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Abstract

One of the top priorities of ICCVAM is the identification and evaluation of non-animal alternatives 

for skin sensitization testing. Although skin sensitization is a complex process, the key biological 

events of the process have been well characterized in an adverse outcome pathway (AOP) 

proposed by OECD. Accordingly, ICCVAM is working to develop integrated decision strategies 

based on the AOP using in vitro, in chemico, and in silico information. Data were compiled for 

120 substances tested in the murine local lymph node assay (LLNA), direct peptide reactivity 

assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens assay. Data for six 

physicochemical properties that may affect skin penetration were also collected, and skin 

sensitization read-across predictions were performed using OECD QSAR Toolbox. All data were 

combined into a variety of potential integrated decision strategies to predict LLNA outcomes using 

a training set of 94 substances and an external test set of 26 substances. Fifty-four models were 

built using multiple combinations of machine learning approaches and predictor variables. The 

seven models with the highest accuracy (89–96% for the test set and 96–99% for the training set) 

for predicting LLNA outcomes used a support vector machine (SVM) approach with different 

combinations of predictor variables. The performance statistics of the SVM models were higher 

than any of the non-animal tests alone and higher than simple test battery approaches using these 

methods. These data suggest that computational approaches are promising tools to effectively 

integrate data sources to identify potential skin sensitizers without animal testing.
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 Introduction

Skin sensitizers are substances capable of causing allergic contact dermatitis (ACD), a local 

skin reaction characterized by redness, swelling and itching (Murphy et al., 2012). Like all 

allergic diseases, skin sensitization develops in two stages: induction and elicitation. In the 

induction phase, allergen-specific T cells are generated, a process that typically does not 

produce clinical symptoms. The elicitation phase and accompanying allergic response 

occurs when a previously sensitized individual is re-exposed to the inducing allergen. In 

ACD, the allergic response produces a pruritic rash. The latency period between exposure 

and appearance of the rash shortens with subsequent exposures (Murphy et al., 2012). 

Sensitization may persist for a lifetime, and ACD can significantly impact quality of life, 

contributing to its importance as an occupational and environmental health issue (Kimber et 
al., 2011). Ten to 15 percent of all U.S. occupational diseases result from this allergic 

condition, making it the second most commonly reported occupational illness (Anderson et 
al., 2011). When considering the general population, 15–20% of individuals will be 

sensitized to at least one allergen during their lifetime (Bruckner et al., 2000; Thyssen et al., 
2007). In order to minimize the occurrence of such reactions, skin sensitization testing is 

routinely performed on chemical products to meet various national and international 

regulatory requirements for chemical management.

In the United States, skin sensitization testing requirements vary across federal regulatory 

agencies (Birnbaum 2013). The U.S. Food and Drug Administration (FDA) accepts 

preclinical skin sensitization data but has no requirements for specific tests (A. Jacobs, 

personal communication). However, the U.S. Environmental Protection Agency (EPA) (40 

CFR 158.500 ; 40 CFR 161.340), U.S. Consumer Product Safety Commission (16 CFR 

1500.3), and U.S. Occupational Safety and Health Administration (OSHA) (29 CFR 

1910.1200) do require skin sensitization data to support product hazard labeling and 

registration (16 CFR 1500.3; 29 CFR 1910.1200; 40 CFR 158.500; 40 CFR 161.340). 

Currently, the skin sensitization tests needed to meet the requirements of these agencies 

involve obligatory use of animal models (AltTox 2014).

Public opinion, advances in scientific knowledge, and recent political pressure have made 

the use of animals for testing unsustainable in some regions. The European Union’s 7th 

Amendment to the Cosmetic Directive required phasing out animal testing for all cosmetics 

ingredients, with a complete ban in place by March of 2013, prompting the development and 

use of non-animal testing methods (European Union 2003). Additionally, the European 

Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals 

(REACH), which went into effect in 2007 and will be implemented in phases until 2018, 

discourages animal testing (EC 2006; Joint Research Centre of the European Union 2013). 

Depending on the amount of a substance manufactured or imported into the European 
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Union, REACH requires a progressive panel of toxicological tests (Williams et al., 2009). 

Although REACH mandates that animal tests only be conducted as a last resort, there are no 

alternative, non-animal testing methods presently available for many of the toxicological 

endpoints evaluated to meet the requirements of REACH. Specifically, there are currently no 

stand-alone non-animal methods for identifying skin sensitizers (Natsch 2014). Based on the 

current REACH guidelines, more substances will be tested for skin sensitization than for any 

other toxicological endpoint (Roberts and Aptula 2008; Schoeters 2010). In fact, more than 

3700 substances were evaluated for skin sensitization during Phase 1 of REACH, and 

thousands more are expected to require testing to satisfy requirements for Phase 3 (Angers-

Loustau et al., 2011).

