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Abstract: Much of the work in cognitive neuroscience is shifting from a focus on single brain regions
to a focus on the connectivity between multiple brain regions. These inter-regional connectivity pat-
terns contribute to a wide range of behaviors and are studied with models of functional integration.
The rapid expansion of the literature on functional integration offers an opportunity to scrutinize the
consistency and specificity of one of the most popular approaches for quantifying connectivity: psycho-
physiological interaction (PPI) analysis. We performed coordinate-based meta-analyses on 284 PPI
studies, which allowed us to test (a) whether those studies consistently converge on similar target
regions and (b) whether the identified target regions are specific to the chosen seed region and psycho-
logical context. Our analyses revealed two key results. First, we found that different types of PPI stud-
ies—e.g., those using seeds such as amygdala and dorsolateral prefrontal cortex (DLPFC) and contexts
such as emotion and cognitive control, respectively—each consistently converge on similar target
regions, thus supporting the reliability of PPI as a tool for studying functional integration. Second, we
also found target regions that were specific to the chosen seed region and psychological context, indi-
cating distinct patterns of brain connectivity. For example, the DLPFC seed reliably contributed to a
posterior cingulate cortex target during cognitive control but contributed to an amygdala target in
other contexts. Our results point to the robustness of PPI while highlighting common and distinct pat-
terns of functional integration, potentially advancing models of brain connectivity. Hum Brain Mapp
37:2904–2917, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Neuroscience seeks to understand how the brain enables
behavior by characterizing structure-function relationships
[Fink et al., 2003; Raichle, 2003]. Much of this interest was
sparked by lesion studies examining the debilitating
behavioral deficits that follow from brain damage
[Adolphs et al., 1994; Calder et al., 2000; Goodale and Mil-
ner, 1992; Scoville and Milner, 1957]. Although lesion stud-
ies will remain an important tool for inferring structure-
function relationships [Rorden and Karnath, 2004], func-
tional neuroimaging has become the primary method in
characterizing how individual brain regions respond to a
given task [Fellows et al., 2005]. This approach has been
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applied widely and led to a sizable literature of functional
neuroimaging studies on a range of topics spanning the
breadth of cognitive neuroscience [Huettel, 2012; Poldrack,
2008, 2010]. The growth in fMRI studies further permits
quantitative syntheses to formally assess the consistency
and specificity of previously characterized structure-
function relationships [Wager et al., 2009; Yarkoni et al.,
2010]. Such approaches have been successful across several
areas, including language [Binder et al., 2009], memory
[Murty et al., 2010], emotion [Buhle et al., 2014], and deci-
sion making and valuation [Bartra et al., 2013; Clithero
and Rangel, 2014]. These studies have honed our under-
standing of structure-function relationships by characteriz-
ing how individual brain regions respond to a task.

The responses of individual brain regions, however,
may be inadequate for representing the complex links
between structure and function. Indeed, given the various
anatomical inputs to single regions, there can be several
functions associated with such regions, making it challeng-
ing to understand how the brain enables behavior [Friston,
2005; Park and Friston, 2013]. Solving this challenge rests
with our ability to understand brain connectivity because
the function of a region depends on its interactions with
other brain regions [Fox and Friston, 2012]. Brain connec-
tivity is now being explored more frequently using various
techniques that range in their ability to quantify neuronal
coupling between brain regions [Friston, 2009; Smith et al.,
2011; Sporns, 2014]. For example, researchers are collecting
resting-state functional magnetic resonance imaging data
(fMRI) and quantifying functional connectivity (i.e., statis-
tical dependencies or correlations) between brain regions
[Biswal et al., 2010; Shehzad et al., 2009]. These approaches
are becoming increasingly popular because of their appli-
cation to individual differences and classifying distinct
groups of individuals [Hariri, 2009; Kelley et al., 2015],
such as depressed [Berman et al., 2011] and schizophrenic
[Manoliu et al., 2014] patients. Functional connectivity can
also be measured during tasks and contrasted with resting
states, which has revealed key similarities [Smith et al.,
2009] and differences [Utevsky et al., 2014] in context-
dependent brain organization. In addition, meta-analytic
connectivity approaches that quantify how distal brain
regions are reliably coactivated [Robinson et al., 2010]
have used functional connectivity to reveal novel func-
tional parcellations within various brain regions, including
the orbitofrontal cortex [Zald et al., 2014], parietal opercu-
lum [Eickhoff et al., 2010], cerebellum [Riedel et al., 2015],
and insula [Chang et al., 2013]. Taken together, these
observations highlight how the responses in individual
brain regions can be combined through functional
connectivity.

Yet, researchers have long recognized that functional
connectivity suffers from important pitfalls that limit its
insight into neuronal coupling [Gerstein and Perkel, 1969].
For example, changes in functional connectivity could
reflect changes in another connection, observational noise,

or neuronal fluctuations [Friston, 2011]. To address these
confounds, many groups have employed computational
approaches that estimate effective connectivity [Valdes-
Sosa et al., 2011]. Unlike functional connectivity, effective
connectivity quantifies directed relationships between
brain regions and controls for confounds that limit func-
tional connectivity—features that facilitate insight into
functional integration [Park and Friston, 2013]. Effective
connectivity can be measured with different approaches.
One such approach, reserved for very simple models of
effective connectivity (e.g., those with two regions), is psy-
chophysiological interactions (PPI) [Friston et al., 1997].
This approach measures whether a psychological context
alters how one brain region (a “seed region”) contributes
to another brain region (a “target region”) by explicitly
testing whether a significant interaction between psycho-
logical context and the seed region is expressed in the tar-
get region (Fig. 1A). Although PPI studies have become
increasingly popular over the years (Fig. 1B), it remains
unclear whether the target regions identified by PPI results
are consistent across similar studies (i.e., studies using the
same seed region and psychological context) and specific to
a given seed region and psychological context. These
issues may undermine the applicability of PPI analyses to
structure-function relationships and functional integration.

