag time to estimate the final MSM.

Pan and Schwartz Page 4

J Phys Chem B. Author manuscript; available in PMC 2017 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Coarse-Grained Kinetic Model

By using the same set of 758 microstates, we also estimated a coarse-grained kinetic model 

using a HMM.35 First, the original MSM was coarse-grained into four metastable states 

using the PCCA+ method36 to obtain an initial guess for the hidden transition matrix  the 

output probability matrix χ.35 Then, maximum likelihood HMM was estimated using the 

Baum–Welch method37,38 as implemented in the PyEMMA 2 program. Implied relaxation 

time scale as a function of lag time for the HMM was also calculated (Figure S4c), which 

shows reasonably converged time scales except for the time scales at a lag time of 10 ns 

where the reversible transition matrix estimation did not converge. Because the HMM was 

estimated by coarse-graining the MSM, the lag time of the HMM is the same as the lag time 

of the MSM (30 ns).

The expected value and variance of observable A in hidden state i can be estimated as

(1)

(2)

where χIi is the output probability of hidden state I to observed state (microstate) i and ⟨A⟩i 
is the expected value of A in the observed state i, which can be calculated as the mean of A 
for all the members of i. When the metastable state I was further divided into substates In on 

the basis of the substrate binding states n, the output probability of In to observed state i is

Then, the expected value and variance of observable A in substate In can be estimated using 

eqs 1 and 2. The transition probability between the substates is

(3)

where , and πI is the stationary probability of I. χI,In is the output probability of 

I to In, which can be calculated as

The stationary probability of In is
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(4)

 Bayes Factor Analysis

Bayes factor analysis39 was used to identify the key contacts defining each metastable state. 

The Bayes factor for a specific contact between residues i and j in state k can be calculated 

as

(5)

where cij is the contact indicator; i.e., cij = 1 if a contact is present between residues i and j 
and cij = 0 otherwise. Thus, for a specific contact in a specific state, the Bayes factor is the 

ratio of the probability of finding the system in this state given that the contact exists and the 

probability of finding the system in this state given that the contact does not exist. The Bayes 

factor can be seen as the degree of uniqueness for a contact to define a state. In this work, 

Bayes factors were calculated for the contacts between the same set of 28 active site residues 

used to define rmin, and cij was calculated as a step function of rmin(i, j)

In practice, the probability of observing cij = 1 in state k, P(cij = 1∣k), was estimated as the 

expected value of cij in state k using eq 1. The unconditional probability of observing cij = 1, 

P(cij = 1), was estimated as the average of P(cij = 1∣k) over all k’s, weighted by the 

stationary distribution of k. Then, P(cij = 0∣k) = 1 – P(cij = 1∣k) and P(cij = 0) = 1 – P(cij = 

1). To avoid the contacts with small P(cij = 1∣k) from showing large Bayes factors, P(cij = 

1∣k) was regularized by 10−4, which will suppress Bayes factors of rare contacts without 

affecting the others.

 Electric Field Calculation

The electric field exerted onto the C ＝ O stretching vibration of pyruvate by the 

environment (the whole system except for pyruvate) can be calculated from the electrostatic 

forces on the carbonyl atoms of pyruvate. Because the electrostatic forces are not readily 

available through the Tcl interface of the NAMD program, we adopted a similar strategy as 

in ref 15 to get the electrostatic forces on the carbonyl atoms for each snapshot using eqs 6–

8.

(6)
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(7)

(8)

First, the snapshots were postprocessed using the same simulation parameters as in the MD 

simulations to extract the total forces on the C and O atoms of the carbonyl in pyruvate, 

, where i denotes the C or O atom. Then, the snapshots were postprocessed again with 

the partial charges of all atoms of the environment set to zero, and the total forces on the C 

and O atoms, , which did not include the electrostatic forces exerted by the 

environment due to the lack of partial charges of the environment atoms, were also 

extracted. By taking the difference between the total forces from the two rounds of 

postprocessing calculations for the C or O atom (eq 6), we can get the electrostatic forces on 

the C or O atom exerted by the environment, . The electric field at the position of the C 

or O atom, , can be calculated as the electrostatic force on the corresponding atom 

dividing by the partial charge qi of the same atom (eq 7). Finally, the electric field 

experienced by the C ＝ O stretching vibration, ∣Fvib∣, is calculated by projecting the electric 

field at the C or O atom onto the unit vector along the C ＝ O bond, , and then averaging 

the two projections between the two atoms (eq 8).