Since its inception, the U.S. Interagency Coordinating Committee on the Validation of 

Alternative Methods (ICCVAM) has been dedicated to the 3Rs: replacing, reducing, and 

refining the use of animals for toxicity testing (Birnbaum 2013). ICCVAM is working on the 

identification and validation of non-animal alternatives for skin sensitization testing (NIEHS 

2013) and places this effort among its top priorities. Currently, the murine local lymph node 

assay (LLNA) is the preferred method for evaluating the sensitization potential of chemical 

substances to satisfy regulatory requirements, including REACH (Anderson et al., 2011; 

Williams et al., 2009; Williams et al., 2015). Compared to previously used guinea pig tests, 

the LLNA uses fewer animals and causes less pain and distress (Sailstad et al., 2001; 

Williams et al., 2015). Thus, this extensively used assay represents an early 3Rs alternative 

for detection of this toxicological endpoint (Russell and Burch 1992). Since the development 

of the LLNA, additional research on the mechanisms leading to the development and 

manifestation of skin sensitization has enabled the construction of an adverse outcome 

pathway (AOP; Figure 1), which will promote further progress toward decreased 

dependence on animal testing (Roberts and Aptula 2008; Urbisch et al., 2015).

An AOP is a conceptual framework constructed from existing knowledge that relates 

exposure of a type of toxic substance to subsequent molecular and cellular changes that in 

turn result in illness or injury to an individual or population (OECD 2012a; OECD 2012b). 

The AOP for skin sensitization initiated by covalent binding to proteins (Figure 1) includes 

four key events with well-accepted biological significance: 1) binding of haptens to 

endogenous proteins in the skin, 2) keratinocyte activation, 3) dendritic cell activation, and 

4) proliferation of antigen-specific T cells (OECD 2012b). The construction of this AOP for 

skin sensitization has prompted the development of several in vitro tests targeting different 

key events (reviewed in Mehling et al. (2012) and evaluated in, e.g., Reisinger et al. (2015). 

While some individual methods have proven particularly promising for the prediction of skin 

sensitization potential (Gerberick et al., 2004; Natsch and Emter 2008; Nukada et al., 2012), 

each method has its own limitations when used in isolation. Given the inherent complexity 

of the processes underlying skin sensitization, it is unlikely that any single non-animal test 

can replace animal use for hazard identification (Rovida et al., 2015). A more realistic 

approach involves combining data from several non-animal methods using an integrated 

decision strategy (IDS) (MacKay et al., 2013).

An IDS incorporates all of the available and pertinent information about a test substance to 

arrive at a conclusion regarding a potential hazard. Combining outputs from several data 
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sources minimizes the limitations of each individual assay, and the predictive power of the 

combination of methods may be increased compared to stand-alone tests (Bauch et al., 2012; 

Guyard-Nicodeme et al., 2015; Jaworska et al., 2013; Natsch et al., 2009; Natsch et al., 
2013; Nukada et al., 2013; Takenouchi et al., 2015; Tsujita-Inoue et al., 2014; Urbisch et al., 
2015; van der Veen et al., 2014). In the case of skin sensitization, several in vitro tests 

targeting key events in the AOP are already available (i.e., human cell line activation test (h-

CLAT) (OECD 2015a); direct peptide reactivity assay (DPRA) (OECD 2015b) and 

KeratinoSens (OECD 2015c). In alignment with ICCVAM’s commitment to advancing 

implementation of 3Rs-compliant methods, the objective of this study was to develop an IDS 

based on the skin sensitization AOP. The IDS presented here incorporates in vitro, in 
chemico, and in silico information on skin sensitization to predict skin sensitization hazard 

using machine learning approaches and the LLNA as the reference test.

 Materials and Methods

 Data Collection and Substance Database

We compiled a substance database by collecting publically available data for the DPRA, 

KeratinoSens, the h-CLAT, and the LLNA (Table 1). DPRA, KeratinoSens, and h-CLAT 

were selected because they had recently been evaluated and recommended by the European 

Union Reference Laboratory for Alternatives to Animal Testing as methods to be used for 

hazard classification of sensitizers in a weight of evidence approach (Joint Research Centre 

of the European Union 2013; Joint Research Centre of the European Union 2014; Joint 

Research Centre of the European Union 2015) and they were being considered for new 

chemical test guidelines by the Organisation for Economic Co-operation and Development 

(OECD). While test guidelines for DPRA (OECD 2015b) and KeratinoSens (OECD 2015c) 

have been finalized, the h-CLAT test guideline is still in draft form (OECD 2015a).