We investigated whether a quantitative synthesis of PPI
studies would reveal common and distinct patterns of con-
nectivity—findings that would contribute toward a cumu-
lative science of functional integration. We formed a
corpus of studies comprising all published PPI experi-
ments. Of course, synthesizing the results of PPI experi-
ments (or any approach examining context-specific
changes in effective connectivity) presents a challenge for
appropriately grouping studies. We therefore grouped
studies according to their chosen seed region and psycho-
logical context (Fig. 2), allowing us to formally evaluate
whether the associated target regions were common or
distinct. We used coordinate-based-meta-analysis and acti-
vation likelihood estimation [Eickhoff et al., 2009, 2012] to
quantify consistency and specificity across distinct groups
of PPI studies. Our analyses focused on two key questions.
First, do PPI studies consistently converge on similar tar-
get regions? Second, are these target regions dependent on
the chosen seed region and psychological context?

MATERIALS AND METHODS

Interpreting Psychophysiological Interactions

The main limitation of a typical functional connectivity
analysis is the reliance on correlations, which could reflect
changes in another connection, observational noise, or neu-
ronal fluctuations [Friston, 2011]. Psychophysiological
interaction (PPI) analysis overcomes these limitations
because, in a very strict sense, it is a test for effective con-
nectivity. PPI analyses should be interpreted as a (simple)
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test for effective connectivity because they are based on an
explicit (and often linear) model of coupling between one
or more brain regions. This model allows researchers to
test for directed changes in connectivity by establishing a

Figure 1.

Overview of Psychophysiological Interactions. (A) The goal of a

psychophysiological interaction (PPI) analysis is to explain the

responses of one brain region (i.e., a target region) in terms of

an interaction (gp 3 xA) between the influence of another brain

region (i.e., a seed region; xA) and a particular psychological con-

text (gp). There are two perspectives on PPIs. On the left, a PPI

reflects a context-specific change in effective connectivity

between the two regions. In this case, the psychological context

(e.g., attention) modulates the contribution of the seed region

(region A) to the target region (region B). On the right, a PPI

reflects a modulation of stimulus-specific responses. In this case,

the seed region (region A) modulates the response of the target

region (region B) to the psychological context. [cf. Friston et al.,

1997] (B) The usage of PPI in neuroimaging has increased rap-

idly since its inception. This popularity and widespread usage has

led to a large corpus of PPI studies that can be probed using

meta-analytic techniques.

Figure 2.

Aggregating studies of psychophysiological interactions. Aggre-

gating across PPI studies requires explicit consideration of the

variables that contribute to the psychophysiological interactions:

the seed region and the psychological context. (A) We identified

common seed regions within our corpus of PPI studies using a

coordinate-based meta-analytic approach. This analysis revealed

several regions that were commonly used as seed regions: the

amygdala, ventral paracingulate cortex (vPAC), superior tempo-

ral gyrus (STG), and dorsolateral prefrontal cortex (DLPFC),

fusiform face area (FFA), ventral striatum, anterior insula (aINS),

dorsal paracingulate cortex (dPAC), and superior parietal lobe

(SPL). (B) We then parsed studies according to the general psy-

chological context used in the PPI analysis (see Materials and

Methods for article coding scheme). The matrix depicts the

number of studies using a particular combination of seed region

and psychological context (i.e., a specific PPI). Our primary anal-

yses focused on bidirectional contrasts of cells containing 10 or

more studies (gray), excluding those in the miscellaneous cate-

gory. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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significant interaction between the seed region and the psy-
chological context (Fig. 1A). Although the direction of the
change is explicitly specified in the model, we note that the
post hoc interpretation of the results can be ambiguous. For
example, a significant increase in coupling from one region
to another region is likely to be significant when testing for
a PPI in the opposite direction; e.g., a significant PPI effect
could be observed by reversing the seed and target regions.
This ambiguity can be resolved by submitting the regions
comprising the putative functional circuit to dynamic
causal modeling and then conducting Bayesian model com-
parisons [Friston, 2009; Friston et al., 2003]. Furthermore,
we note that a PPI model better approximates effective con-
nectivity as more regions are added to the model [Friston
et al., 1997], but this approach is rarely done in practice due
to multicollinearity and the relative paucity of observations
compared to potential regions (i.e., degrees of freedom). In
short, when we discuss changes in effective connectivity,
we do so in light of these qualifications.

Study Identification

We created a corpus of PPI studies using forward reference
searches on PubMed and Web of Science. Our searches iden-
tified published articles (by February 2014) citing the original
PPI article [Friston et al., 1997]. We excluded articles that did
not employ a PPI model or contain empirical PPI results (i.e.,
coordinates of significant target regions). This procedure
eliminated review papers, commentaries, and other articles
that did not contain PPI results. We also excluded articles
that focused strictly on group differences (or other types of
individual differences) in PPI effects. Although group differ-
ences in PPI results are important, such effects are necessarily
driven by a third factor (i.e., group), thus making it impossi-
ble to combine with simpler, within-subject PPI results that
are only driven by seed location and psychological construct
(Fig. 1A). Taken together, these exclusions left us with a total
of 396 studies for initial analysis.