 RESULTS AND DISCUSSION

 Multiple Metastable Substrate Binding States

Multiple substates of the Michaelis complex of LDH have been shown in experiment by 

vibrational spectroscopy. The C ＝ O stretching vibration of the substrate pyruvate has been 

used as the vibrational probe in these experiments. The frequency shifts of the probe in 

different substates can show their propensities toward the chemical step, and can provide a 

direct measurement of the local electrostatic environments of the probe, which is ultimately 

determined by the interactions between the substrate and the protein/solvent such as 

hydrogen bonds. Thus, it is important to resolve the metastable substrate binding states in 

the MSM in order to compare with the experiments.

In this work, we first built an MSM on the basis of the contacts between the protein and the 

substrate only (the information about protein conformations not included explicitly; see 

Methods for details) and then lumped the microstates of the MSM into four metastable 

states. The first two metastable states are the same two binding states we found previously,22 

the substrate binding state in the X-ray structure Sxray in which the carbonyl O of pyruvate 

forms hydrogen bonds with Arg106, Asn138, and His193 (Figures 1a and S1a) and the 

carboxyl O forms hydrogen bonds with Arg106, Arg169, and His193 (Figures 1a and S2a) 

and an alternative binding state Sflip in which pyruvate flips around its main chain by 180°, 
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the carbonyl O forms a hydrogen bond with Arg169 (Figures 1b and S1b), and the carboxyl 

O forms hydrogen bonds with Arg106, Asn138, Arg169, and His193 (Figures 1b and S2b). 

The third metastable state is a newly resolved binding state Srotate in which the substrate 

rotates in the molecular plane by ~90° and shifts away from Arg169, the carbonyl O forms 

hydrogen bonds with Asn138 and a loop residue Gln100 (Figures 1c and S1c), and the 

carboxyl O forms hydrogen bonds with Arg106, Asn138, and His193 (Figures 1c and S2c). 

Furthermore, the methyl group of pyruvate also forms a nonpolar contact with Thr248 

(Figures 1c and S3c) which could help in stabilizing the binding. In the last metastable state 

Sa/u, the substrate cannot form a metastable binding to the protein, and is only weakly 

associated with or unbound from it, so this state is very heterogeneous (Figures S1d, S2d, 

and S3d) in terms of substrate binding, and should not have significant contributions to the 

vibrational spectra of the probe.

The slowest time scales of the MSM are at sub-microseconds (Figure S4b). However, it 

should be noted that the MSM built upon the contacts between the enzyme and the substate 

should only be considered to be qualitative, since the time scales of the slowest motions in 

the system actually correspond to the protein motions which is neglected deliberately in this 

model, so we did not draw any quantitative conclusions from this model and only used the 

metastable states as an additional label for the microstates built upon the enzyme 

conformations to resolve different binding states of the substrate (see Methods).

 Microsecond Time Scale Protein Motions

By manually incorporating the substrate binding states into the discretization of the input 

feature space, we obtained a set of 758 microstates which were used to estimate a MSM. 

The MSM was further coarse-grained into a four-state HMM because there is a gap after the 

third relaxation time scales (Figure S4a) which indicates there are four metastable states in 

the model. Figure 2 shows the metastable states of the protein conformations. Representative 

structures for the metastable protein states are shown with the active site loop and its 

contacting helix highlighted and the crystal structure 1I0Z (in black) superimposed for 

comparison. By visual inspection, we found the overall structural differences between the 

metastable states mainly came from the active site loop region. At equilibrium, the vast 

majority (over 95%) of the system is in the open state Sopen, while each of the remaining 

states only accounts for 1–2% of the whole population. The slowest conformational change 

in the system is governed by a relaxation time scale of ~1 μs, which corresponds to the 

transition between the open state Sopen and the remaining (closed and half-open) states. This 

is in agreement with the previous experiments which showed the rate-limiting step in the 

turnover of LDH is the closure of the active site loop over the substrate binding pocket.40 At 

the currently used lag time (30 ns), Sclosed and Shalf can interconvert with each other, while 

Shalf* cannot interconvert with Sclosed or Shalf directly without going through Sopen. Shalf and 

Shalf* have similar conformations of the active site loop in terms of the loop–helix distances, 

but the inter-residue contacts defining each state are different (Figure 3; see below).