The majority of the LLNA data for the 120-substance dataset were collected previously by 

the National Toxicology Program Interagency Center for the Evaluation of Alternative 

Toxicological Methods (http://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/

immunotoxicity/nonanimal/index.html#NICEATM-LLNA-Database). These data include 

sensitizer/nonsensitizer determinations for each substance as well as stimulation indices at 

the concentrations tested. The LLNA data for seven substances that were not in this database 

came from published literature (Table 1).

In total, we identified 122 substances tested in DPRA, KeratinoSens, h-CLAT, and the 

LLNA. Two metal compounds (nickel chloride and cobalt chloride) were excluded because 

the LLNA often produces conflicting results for metals (OECD 2010). Nickel and cobalt 

produce skin sensitization in humans by activating the Toll-like receptor 4 protein, which, in 

mice, is ineffective at binding these metals (reviewed in Schmidt and Goebeler 2015). Also, 

metals are outside the applicability domain of the DPRA because they do not react with 

proteins by covalent binding (OECD 2015b). For the remaining 120 substances, we 

collected data on six physicochemical properties relevant to skin exposure and penetration: 

octanol:water partition coefficient, water solubility, vapor pressure, melting point, boiling 

point, and molecular weight. These properties have been important for other models or 

weight-of-evidence assessments for skin sensitization potential (Jaworska et al., 2013; 
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Jaworska et al., 2011; Patlewicz et al., 2014) We also performed an in silico prediction of 

skin sensitization hazard using the read-across algorithm in QSAR Toolbox v3.2 (OECD 

2014).

 Characterization of the Substances

Of the 120 substances, 73% (87/120) were classified as positive in the LLNA and 27% 

(33/120) were classified as negative. Skin sensitizers may require oxidation (prehapten) 

and/or metabolism (prohapten) in order to produce a skin sensitization reaction. Of the 87 

LLNA sensitizers, three were prehaptens, 16 were prohaptens, and six were pre/prohaptens 

(i.e., require both oxidation and metabolism) (see Supplemental File 1 for the prehapten and 

prohapten information on each substance and the corresponding reference).

The 120 substances represent 14 product categories, as shown in Figure 2. Product category 

information was obtained from the following sources:

• Hazardous Substances Databank (http://toxnet.nlm.nih.gov/cgi-bin/sis/

htmlgen?HSDB)

• Haz-Map (http://hazmap.nlm.nih.gov/)

• Household Products Database (http://hpd.nlm.nih.gov/index.htm)

• International Programme on Chemical Safety INCHEM database (http://

www.inchem.org/)

• National Library of Medicine Drug Information Portal (http://

druginfo.nlm.nih.gov/drugportal/drugportal.jsp?

APPLICATION_NAME=drugportal)

• National Toxicology Program (http://ntp.niehs.nih.gov/)

• EPA’s list of registered pesticides (A Lowit, personal communication)

• The Joint Food and Agriculture Organization of the United Nations/World 

Health Organization (WHO) Expert Committee on Food Additives

• The Good Scents Company (http://www.thegoodscentscompany.com/)

• Scientific literature (i.e., papers which also presented test method data)

• Chemical Book (http://www.chemicalbook.com)

Structural variety of the database was assessed using ChemoTyper v1.0 (https://

chemotyper.org/), a free software developed under contract with the FDA. ChemoTyper uses 

729 chemotypes, which are generic structural fragments that represent chemical features, 

including connected and nonconnected chemical patterns as well as atom, bond, and 

molecular-based properties (Yang et al., 2015). The 120 substances in the database 

represented 192 chemotypes that had a frequency of appearance of 1 to 75 over the entire 

dataset (Figure 3). The most common chemotypes were bond:C=O_carbonyl_generic (75 

substances), ring:aromatic_benzene (68 substances), chain:alkaneLinear_ethyl_C2(H_gt_1) 

(43 substances), chain:aromaticAlkane_Ph-C1_acyclic_generic (42 substances), and 
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chain:alkaneLinear_ethyl_C2_(connect_noZ_CN=4) (36 substances). Individual substances 

were characterized by 2–35 chemotypes each.

 Data Inputs

 DPRA—DPRA is an in chemico test that assesses the ability of a substance to form a 

hapten–protein complex, which is the molecular initiating event in the skin sensitization 

AOP (Figure 1) (OECD 2012a; OECD 2012b). It measures the reactivity of a test substance 

towards two model synthetic peptides, one containing lysine (mixed 1:50 with test 

substance) and the other containing cysteine (mixed 1:10 with test substance) (Gerberick et 
al., 2004; Gerberick et al., 2007; OECD 2015b). The depletion of the peptides after a 24 h 

incubation with a test substance is measured using high pressure liquid chromatography. The 

percent depletion values for the two peptides are averaged; substances are classified as 

sensitizers if average depletion >6.38% (OECD 2015b). Substances that co-elute with the 

lysine peptide may be evaluated based upon cysteine peptide depletion alone using >13.89% 

depletion as the threshold to classify a substance as a sensitizer (OECD 2015b). Data used 

from DPRA included average cysteine peptide depletion (Cys), average lysine peptide 

depletion (Lys), average depletion of cysteine and lysine peptides (Avg.Lys.Cys), and 

sensitizer/nonsensitizer outcome based on the above decision criteria.