Coordinate-Based Meta-Analysis

Within any scientific discipline, it is imperative to syn-
thesize the results of independent experiments [Stanley
and Spence, 2014]. Although quantitative meta-analyses
provide a gold standard for synthesizing results from dif-
ferent experiments, such approaches have unique chal-
lenges within the context of neuroimaging data. Results
from neuroimaging experiments are typically reported in
the form of coordinates within a stereotaxic system—
namely, Talairach and Montreal Neurological Institute
(MNI) coordinate spaces [Lancaster et al., 2007]. Thus, the
key data recorded across independent neuroimaging
experiments is the spatial location of an effect (in terms of
a coordinate); this feature has motivated the development
of tools for performing coordinate-based meta-analysis
(CBMA). Rather than testing whether an effect magnitude

is consistent across studies, CBMA tests whether an effect
location is consistent across studies [Fox et al., 1998].

We computed all CBMA results using GingerALE (v2.3.3;
http://www.brainmap.org/ale/), which relies on the acti-
vation likelihood estimation (ALE) metric [Eickhoff et al.,
2012] and incorporates recent improvements that allow for
random-effects inference [Eickhoff et al., 2009]. Prior to cal-
culating the ALE metric, all coordinates were converted to
MNI space using the “icbm2tal” transformation [Lancaster
et al., 2007] to facilitate aggregation across studies. The ALE
metric is quantified in two primary steps. First, each study
is converted to a modeled activation (MA) map in which
each voxel represents the probability that a true result lies
in that location. These probabilities are obtained by con-
volving each of the reported coordinates (or foci) using 3D
Gaussian probability distribution function (PDF). Crucially,
the full width at half maximum (FWHM) value of the PDF
depends on the number of participants in the study—fewer
participants equates to greater spatial uncertainty and
hence a larger FWHM. This procedure accounts for hetero-
geneity in spatial uncertainty across studies and improves
generalization beyond the corpus of studies under investi-
gation [Eickhoff et al., 2009]. We also note that the number
of coordinates reported in a study does not influence the
resulting MA map: when multiple coordinates contribute to
a voxel’s MA value, the maximum probability is used [Tur-
keltaub et al., 2012]. Second, the MA maps are combined
(via a probabilistic union) to create an image containing the
ALE statistic at each voxel. The ALE statistic represents the
probability that at least one true result lies in that voxel
across the population of all possible studies.

Statistical inference on ALE images requires distinguish-
ing random convergence (i.e., noise) from locations of true
convergence between experiments. Previous work has
addressed this issue by permuting voxel locations to collect
the empirical null distributions [Turkeltaub et al., 2002;
Wager et al., 2007]. Yet, recent developments have aban-
doned this approach in favor of a nonlinear histogram inte-
gration approach [Eickhoff et al., 2012]. This revised
approach considers distinct MA values instead of distinct
voxels, thus greatly reducing number of required permuta-
tions. We therefore used 1,000 permutations to analytically
compute the null distribution and assess significance in
each ALE map [Eickhoff et al., 2012]. We also implemented
another recent development that allows for cluster-level
inference to be implemented within the CBMA framework
[Eickhoff et al., 2012]. We first applied an uncorrected vox-
elwise threshold of P < 0.001, and the resulting clusters
were held to a family-wise-error-rate (FWER) of P 5

0.00625 to account for bidirectional comparisons on four
distinct cells in our matrix of final studies (see below).

Matrix of Final Studies

A CBMA on PPI data must consider how the results
(i.e., target coordinates) in each experiment are based on a
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specific seed location and psychological context. Although
equating for seed location and psychological context neces-
sarily winnows down our list of candidate studies, this
procedure is necessary for synthesizing PPI results.
Unfortunately, seed location varies widely across PPI stud-
ies, making it difficult to identify commonly used seed
regions and group studies appropriately. We addressed
this problem empirically by performing a CBMA of the
seed locations extracted from our 396 studies. We note
that some studies performed multiple PPI analyses, with
some using distinct seed regions (e.g., amygdala and
DLPFC) and others using similar seed regions (e.g., differ-
ent parts of the DLPFC). Thus, our total number of seed
region coordinates was 602. These seed region coordinates
were submitted to a CBMA to identify regions that were
reliably used as seeds. To facilitate aggregation across
studies, we assumed no differences in laterality and forced
all seed regions into the right hemisphere prior to analysis.
Although collapsing seed coordinates into the right hemi-
sphere ignores hemispheric asymmetries, such as those in
prefrontal cortex [Binder et al., 2009], testing for lateraliza-

tion and potentially doubling our pool of seed regions
would necessitate a much larger corpus of PPI studies.
(We did not make analogous lateralization assumptions
for target regions.) We thresholded the CBMA map at P <
0.00001 (uncorrected), which yielded nine meta-seed
regions (Fig. 2A; Table I). We then grouped our seed
region coordinates (and hence our PPI experiments)
according to their proximity to the nine meta-seed regions.
To maximize the number of included studies and to
account for spatial uncertainty across studies [Brett et al.,
2002; Devlin and Poldrack, 2007; Eickhoff et al., 2012], we
excluded studies with seeds that were greater than 10 mm
from any of the 9 meta-seed regions. We chose 10 mm to
avoid cases where a study could be counted as part of
multiple seeds (e.g., amygdala and ventral striatum). After
excluding studies that could not be unambiguously
grouped with a given seed region—a key consideration for
conducting accurate PPI meta-analyses—we were left with
a total of 284 independent studies containing data from
5,997 participants (see Supporting Information Tables I–
IX). In cases where studies used two or more overlapping
seed regions (e.g., different parts of the DLPFC, or left and
right amygdala), we combined the associated target coor-
dinates to prevent experiments from being counted more
than once in our analyses.