To compare the overall structures of the metastable states, we calculated the HMM-weighted 

distributions of the minimum distances between the active site loop residues and the 

contacting helix in each metastable state (Figure 3a–d). In Sclosed, the active site loop 
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fluctuates around its position in the crystal structure, and remains in the closed position, 

while, in Sopen, the active site loop is in a wide open position compared with its position in 

the crystal structure, especially toward the end of the loop where the average minimum 

distances exceed 15 Å for Leu107 and Asn108. In both of the states Shalf and Shalf*, the 

active site loop is slightly more open than in the crystal structure.

To compare the structural features of the metastable states on a more detailed level, we 

calculated the Bayes factors39 (using eq 5; see Methods) for all of the inter-residue contacts 

used to define the protein conformation features (261 dimensions) to find what set of 

contacts uniquely define each metastable state. Parts e–h of Figure 3 show the results of the 

Bayes factor analysis, in which the magnitudes of the Bayes factors for the contacts in each 

metastable state reflect the degrees of uniqueness of the contacts with respect to other 

metastable states. There are two sets of contacts uniquely defining Sclosed (Figure 3e). One 

consists of the contact between Arg106 and Asn138 and the contact between Arg106 and 

His193, which also exist in the crystal structure. These residues are also important substrate 

binding residues. The other set of contacts that uniquely define Sclosed is formed by the helix 

residue Tyr239 and the loop residues 103–106, which suggests that these inter-residue 

contacts play an important role in stabilizing the closed conformation of the protein. In Shalf, 

the overall Bayes factors are quite similar to those in Sclosed (Figure 3f), though the values 

are much lower for Shalf, which suggests the similarities of the contacts in the two 

metastable states and is consistent with the fact that Sclosed and Shalf are kinetically close to 

each other (Figure 2). For Shalf* (Figure 3g), the contact with the largest Bayes factor is 

between two loop residues Gln100 and Leu107. There are also two contacts with relatively 

large Bayes factors: the contact between Ser105 and Asp195 and the contact between the 

loop residue Glu102 and the helix residue Gly246. There are no contacts with significant 

Bayes factors in Sopen (Figure 3h), which suggests that the conformations in Sopen are 

mostly unstructured, so there are no contacts that can uniquely define this metastable state.

 Substates of the Michaelis Complex

Due to the separation of time scales between protein and substrate motions, the HMM 

mainly captured the protein motions; i.e., the substrate binding states are still mixed in each 

of the metastable protein states. To compare with the substates resolved in experiment, each 

of the four states in the HMM were further divided into up to four substates on the basis of 

the additional labels (substrate binding states) of the microstates, which resulted in 13 

substates because some combinations of the substrate binding states and protein states were 

not observed in this model. Figure 4 shows the kinetic network of the substates, where the 

transition probabilities and stationary distribution are calculated using eqs 3 and 4. The 

majority of the population is in  (~94%), which suggests that LDH is not a strong 

binder for pyruvate, whereas the populations of the remaining substates range from 0.1 to 

1%. The substrate binding state Srotate only exists in the metastable state Shalf. The 

intermetastable transitions happen mainly when the substrate is in Sa/u or Sflip, which are not 

reactive binding states, and mainly through , which works like a central hub in the 

kinetic network. The reactive substates ( , , , and ) cannot interconvert 
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directly without going through a nonreactive substate (see below), which supports the 

experimental observations.10

 Direct Comparison with Substates Resolved by Vibrational Spectroscopy

To have a direct comparison with vibrational spectroscopy, the electric field exerted onto the 

vibrational probe (the C ＝ O stretching vibration of pyruvate) for each snapshot was 