 KeratinoSens—The KeratinoSens test method assesses the ability of substances to 

activate cytokines and induce cytoprotective genes in keratinocytes, the second key event in 

the skin sensitization AOP (Figure 1) (OECD 2012a; OECD 2012b). The assay measures the 

activation of antioxidant response element (ARE)-dependent genes in HaCaT-derived human 

keratinocytes (Emter et al., 2010; OECD 2015c). When a skin sensitizer (an electrophilic 

substance) covalently binds to proteins involved in the cytoprotective response, a subsequent 

protein disassociation event activates ARE-dependent genes. Activation of the ARE-

dependent genes by skin sensitizers initiates transcription of a luciferase reporter gene via a 

constitutive promoter fused with an ARE, causing luminescence proportional to the degree 

of induction (OECD 2015c). Substances are considered to be sensitizers if the luciferase 

gene induction shows a statistically significant increase greater than 1.5-fold over control at 

a concentration <1000 μM, with cell viability >70%. We used sensitizer/nonsensitizer 

outcomes from KeratinoSens because adequate continuous data (i.e., effective concentration 

at 1.5-fold induction) for all substances were unavailable.

 h-CLAT—h-CLAT assesses the ability of substances to activate and mobilize dendritic 

cells in the skin, the third key event of the skin sensitization AOP (Figure 1) (OECD 2012a; 

OECD 2012b). The assay is conducted by treating THP-1 cells, a human monocytic cell line 

that serves as a dendritic cell surrogate, with a test substance for 24 h (Ashikaga et al., 2006; 

OECD 2015a). Changes in CD86 and CD54 cell surface marker expression caused by the 

test substance are then measured by flow cytometry. Substances are classified as sensitizers 

if the relative fluorescence intensity ≥150% of baseline for CD86 or at least 200% of 

baseline for CD54 at concentrations where cell viability ≥50% of control in at least two of 

three independent tests. We used sensitizer/nonsensitizer outcomes from h-CLAT because 

adequate continuous data (i.e., effective concentration at 150% induction for the CD86 
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marker and the effective concentration at 200% induction for the CD54 marker) were 

unavailable.

 In Silico Read-across—QSAR Toolbox software v3.2 (OECD 2009; OECD 2014) was 

used to generate an in silico read-across prediction of whether each substance or its 

predicted auto-oxidation product or metabolite was a sensitizer or nonsensitizer based on in 
vivo data from structurally and mechanistically similar analogs. The in silico predictions 

cover the adverse outcome and all preceding key events because in vivo data (LLNA, guinea 

pig, and human outcomes) are used in the read-across method. The read-across protocol for 

QSAR Toolbox is provided as Supplemental File 2. Briefly, the Chemical Abstracts Service 

Registry Number for each substance was the input provided to QSAR Toolbox. We searched 

for protein binding alerts for each substance using all four protein binding profilers in QSAR 

Toolbox. For substances with no protein binding alerts, auto-oxidation products and skin 

metabolites were generated and then those were profiled for protein binding alerts. If the 

oxidation products and metabolites had no alerts, then the substance was classified as a 

nonsensitizer. Test substances, products, or metabolites with protein binding alerts were 

grouped into categories with substances of similar structural and mechanistic characteristics. 

The read-across prediction of skin sensitization hazard was determined using the in vivo skin 

sensitization hazard data for the substances nearest the target substance, based on log Kow.

 Physicochemical Properties—We collected data for octanol:water partition 

coefficient, water solubility, vapor pressure, molecular weight, melting point, and boiling 

point from the following sources, with preference given to experimental values:

• SRC, Inc. – EPI Suite™ (Experimental) (http://esc.syrres.com/interkow/

EPiSuiteData.htm)

• ChemIDplus – a TOXNET (Toxicology Data Network) Database (http://

chem.sis.nlm.nih.gov/chemidplus)

• ChemSpider – EPI Suite™ (Predicted); Alfa Aesar (Experimental) (http://

www.chemspider.com/)

• Hazardous Substances Databank (HSDB; http://toxnet.nlm.nih.gov/cgi-

bin/sis/htmlgen?HSDB)

• ECHA database (http://echa.europa.eu/information-on-chemicals)

For 10 substances, values for one or more physicochemical properties could not be located. 