Next, we coded the remaining studies into one of five
broad psychological contexts: Attention, Cognitive Control,
Decision Making, Emotion, and Social Cognition. Our cod-
ing schemes for each category are presented in Table II;
these categories were defined a priori to prevent bias and
to capture the largest array of psychological contexts used
in PPI studies. Most PPI studies—like most studies
employing cognitive subtractions [Friston et al., 1996]—
aim to isolate a psychological context using a contrast. For
example, “cognitive control” might reflect high load> low
load. This feature of PPI raises two important points about
our analyses. First, our coding scheme does not explicitly
consider whether the PPI resulted from a contrast of two
conditions (e.g., high load> low load) or the main effect of
a single condition relative to baseline (e.g., high
load>fixation). Second, recent work has demonstrated

TABLE I. Seed coordinates

Name x y z Size

Amygdala 25 22 221 326
Ventral striatum 13 9 26 218
DLPFC 46 19 26 470
vPAC 4 49 3 315
FFA 41 253 221 274
SPL 38 246 49 150
aINS 37 23 28 136
STG 48 223 7 103
dPAC 7 35 25 95

Shown are the MNI coordinates for the center of gravity associ-
ated with each of our meta-seed regions. We report size in terms
of the number of 2 mm3 voxels.
vPAC, ventral paracingulate cortex; STG, superior temporal gyrus;
DLPFC, dorsolateral prefrontal cortex; FFA, fusiform face area;
aINS, anterior insula; dPAC, dorsal paracingulate cortex; SPL,
superior parietal lobe.

TABLE II. Psychological contexts

Psychological context Description

Emotion The purpose of the task is to elicit or regulate an emotional response (positive, neutral, or negative).
Attention The task requires attention to stimuli, which can be visual, auditory, gustatory, olfactory,

nociceptive, or multimodal.
Cognitive control

(incl. working memory)
The task involves cognitive flexibility such as working memory, problem solving,

or goal-directed behavior.
Social cognition The task involves making judgments or thinking about, interacting with, or inferring the cognitive

state of another individual.
Decision making The purpose of the task is to make choices between different options (free or forced choice).

To form a psychophysiological interaction, a study must have activity from a seed region and a specific psychological context. We there-
fore grouped our PPI studies according to the seed and the psychological context used to form the psychophysiological interaction. We
used relatively broad definitions of psychological context, which are shown in the table.
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PPIs with more than two conditions should use a general-
ized PPI (gPPI) approach that models the psychophysio-
logical interactions for each condition separately [McLaren
et al., 2012]. The gPPI approach results in greater sensitiv-
ity and specificity [McLaren et al., 2012], but its relatively
recent development precludes focusing on gPPI studies
within our analyses, which include a mix of standard and
gPPI studies. Accordingly, whether a study optimally
modeled differences in psychological context with gPPI
may introduce noise to our analyses, but it is very unlikely
to systematically bias our effects.

We evaluated reproducibility of our coding scheme for
psychological contexts using a subsample of studies (N 5

50) coded by two independent raters (authors MG and
MES). Both raters produced very similar results (inter-rater
agreement: j 5 0.71, P < 0.001), thus supporting the repro-
ducibility of our coding scheme for the psychological con-
text categories. Studies that did not fit in any of the five
broad categories were assigned to a miscellaneous cate-
gory. Although these categories are broad and somewhat
imprecise, we emphasize that further divisions would
render our meta-analysis ineffective due to a paucity of
observations for most analyses. Indeed, many of the cells
in our final matrix of studies already contain too few
experiments to perform robust CBMAs (Fig. 2B). We there-
fore focused on cells containing 10 or more experiments
(N 5 4; denoted with gray shading in Fig. 2B), excluding
the miscellaneous category. We note that our threshold of
10 experiments is arbitrary, but it reflects a principled, a
priori cutoff because CBMAs within the ALE framework
are unlikely to produce robust results with fewer than 10
experiments [Eickhoff et al., 2012].

Contrasts and Conjunctions of ALE Images

Our matrix of studies created a unique opportunity to
investigate common and distinct patterns of connectivity.
We quantified common patterns of connectivity using con-
junction analyses. In this case, two thresholded ALE
images are combined using the minimum statistic [Nichols
et al., 2005] and then re-thresholded to test whether any
clusters are significant in both ALE images. This approach
has been used effectively within the literature; for exam-
ple, other meta-analyses have identified brain regions that
compute value for different types of reward [Bartra et al.,
2013; Clithero and Rangel, 2014].

In addition to conjunction analyses, multiple ALE
images can be contrasted to reveal distinct patterns of con-
nectivity. Like conjunction analyses, the contrast analyses
also utilize thresholded images as inputs, thus limiting the
need for additional corrections for multiple comparisons
[Eickhoff et al., 2011]. Contrasts in CBMA are carried out
in a series of steps and inference is based on permutation
analyses. First, subtracting one input image from the other
forms ALE contrast images. These contrast images do not
account for differences in study sizes (i.e., whether one

ALE image was created using more experiments). Next, to
account for differences in study sizes, the algorithm cre-
ates simulated data by pooling coordinate datasets and
then randomly splitting them into two new groupings of
the same size original datasets. Finally, an ALE image is
created for each new simulated dataset, subtracted from
the other, and then compared to the true data. This pro-
cess is repeated 10,000 times to form null distributions
that allow for statistical inference. The resulting statistical
images were subjected to an additional voxelwise thresh-
old of P < 0.01.