calculated using eqs 6–8, and then the expected value and variance of the electric field for 

each substate were estimated using eqs 1 and 2. By excluding the substates with the protein 

in the open state or the substrate in the associated/unbound state, the remaining states can be 

grouped into four clusters on the basis of their expected values of the electric field. If we 

assign the four clusters to the four peaks of the IR spectrum of the LDH·NADH·pyruvate 

complex (1673, 1679, 1686, and 1699 cm−1),9 we can find a reasonably good linear 

correlation (R2 = 0.96) between the peak vibrational frequencies and the ensemble-average 

electric field (Figure 5), which suggested that the substates resolved in our model could be 

assigned to the observed substates of the Michaelis complex. It should be noted that the 

correlation between the standard deviation of the electric field distribution and the IR band’s 

line width is rather poor, as can be seen in Figure 5. One potential source of such large errors 

is that, even though the fixed-charge force field can describe the average properties of the 

electric field quite well, it is not adequate to capture the field heterogeneity. It has been 

suggested that reliable estimations of the IR line width for the C ＝ O bond can be achieved 

by incorporating the polarizable force field.41 Another potential source is the limitation of 

the Stark effect theory itself due to its rather primitive form. More rigorous and well-

parametrized models like the amide frequency maps,42 the solvatochromic charge model,43 

or the more recent SolEFP method44 have been proposed to model the vibrational 

solvatochromism more versatilely and reliably.

It has been suggested that each C ＝ O band could potentially represent more than one 

substate,9 which is indeed the case as has been seen in our model. The C ＝ O band with the 

largest frequency shift (1673 cm−1) corresponds to  in which the active site is highly 

structured with the loop closed and C ＝ O of pyruvate is highly polarized by the three 

hydrogen bonds formed with Arg106, Asn138, and His193. The C ＝ O band at 1679 cm−1 

corresponds to two substates  and  in which the substrate is still bound in a similar 

fashion as in the crystal structure but the active site loop is more open due to the loss of 

some key contacts in the closed state. The hydrogen bonds between the carbonyl O of 

pyruvate and the residues Arg106, Asn138, and His193 were weakened because of the 

higher flexibility of the active site, so the C ＝ O band in  and  is less shifted than 

that in . The C ＝ O band at 1686 cm−1 corresponds to  in which the substrate 

rotates in the molecular plane and can only form two hydrogen bonds with Gln100 and 

Asn138, so the C ＝ O is less polarized. The fitting of the C ＝ O band at 1686 cm−1 is 

slightly worse than those of the other three bands, which could be caused by the fact that the 

band near 1686 cm−1 also contains the out-of-phase C=C stretch motions of the reduced 

nicotinamide moiety of NADH.9 The C ＝ O band at 1699 cm−1 can be assigned to the 

substates with the substrate flipped regardless of the protein state ( , , and ) in 

which the substrate flips around its main chain, and can only form one hydrogen bond with 
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Arg169, so it has the least frequency shift. It has been proposed that the observed substates 

at 1673, 1679, and 1686 cm−1 are all reactive, whereas the observed substate at 1699 cm−1 is 

nonreactive.10 On the contrary to our previous proposal in which the substates with the 

flipped substrate were assigned to one of the three reactive observed substates,22 by 

comparing the calculated electric field and IR bands directly in this work, we found that the 

substates with the flipped substrate actually corresponded to the nonreactive substate at the 

IR band of 1699 cm−1.

 CONCLUSIONS

The Markov and hidden Markov models have been shown to be a powerful tool to obtain a 

detailed kinetic network of the protein conformations and the coupled substrate bindings. 