In these cases, values were imputed via quantitative structure–property relationship models 

built using binary molecular fingerprints and machine learning approaches as described in 

Zang et al. (manuscript in preparation).

 Data Processing

If a substance had multiple continuous results for the DPRA, a geometric mean of those 

results was calculated after negative peptide depletion values were set to zero. If a substance 

had multiple sensitizer/nonsensitizer results for any assay, the most prevalent result was 

used; if there were an equal number of sensitizer and nonsensitizer results for a substance, it 
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was classified as a sensitizer for that assay. There were 11 substances with an equal number 

of sensitizer and nonsensitizer results for DPRA, five substances for KeratinoSens, eight 

substances for h-CLAT, and five substances for the LLNA. The final results for each 

substance are provided in the Supplemental File 1, along with the QSAR Toolbox read-

across results.

 Building Predictive Models

 Training and Test Sets for Predictive Modeling—The 120 substances in the 

database were divided into training and external test sets in the approximate proportions of 

80% to 20%. All substances were first classified as sensitizer or nonsensitizer based on the 

LLNA result. The substances in each classification were then parsed into groups according 

to their structural similarity, as determined by the expert judgment of a chemist who 

examined the structure of each substance. Using these groupings, training and test sets were 

constructed to reflect both the structural heterogeneity and the positive/negative sensitizer 

classifications of the overall substance set; however, within these constraints each substance 

was assigned randomly to either the training or the test set. This process yielded a training 

set containing 94 substances (78% of the 120), which consisted of 68 LLNA sensitizers 

(72% or 68/94) and 26 LLNA nonsensitizers (28% or 26/94). The external test set consisted 

of the remaining 26 substances (22% of the 120), with 19 LLNA sensitizers (73% or 19/26) 

and 7 LLNA nonsensitizers (27% or 7/26). The training and test sets are similar to one 

another and to the full 120-substance set with respect to the distributions of LLNA potency, 

product use categories, diversity of chemical structures (chemotype frequencies), prehaptens 

and prohaptens, and mechanistic protein binding domains (see Supplemental File 3).

 Prediction of LLNA Outcomes Using Training and Test Sets—We used the 

training set of 94 substances to build models for predicting LLNA outcomes using the 

following six machine learning approaches (see Kuhn and Johnson (2013) for details on the 

approaches):

• Artificial neural network (ANN)

• Naïve Bayes algorithm (NB)

• Classification and regression tree (CART)

• Linear discriminant analysis (LDA)

• Logistic regression (LR)

• Support vector machine (SVM)

Model building was implemented using the following packages in the R statistical analysis 

software for Windows v2.15.1 (The R Core Team 2013):

• Package nnet: for ANN

• Package MASS: for LDA and LR

• Package rpart: for CART

• Package e1071: for NB and SVM
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We initially developed models using each of the six machine learning approaches and each 

of six variable sets based on different combinations of the 13 variables collected, yielding a 

total of 36 models. Table 2 defines the six variable sets. The numbers in the column 

headings represent Variable Sets 1 through 6, and the Xs in each column and the color 

coding indicate what data were included in each variable set. Once each model was trained it 

was used to predict LLNA outcomes for each substance in the test set. These outcomes were 

reported as probabilities; substances with a probability greater than 0.5 of being either a 

sensitizer or nonsensitizer were assigned to the respective class.

 Evaluation of Model Performance and Further Optimization—Model 

performance was evaluated by calculating the sensitivity, specificity, and accuracy for 

predicting LLNA outcomes. These metrics were calculated using the following formulae:

SVM, the machine learning approach with the highest performance for predicting LLNA 

outcome from test set data, was selected for use in further optimizing the number and type of 

input variables, resulting in an additional 18 models with various combinations of input 

variables being evaluated. Performance of the machine learning models was compared with 

the performance of the individual non-animal methods alone and with two test battery 

approaches using results from those methods. Test Battery 1 classified a substance as a 

sensitizer if one non-animal method classified the substance as a sensitizer. Test Battery 2 

classified a substance as a sensitizer if any two non-animal methods classified the substance 

as a sensitizer.

 Prediction of LLNA Outcomes Using Leave-One-Out Cross-Validation—In 

order to confirm the robustness and reliability of the predictive models, we also evaluated 

the seven models with the highest performance for predicting LLNA classification using a 

leave-one-out cross-validation (LOOCV) procedure in addition to testing models with the 

external test set. For LOOCV, the training and test set substances were combined, and the 

performance of the model was evaluated against every substance in the dataset when it 

appears in an external test set on its own (Kuhn and Johnson 2013). Thus, 119 substances 

from the complete set of 120 substances were used as the training set for building the model 

and the remaining substance was used for testing the model. The procedure is performed 120 

times with each of the 120 substances used exactly once as the external validation set. The 

predictive accuracy is calculated by averaging individual values over the 120 runs.