RESULTS

Assessing Reliable Patterns of Brain Connectivity

Across Multiple Seeds and Contexts

Given the underpowered nature of many neuroscience
studies, assessing the reliability of the results is becoming
increasingly important [Button et al., 2013]. Yet very little is
known about the reliability of brain connectivity findings,
particularly those relying on psychophysiological interactions
(PPI). Thus, one open and important question regarding PPI
studies is whether the obtained results—i.e., the target
regions—are consistently found across multiple studies.

We addressed this question for four combinations of
seed regions and psychological context containing a suffi-
cient number of experiments for CBMA (Fig. 2B). First, we
examined studies using the superior temporal gyrus (STG)
as a seed region under the psychological context of atten-
tion. Our results indicated that these studies reliably
report targets in the fusiform face area (FFA; MNIx,y,z 5 32,
265, 211) and the primary somatosensory area (S1;
MNIx,y,z 5 242, 220, 57), suggesting these regions are
influenced by the STG across tasks classified under the
construct of attention (Fig. 3A). Second, we examined
studies using the dorsolateral prefrontal cortex (DLPFC) as
a seed region under the psychological context of cognitive
control. Our results indicated that these studies reliably
report targets in the posterior cingulate cortex (PCC;
MNIx,y,z 5 210, 258, 45) and proximal portions of DLPFC
(MNIx,y,z 5 48, 25, 31), suggesting these regions are influ-
enced by the DLPFC in tasks involving cognitive control
(Fig. 3B). Third, we examined studies using the amygdala
as a seed region under the psychological context of emo-
tion. Our results indicated that these studies reliably
report targets in the inferior lateral occipital cortex (iLOC;
MNIx,y,z 5 246, 266, 214), the ventral paracingulate cortex
(vPAC; MNIx,y,z 5 9, 47, 0), and the dorsal anterior cingu-
late cortex (dACC; MNIx,y,z 5 9, 29, 20), suggesting these
regions are influenced by the amygdala in tasks involving
emotion (Fig. 3C). Fourth, we examined studies using the
vPAC as a seed region under the psychological context of
social cognition. [Note that vPAC is anatomically similar
to what is typically labeled as medial prefrontal cortex in
the literature [Amodio and Frith, 2006].] Our results
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indicated these studies reliably report targets in the poste-
rior superior temporal sulcus (pSTS; MNIx,y,z 5 57, 243, 1),
suggesting that this region is influenced by the vPAC in
tasks involving social cognition (Fig. 3D). Taken together,
these results highlight the reliability of PPI results for mul-
tiple seed regions and contexts.

Identifying Common and Distinct Patterns of

Brain Connectivity

Our findings demonstrate that multiple seed regions and
psychological contexts reliably influence specific target regions.
Yet, these observations—and hence our understanding of task

Figure 3.

Meta-analytic evidence of psychophysiological interactions. We

used a coordinate-based meta-analytic approach to quantify

whether PPI studies converged on reliable target regions. (A)

Studies using superior temporal gyrus (STG) as the seed region

and attention as the psychological context reliably found sensory

targets, including the right fusiform face area (FFA) and left pri-

mary somatosensory cortex (S1). (B) Studies using dorsolateral

prefrontal cortex (DLPFC) as the seed region and cognitive con-

trol as the psychological context reliably found targets in the

DLPFC and the posterior cingulate cortex (PCC). (C) Studies

using amygdala as the seed region and emotion as the psychologi-

cal context reliably found targets in dorsal anterior cingulate cor-

tex (dACC), inferior lateral occipital cortex (iLOC), and ventral

paracingulate cortex (vPAC). (D) Studies using the vPAC as the

seed region and social cognition as the psychological context reli-

ably found targets in posterior superior temporal sulcus (pSTS).

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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dependent brain connectivity—could be confounded by multi-
ple factors. For example, a network of regions could work
together to influence a single region, thus complicating models
of brain connectivity with common inputs. In addition,
although the observed patterns of connectivity with a seed
region should depend on psychological context, it could be the
case that the observed connectivity is merely a general feature
of the chosen seed region. For instance, a seed region may con-
tribute to a particular target region irrespective of psychologi-
cal context, thus casting doubt on the importance of
psychological context when using that seed region. These
issues raise serious concerns about the interpretation of PPI
results and, potentially, models of task-dependent brain con-
nectivity more generally.

Our meta-analytic approach can be extended to assess
these possibilities and clarify models of brain connectivity.
We first attempted to rule out the influence of other seed
regions (i.e., common inputs) by performing, for each psy-
chological context, bidirectional comparisons between the
seed region of interest and all other seed regions. If the
observed influences on the target regions are specific to
the seed region, then subtracting out the effect of other
seed regions should leave similar target regions. We tested
this possibility for each of the results described in Figure
3. Our analysis revealed two key results. First, in tasks
involving attention, the FFA (MNIx,y,z 5 34, 266, 210) was
reliably modulated by the STG more so than any other
seed region in our corpus of studies (Fig. 4A). Second, in

tasks involving cognitive control, the PCC (MNIx,y,z 5 211,
260, 45) was reliably modulated by the DLPFC more so
than any other seed region in our corpus of studies (Fig. 4B).
Interestingly, we also found that tasks involving emotion
tend to reliably modulate the amygdala (MNIx,y,z 5 228, 0,
216) and the STG (MNIx,y,z 5 265, 225, 10) (Fig. 4C). This
result implies that the psychological context of emotion
might generally influence responses in the left amygdala
and the left STG (e.g., right-hand panel of Fig. 1A).