When combining with the electric field calculations, they can provide a way to compare with 

the vibrational spectroscopy directly, which can help in interpreting and complementing the 

experiments on atomistic scales. In this work, we explored the conformational dynamics of 

LDH and its coupling to the interactions between LDH and pyruvate by combining MD 

simulations and Markov/hidden Markov models. Besides the associated/unbound state, three 

substrate binding states are resolved, which differ in the hydrogen bond network formed 

with the protein, including a previously unresolved binding mode in which the substrate 

rotates in the molecular plane by ~90° and shifts away from Arg169 compared to the crystal 

structure. For protein conformations, a hidden Markov model resolved four metastable states 

including closed state, two half-open states, and open state. The closed state resembles the 

crystal structure in terms of loop–helix distances and residue contacts in the active site, and 

the contacts between the helix residue Tyr239 and the loop residues 103–106 help in 

stabilizing the closed conformation. For the two half-open states, the loop–helix distances 

are slightly larger than the closed state. One half-open state is kinetically closer to the closed 

state, and has similar inter-residue contacts, while the other one has different contacts with 

the closed state. For the open state, the active site loop is fully open in terms of the loop–

helix distances, and the conformations of the active site loop are unstructured.

To have a direct comparison with the vibrational spectroscopy, each of the metastable states 

was further divided into up to four substates according to the substrate binding states of the 

microstates, and the expected value of the electric field exerted onto the vibrational probe 

was calculated for each substate. We found a good linear correlation between the calculated 

electric field and the peaks of the infrared spectra, so we can assign the substates resolved in 

our model to the IR bands, and the structural features of substates corresponding to each IR 

band can be obtained. The IR bands with the largest three frequency shifts correspond to the 

binding state as in the crystal structure while the protein is in the closed state (1673 cm−1), 

or in either of the two half-open states (1679 cm−1), and the binding state with the rotated 

substrate while the protein is in one of the half-open states (1686 cm−1). These substates are 

all reactive but differ in the propensities toward the chemical reaction according to 

experiments. The IR band with the smallest frequency shift (1699 cm−1) corresponds to the 

binding state with the flipped substrate while the protein is not in the open states. The 

transition probabilities between the substates support the proposal that the reactive substates 

cannot interconvert directly without going through the nonreactive substates.
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Our work supports the dynamical point of view of enzymatic catalysis45 and suggests a 

methodology to determine the detailed kinetic network of the Michaelis complex on 

atomistic scales which can be directly compared with the vibrational spectroscopy. For 

LDH, there is heterogeneity in the Michaelis complex in terms of protein conformations and 

substrate bindings, and the femtosecond on-enzyme chemical step46 is modulated by the 

microsecond protein conformational changes and the coupled nanosecond substrate binding 

mode changes. Thus, the conventional picture of enzymatic catalysis in which the on-

enzyme chemical step is initiated from a single species, presumably the one resembling the 

crystal structures of the enzyme–substrate complex, might not provide the whole picture of 

the reaction. The methodology used in this work can be used to resolve all the distinct 

reactive substates which can be used as the starting structures in the study of the on-enzyme 

chemical step. Furthermore, the methodology used in this work can also be used in studying 

evolutionary adaptation of function such as adaptation to varying thermal environments, and 

allosteric regulation of enzyme, which are believed to be through the modulation of the 

Michaelis complex ground state ensemble distribution.47
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Figure 1. 
Representative structures from (a) the state of X-ray structure Sxray, (b) the flipped state 

Sflip, and (c) the rotated state Srotate.
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Figure 2. 
Representative structures, equilibrium distribution, and kinetics of the four metastable 

protein states. The arrowed lines represent the transition probabilities between the 

metastable states. The areas of the discs are proportional to the probabilities of the 

corresponding metastable states at equilibrium. The dashed line represents the slowest 

relaxation time scale and its corresponding transition process.
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Figure 3. 
Structural features of the protein metastable states. HMM-weighted distributions of the 

minimum distances between the active site loop residues and the contacting helix in (a) 

Sclosed, (b) Shalf, (c) Shalf*, and (d) Sopen. The red markers represent the minimum distances 

calculated from the crystal structure; Bayes factors for the contacts used to define the protein 

conformation features for (e) Sclosed, (f) Shalf, (g) Shalf*, and (h) Sopen.

Pan and Schwartz Page 17

J Phys Chem B. Author manuscript; available in PMC 2017 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Kinetic network of substates of the metastable states.
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Figure 5. 
Correlation between calculated electric fields and the C ＝ O stretching vibration of 

pyruvate for the substates of the metastable states. Error bars along the x- and y-axes 

correspond to the standard deviations of the IR spectrum and the electric field, respectively.
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