 Results

 Accuracy of Individual Methods and Test Batteries

The performance of the individual non-animal methods for predicting LLNA outcomes is 

shown in Table 3. Of the individual methods, h-CLAT had the highest sensitivity (84%), 

specificity (86%) and accuracy (85%) for the test set. Read-across using QSAR Toolbox also 
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had the highest specificity (86%). Test Battery 1, which classified a substance as a sensitizer 

if one non-animal method classified the substance as a sensitizer, yielded higher sensitivity 

than any of the individual methods, much lower specificity, and the same accuracy as the h-

CLAT. Test Battery 2, which classified a substance as a sensitizer if any two non-animal 

methods classified the substance as a sensitizer, had higher sensitivity than the individual 

test methods, specificity within the range of the individual methods, and accuracy similar to 

h-CLAT.

 Accuracy of Machine Learning Approaches

For each machine learning approach, the variable set(s) that produced the best performance 

of the first 36 models are shown in Table 4. Based on the accuracy for predicting LLNA 

outcomes, the modeling approaches ranked as follows: SVM > ANN > LR > LDA > CART 

= NB. Because SVM was the model with the best performance across multiple variable sets, 

it was used for further testing and optimization. In these subsequent analyses, DPRA results 

were represented by the average lysine and cysteine peptide depletion values, because this 

measurement was more highly correlated to LLNA outcomes than other DPRA measures 

(average cysteine peptide depletion, average lysine peptide depletion, and binary DPRA 

result) (data not shown).

 Optimization of the SVM Models

An additional 18 feature combinations were examined to determine the optimal SVM 

approach. The variable set that included h-CLAT, read-across from QSAR Toolbox, and the 

six physicochemical properties (No. 7 in Table 5) achieved the highest accuracies for the test 

(96%) and training sets (97%) (Table 5). The variable set with only physicochemical 

properties (Table 5, No. 24) produced the lowest accuracy: 73% for both test and training 

sets. The three models that used log P instead of all six physicochemical properties had 

lower accuracy (compare model 7 and 17 in Table 5, models 8 and 19 in Table 4, and model 

13 in Table 5 with SVM variable set 5 in Table 4).

 LOOCV for SVM Models

As expected, applying LOOCV decreased the balanced accuracy for all seven SVM models 

(which ranged from 84% to 89% [Table 6]), but only marginally as compared to the results 

without LOOCV (89–99% balanced accuracy). Model 1 (KeratinoSens + h-CLAT + Toolbox 

+ Avg.Lys.Cys + 6 properties) achieved the highest LOOCV sensitivity (92%) while Model 

7 (h-CLAT + Toolbox + 6 properties) had the highest specificity (94%). Evaluating based on 

accuracy, both Model 1 (DPRA + KeratinoSens + h-CLAT + Toolbox + Lys + Cys + 

Avg.Lys.Cys + 6 properties) and Model 10 (h-CLAT + Toolbox + Avg.Lys.Cys + 6 

properties) had the highest LOOCV value (89%). These two models also achieved balanced 

sensitivity and specificity with 89% and 91%, respectively, for Model 1, and 90% and 88%, 

respectively, for Model 10.

 Misclassified Substances

 Training Set—The seven SVM models with the highest accuracies misclassified a total 

of nine substances, two false positives and seven false negatives, in the training set (Table 7). 
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None of the false negatives were prehaptens (there were two prehaptens in the training set). 

Four of the seven models (1, 5, 7, and 11) correctly classified all prohaptens; however, three 

of the seven models (8, 9, and 10) misclassified one of three prohaptens (there were 12 

prohaptens in the training set).

The most frequently misclassified substances were 3-phenoxypropiononitrile (false positive) 

and nonanoic acid (false negative), which were both misclassified by six models. The LLNA 

classifications for both of these substances were based on only one test. KeratinoSens was 

the only non-animal method that correctly classified 3-phenoxypropiononitrile as an LLNA 

nonsensitizer. The only available LLNA test for this compound was negative with a flat 

dose-response curve (Kern et al., 2010). h-CLAT was the only non-animal method that 

correctly classified nonanoic acid as an LLNA sensitizer. Only one LLNA test was available 

for nonanoic acid, which is a weak LLNA sensitizer (EC3 = 35%) and a strong irritant 

(Montelius et al., 1998). It is well-documented that false positives in the LLNA are often 

associated with skin irritants that are not sensitizers (Anderson et al., 2011). The other seven 

misclassified substances were misclassified by only two or fewer models.