Our next set of analyses focused on the specificity of psy-
chological context. A given psychological context could
modulate similar target regions, irrespective of the chosen
seed region. Alternatively, a given seed region could modu-
late distinct target regions, depending on the psychological
context. We evaluated these possibilities by calculating, for
each seed region, bidirectional contrasts between the psy-
chological context of interest and all other contexts. We
found one result: DLPFC modulates the PCC (MNIx,y,z 5 29,
259, 45) during cognitive control and modulates the amyg-
dala (MNIx,y,z 5 20, 26, 216) during other contexts (Fig. 5).
These observations point to the flexibility of DLPFC and
demonstrate how its interactions with other brain regions
are fundamentally dependent on psychological context.

For completeness, we also investigated, in a series of
post hoc analyses, common and distinct patterns of con-
nectivity with each seed region (ignoring psychological
context). These post hoc analyses maintained a relatively
conservative threshold for the ALE images (i.e., clusters

Figure 4.

Psychophysiological interactions depend on seed region. Models

of brain connectivity assessed through PPI have difficulty ruling

out whether common inputs contribute to the observed effects.

We therefore tested whether our meta-analytic PPI target regions

were dependent on the seed region (i.e., the input region) by con-

trasting studies employing the seed region of interest against stud-

ies using other seed regions. (A) For studies utilizing attention as

the psychological context, we found that the superior temporal

gyrus (STG) seed (relative to other seeds) selectively contributed

to the fusiform face area (FFA). (B) Similarly, for studies utilizing

cognitive control, we found that the dorsolateral prefrontal cor-

tex (DLPFC) seed (relative to other seeds) selectively contributed

to the posterior cingulate cortex (PCC). (C) In contrast, studies

using emotion as the psychological context and the amygdala as

the seed region were not uniquely tied to any target regions.

Instead, emotion studies that did not use the amygdala as seed

region were uniquely associated with amygdala and STG targets.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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were held to FWER of P 5 0.01); and resulting contrast
and conjunction analyses were subjected to a voxelwise
threshold of P < 0.005. We first performed bidirectional
comparisons between the amygdala and each alternative
seed region. Compared to the FFA seed and the DLPFC
seed, the amygdala seed was more likely to contribute to
target region in medial prefrontal cortex (Supporting Infor-
mation Fig. 1). Next, we examined bidirectional compari-
sons between the ventral striatum seed and each
alternative seed region. Compared to the anterior insula
seed, the DLPFC seed, and the ventral paracingulate cor-
tex seed, the ventral striatum seed was more likely to
influence a target region in ventral lateral prefrontal cortex
(Supporting Information Fig. 2). Notably, recent work has
suggested that this particular corticostriatal pathway may
be important for distinguishing the hedonic and reinforc-
ing properties of an experienced reward [Smith et al.,
2016]. Further pairwise contrasts of each seed region
revealed no other differences. We also examined pairwise
conjunctions to test whether any seed regions influence a
common target region. Our analyses indicated that the

FFA seed and the DLPFC seed influence a target region in
the left amygdala (Supporting Information Fig. 3), suggest-
ing the FFA and DLPFC serve as common inputs to the
amygdala.

DISCUSSION

A key goal of neuroscience is to understand structure-
function relationships in the brain. However, examining
single brain regions in isolation without examining con-
nections between them severely limits our ability to accu-
rately characterize the consistency and specificity of
structure-function relationships. Thus, we sought to inves-
tigate this outstanding yet critical question—that is,
whether similar seed regions yield similar target regions
across multiple studies—by performing a coordinate-based
meta-analysis on 284 studies that utilized PPI (5,997 partic-
ipants). We identified the most common seed regions
spanning diverse psychological contexts (e.g., attention,
cognition control, emotion, and social cognition), which
included the amygdala, fusiform face area (FFA), superior
temporal gyrus (STG), dorsolateral prefrontal cortex
(DLPFC), and ventral paracingulate cortex (vPAC). This
approach allowed us to demonstrate that: (1) PPI studies
provide consistent patterns of effective connectivity; (2)
such patterns are largely dependent on the reference
region, thus mitigating concerns over common inputs; and
(3) a single region may participate in multiple psychologi-
cal functions depending on its connectivity with other
regions. Taken together, these results support the robust-
ness of PPI as a tool to examine functional integration,
while broadening our understanding of models of brain
connectivity to emphasize a shift from functional to effec-
tive connectivity.

The results are particularly significant when considering
the recent emphasis on reproducibility of findings [Nosek
et al., 2015; Open Science, 2015]. While replications are
indeed necessary [Ioannidis, 2005], the meta-analytic
approach allows us to draw broader conclusions across a
body of work to provide new insight that often goes
beyond the scope of a few studies [Stanley and Spence,
2014]. That is, our work serves to confirm results and sup-
port the reliability of PPI findings—for instance, by high-
lighting that studies on social cognition using the vPAC as
the seed region show functional connectivity with pSTS, a
result consistent with the larger literature on the process-
ing of social cues, agency of actions, and mentalizing
[Amodio and Frith, 2006; Tankersley et al., 2007]. How-
ever, our analysis also achieves the exciting goal of charac-
terizing general and distinct patterns of effective
connectivity traversing various psychological contexts. For
example, the FFA and DLPFC had a general contribution
to the amygdala, regardless of psychological context,
whereas DLPFC had a selective contribution to PCC in
studies on cognitive control, but contributed to the amyg-
dala in other psychological contexts.

Figure 5.

Psychophysiological interactions depend on psychological context.

We investigated the influence of psychological context on PPI

results by contrasting studies using the same seed region with dif-

ferent psychological contexts. We found that only one seed

region, the DLPFC, contributed to distinct target regions depend-

ing on psychological context. Specifically, with psychological con-

texts involving cognitive control, DLPFC contributed to the

posterior cingulate. In contrast, with other psychological contexts,

DLPFC contributed to the amygdala. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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To illustrate this further, we focus discussion on some
of the specific results we observed. Studies on emotion
that used the amygdala as a seed region, for example,
yielded targets in regions previously implicated in the cog-
nitive regulation of emotion, such as the dACC and vPAC
[Ochsner and Gross, 2005], as well as the iLOC, which is
broadly linked to visual perception of shape from motion
[Ferber et al., 2003]. The dACC is thought to be active dur-
ing conflict or performance monitoring, emotion regulation
[Kanske and Kotz, 2011], and reward-based decision mak-
ing and learning [Bush et al., 2002], whereas the vPAC is
most closely linked to social cognition [Amodio and Frith,
2006], and may reflect the social nature of stimuli used in
these studies (e.g., faces or images of people experiencing
emotion).

The amygdala’s contribution to both cognitive (dACC)
and affective (vPAC) aspects of the cingulate is in line
with models of the cognitive control of emotion [Ochsner
and Gross, 2005; Ochsner et al., 2012]. However, such
regions are predicted to modulate emotional responses via
projections to affective regions, such as the amygdala,
rather than in the reverse direction. There is some evi-
dence of coupling between the amygdala and either the
prefrontal cortex or cingulate during emotion regulation
[Blair et al., 2007; Delgado et al., 2008; Kim and Hamann,
2007; Ochsner et al., 2004; Phan et al., 2005], but functional
connectivity studies cannot speak to directionality. Only a
handful of studies have actually tested a direct relation-
ship between the prefrontal cortex and amygdala, for
instance, demonstrating that the DMPFC or VLPFC reduce
amygdala activity through modulation of the VMPFC
[Johnstone et al., 2007; Urry et al., 2006], with one study
also showing a subsequent reduction in negative affect
[Wager et al., 2008]. Our meta-analytic PPI results indi-
cated a similar relationship, in that the DLPFC contributed
to the amygdala in studies with psychological contexts
outside of cognitive control. This finding may suggest a
more general role of DLPFC-amygdala connectivity in
affective, attentional, and social processing, which may be
due to the fact that such processes are often emotionally
embedded. Importantly, there could be other interpreta-
tions of the potential relationship between DLPFC and
amygdala that include distinct task demands and stimuli
used across all studies, from motor demands of a particu-
lar paradigm to context such as task difficulty which could
be commonly elicited across all contexts. Our results dem-
onstrating the amygdala’s role in emotion as both an input
region and recipient from prefrontal and cingulate regions
highlight the significance of examining inter-regional con-
nectivity patterns as a function of behavior.

Similar inferences can be made from our observed
results on neuroimaging studies of cognitive control and
attention that seek to understand how the brain allocates
resources for information processing and attends to rele-
vant stimuli in the environment. We observed that studies
on cognitive control that used DLPFC as the seed region

found targets in the DLPFC and PCC. The DLPFC as a
seed and target region for studies on cognitive control is
fitting given its known association with working memory,
planning, decision-making and cognitive flexibility [Cieslik
et al., 2013; Qin et al., 2009]. There is evidence to suggest
that the PCC dampens in response to attentional control or
working memory demands, given its role in the default
mode network [Buckner et al., 2008; Hayden et al., 2009;
Whitfield-Gabrieli et al., 2011], but has increased activity
during self-relevant thinking such as memory retrieval or
planning [Brewer et al., 2011; Lemogne et al., 2011]. Single
unit studies linking PCC activity to cognitive control are
supportive of these observations [Hayden et al., 2010], and
together with the discussed neuroimaging results suggest
that DLPFC contributions to PCC reflect changes in atten-
tional or cognitive demands during task performance.
Interestingly, we also found that studies on attention using
the STG as the seed region contributed to targets in sen-
sory regions such as the FFA and S1, potentially consistent
with the involvement of STG in attentional disorders [Kar-
nath et al., 2004; Smith et al., 2013a]. Although our analy-
sis of attention-related PPI studies collapsed across
sensory modalities (e.g., visual, auditory) because previous
work has suggested that some aspects of attentional con-
trol operate similarly across sensory modalities [Smith
et al., 2010; Wu et al., 2007], we note that future connectiv-
ity work could explore how different sensory modalities
are integrated and influenced by attention [Busse et al.,
2005; Donohue et al., 2011, 2015; Laing et al., 2015; Mayer
and Vuong, 2014]. In addition, it would also be important
to disentangle the effects of stimulus content (e.g., faces)
from psychological context (e.g., selective attention).