 Test Set—The seven SVM models with the highest accuracies misclassified seven 

substances, two false positives and five false negatives, in the test set (Table 8). None of the 

false negatives were prehaptens (there were two prehaptens in the test set). Again, the three 

models with the highest accuracies correctly classified all prohaptens; however, two of the 

seven models misclassified the same two prohaptens (there were four prohaptens in the test 

set).

The most frequently misclassified substances in the test set were two false negatives, 

coumarin (misclassified by all seven models) and undecylenic acid (misclassified by three 

models). For coumarin, KeratinoSens was the only non-animal method that had a correct 

positive result. Coumarin produced equivocal LLNA results (i.e., an equal number of 

positive [2] and negative [2] LLNA tests) (Gerberick et al., 2005; Vocanson et al., 2006). To 

be conservative (i.e., protective of human health), our reference result was positive. While it 

was a weak sensitizer in the positive tests (EC3 = 29.6%), the response was attributed to 

contaminants in commercial products containing coumarin (Vocanson et al., 2006). For 

undecylenic acid, both DPRA and KeratinoSens produced correct positive results. Only one 

LLNA test was available for undecylenic acid; it is also a weak sensitizer (EC3 =19.4%) 

(Kreiling et al., 2008). The other five misclassified substances were misclassified by only 

two or fewer models.

Coumarin and undecylenic acid had structural analogs that were misclassified in the training 

set (see Supplemental File 1). 3,4-Dihydrocoumarin, which was in the training set, is a 

benzopyran that is structurally similar to coumarin. 3,4-Dihydrocoumarin was misclassified 

by one model. Nonanoic acid, which was in the training set, is an aliphatic carboxylic acid 

that is structurally similar to undecylenic acid. It was misclassified in six of seven models. 

The seven models with the highest accuracies misclassified two (Models 7–10) to three 

(Models 1, 5, and 11) of these compounds.
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 Discussion

Fostering the evaluation and promotion of alternative test methods for regulatory use in skin 

sensitization hazard assessment has long been one of ICCVAM’s top priorities (NIEHS 

2013). ICCVAM is committed toward continued work in this area and believes that 

development of non-animal testing strategies for the identification of skin sensitizers is an 

achievable near-term goal. Although development of skin sensitization is a complex process, 

the key biological events have been documented and agreed upon in the AOP for substances 

that produce skin sensitization through covalent binding to proteins (OECD 2012a; OECD 

2012b). We compiled a database of chemicals with test data from validated skin sensitization 

tests (LLNA, DPRA, KeratinoSens, and h-CLAT), in silico read-across predictions that 

considered auto-oxidation and skin metabolism products and in vivo skin sensitization 

hazard, and physicochemical parameters relevant to skin penetration. We then created and 

evaluated machine learning methods to integrate the non-animal data to predict skin 

sensitization hazard.

Our study confirmed that an integrated approach to skin sensitization testing is required to 

accurately identify these hazards, as a single non-animal method cannot recapitulate the 

complexity of the multi-step physiological process that occurs in vivo (Rovida et al., 2015). 

For the test set of 26 substances used in this study, the highest accuracy for the prediction of 

LLNA outcomes for any single non-animal method alone was 85% (Table 3). The best 

performing simple test battery (e.g., Test Battery 1 with accuracy = 85%) did not improve 

upon the accuracy of the individual non-animal methods. However, the seven best 

performing machine learning models greatly improved upon the individual methods and test 

batteries with accuracies of 89–96% for the test set and 96–99% for the training set (Tables 4 

and 5). The LOOCV, which avoids any bias introduced during the selection of test and 

training sets, yielded accuracies of 84–89% for these models. Due to the removal of this 

bias, the LOOCV accuracies are more likely to reflect the accuracy of these models when 

they are applied to additional external datasets.

Multiple models using different combinations of non-animal data exhibited high accuracy in 

hazard classification predictions. This raises the potential for flexibility in the choice of data 

inputs among the various test methods and physiochemical properties evaluated. This could 

be particularly important to laboratories or groups constrained by available resources. In 

fact, one of the seven highest performing models, Model 7, used only one in vitro assay. The 

performance of the top seven models is similar enough that investigators could select from 

two in vitro or in chemico methods to use, based on their experience with the methods: 

DPRA and KeratinoSens (Model 8), DPRA and h-CLAT (Model 10) or h-CLAT and 

KeratinoSens (Model 11). However, based on the results with the current dataset, the SVM 

model with h-CLAT as the only in vitro method (Model 7) or the models with all of the in 
vitro methods (Model 1 and Model 5) were best at correctly classifying prohaptens.