Beyond the observed general and specific connectivity
patterns, our work also provides a distinct perspective on
brain connectivity. The current zeitgeist in brain connectiv-
ity has been largely fueled by functional connectivity
approaches measuring correlations between brain regions
[Smith et al., 2013b; Tomasi and Volkow, 2011]. This
approach is also endemic within the CBMA framework
and is commonly called meta-analytic connectivity model-
ing [Eickhoff et al., 2011; Robinson et al., 2012]. Although
functional connectivity metrics have tremendous utility in
classifying individual differences [Hariri, 2009; Kelley
et al., 2015], these approaches provide limited insight into
the mechanisms of functional integration [Friston, 2011].
Indeed, a change in correlation between two brain regions
could arise due to factors that are unrelated to neuronal
coupling: changes in another connection; changes in obser-
vational noise; or changes in neuronal fluctuations [Fris-
ton, 2011]. Our approach—which focuses exclusively on
psychophysiological interactions—eschews these con-
founds and provides mechanistic insight into functional
integration. We provide a new perspective by providing
meta-analytic insights into simple models of effective con-
nectivity. By identifying common and distinct patterns of
psychophysiological interactions across multiple seed
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regions and psychological contexts, our study may cata-
lyze new research efforts and shape future questions about
brain connectivity. Future studies could build on our find-
ings by formalizing how effective connectivity is con-
strained by structural connections [e.g., Mayer and Vuong,
2014].

Yet, these advances should be interpreted within the
context of two primary limitations. First, we stress that
PPI results are models of contribution (Fig. 1A) and do not
imply causation (i.e., responses in the seed region do not
cause responses in target region). Inferring causation from
neuroimaging data is challenging [Ramsey et al., 2010] and
requires alternative approaches, such as dynamic causal
modeling (DCM), which evaluates multiple models of
context-specific changes in effective connectivity between
regions [Friston, 2009; Friston et al., 2003]. We chose not to
focus on DCM studies in our meta-analysis due to the dif-
ficulty of aggregating findings across DCM experiments.
These experiments vary on multiple factors: number of
ROIs, locations of ROIs, connections between those ROIs,
and psychological contexts. Although these factors make it
challenging to perform meta-analyses on DCM experi-
ments, we note that recent work has also highlighted the
test-retest reliability of the DCM approach [Frassle et al.,
2015].

Second, idiosyncratic features of our corpus of PPI stud-
ies could influence our results. For example, we synthe-
sized findings from specific sets of PPI experiments.
Although we sampled broadly from the literature, it is
possible that selection bias could influence our findings
[Ahmed et al., 2012; Egger et al., 1997]. For example, the
seed region used in an experiment may depend on the
psychological context under investigation. This depend-
ency was evident in our matrix of studies: each seed
region was disproportionately represented by a psycholog-
ical context (e.g., emotion and the amygdala). Neverthe-
less, we emphasize that our contrasts partially mitigate
this concern by controlling for the influence of other fac-
tors, including alternative seed regions and psychological
contexts. In addition, our efforts to group PPI studies into
broad categories and relatively coarse seed regions that
ignore lateralization may have added noise to our analy-
ses, thus limiting our ability to detect true effects. For
example, collapsing across studies using left and right
DLPFC as the seed region neglects hemispheric differences
in DLPFC, potentially missing effects that are specific to a
hemisphere [Binder et al., 2009]. With continued growth of
PPI studies, future work could quantify hemispheric dif-
ferences in connectivity by contrasting studies using left-
lateralized seed regions against studies using right-
lateralized seed regions.

There are other considerations that could add noise to
the analysis. For instance, some patterns of connectivity
could also be tied to subtle distinctions in psychological
contexts that evoke different responses in different indi-
viduals [Smith et al., 2014a; van den Bos et al., 201]). Like-

wise, some patterns of connectivity could be tied to very
small differences in seed location. Indeed, recent work has
pointed to the importance of seed region location [Cole
et al., 2010], which has helped motivate the use of alterna-
tive tools that quantify connectivity with large-scale neural
networks [Leech et al., 2011; Smith et al., 2014b,]. As these
factors add noise to our analyses and thus reduce the like-
lihood of detecting true convergence across studies, we
caution against drawing any conclusions regarding the
absence of meta-analytic effects. In other words, the
absence of meta-analytic effects should not be interpreted
as evidence against the reliability or consistency of PPI.
Taken together, these questions are important for advanc-
ing models of functional integration [Park and Friston,
2013], but we stress that the current corpus of PPI studies
does not permit robust CBMAs on such questions [Eickh-
off et al., 2012]. We hope that the continued growth of PPI
creates an opportunity to investigate these issues and
refine our study with targeted contrasts and new analyses.

CONCLUSIONS

Despite these caveats, our study validates the utility of
the psychophysiological interactions and provides a first
step toward a cumulative science of functional integration.
Our core results lead to two broad conclusions. First, dif-
ferent types of PPI studies each consistently converge on
similar target regions, indicating PPI can be a reliable tool
for studying functional integration. Second, target regions
identified by PPI can be specific to the chosen seed region
and psychological context, suggesting PPI can reveal dis-
tinct patterns of brain connectivity and functional integra-
tion. The complex nature of functional integration—like
many issues within cognitive neuroscience [Yarkoni et al.,
2010]—requires synthesizing data from multiple experi-
ments. Our work reveals how distinct brain systems inter-
act and modulate other regions across multiple
psychological contexts, which may help elucidate the
mechanisms that contribute to disorders hypothesized to
reflect disconnections, such as autism [Just et al., 2007]
and schizophrenia [Friston, 2002].
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