The advantages to integrating data from these non-animal methods to determine skin 

sensitization hazard is that the limitations of each individual method can be overcome. For 

example, DPRA has no metabolic capacity and thus is not expected to correctly classify 

prohaptens (OECD 2015b). KeratinoSens (OECD 2015c) and h-CLAT (OECD 2015a) can 
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classify some but not all prohaptens correctly. However, four of the highest performing SVM 

models correctly classified all 16 prohaptens in the training and test sets. The capacity to 

correctly predict prohaptens may have been aided by the inclusion of the in silico read-

across input, which evaluated auto-oxidation products and skin metabolites if no protein 

binding alerts were identified in the parent compound. Although DPRA has consistently 

classified prehaptens correctly (OECD 2015b), KeratinoSens (OECD 2015c) and h-CLAT 

(OECD 2015a) have not. The seven best performing SVM models however, correctly 

classified the three prehaptens and six pre/prohaptens as sensitizers.

A number of uncomplicated test batteries (Bauch et al., 2012; Natsch et al., 2009; Natsch et 
al., 2013; Nukada et al., 2013; Urbisch et al., 2015) and testing strategies (Bauch et al., 
2012; Nukada et al., 2013; Takenouchi et al., 2015) have been developed to predict LLNA 

skin sensitization hazard without using animals. These batteries and strategies are all 

biologically based models that use some combination of non-animal tests that are 

mechanistically relevant to the AOP for skin sensitization. The models provide good 

performance (79–96% accuracy), but they have not yet been evaluated on external data sets.

There are a limited number of published machine learning approaches to predict LLNA skin 

sensitization hazard (Hirota et al., 2015; Jaworska et al., 2013; Jaworska et al., 2011; 

Luechtefeld et al., 2015; Tsujita-Inoue et al., 2014). Bayesian networks (Jaworska et al., 
2013; Jaworska et al., 2011; Pirone et al., 2014), artificial neural networks (Hirota et al., 
2015; Tsujita-Inoue et al., 2014) and hidden Markov models (Luechtefeld et al., 2015) have 

mainly been applied to the prediction of potency. The Bayesian network models, which 

integrate a variety of data (KeratinoSens, U937 activation assay, skin bioavailability, DPRA, 

log octanol:water partition coefficient, and an in silico prediction from TIMES SS), some of 

which were not included in our modeling effort (U937 activation assay, skin bioavailability, 

and TIMES SS), are arguably the most developed and well-tested machine learning models. 

The Bayesian network accuracies for predicting LLNA hazard for the test sets and training 

sets (91–95%) (Jaworska et al., 2013; Jaworska et al., 2011; Pirone et al., 2014) are 

comparable to the best SVM models (89–99%; Tables 4 and 5) from our work, although the 

performance of the two models cannot be rigorously compared because they do not use 

assay data from exactly the same substances.

One of the limitations of the SVM models as presented is that they predict skin sensitization 

hazard but not potency. Potency information would be needed for risk assessment (i.e., to 

define the maximum concentration of a substance that is unlikely to produce skin 

sensitization). However, there are regulatory classification and labeling applications that 

require only hazard assessment. EPA (40 CFR 158.500 ; 40 CFR 161.340), OSHA (29 CFR 

1910.1200) (Appendix A), and the European Chemicals Agency (for REACH) (ECHA 

2015) use skin sensitization data for labeling to warn consumers and workers of the hazards 

associated with handling and use of potential skin sensitizers. OSHA requirements, which 

are consistent with the Globally Harmonized System of Classification and Labeling of 

Chemicals (UN 2013), require potency classification only if the skin sensitization data are 

adequate to characterize potency (29 CFR 1910.1200). For hazard classification, however, 

the seven best SVM models developed here have an advantage over the published Bayesian 

network models (Jaworska et al., 2013; Jaworska et al., 2011; Pirone et al., 2014) in that 
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there are seven models to choose from that require a different combination of resources, all 

of which are publicly available and without licensure requirements. The R code for the 

models can be obtained by contacting one of the authors (Judy Strickland). A laboratory can 

choose the model that best fits their resources and expertise. Additionally, all the test 

information needed for the SVM models comes from internationally-accepted (or nearly 

accepted in the case of h-CLAT) OECD test guidelines (OECD 2015a; OECD 2015b; OECD 

2015c) or freely available software supported by OECD (OECD 2014). Physicochemical 

property data can also be obtained from publically available sources.

The integrated decision strategies developed for this effort suggest that computational 

approaches are promising tools to effectively integrate data sources to identify potential skin 

sensitizers without testing animals. ICCVAM’s future efforts in sensitization modeling will 

be directed at testing these models with additional substances and adapting the models for 

use with formulations or unknown mixtures. ICCVAM also plans to evaluate the use of 

machine learning approaches to predict skin sensitization hazard for humans, the species of 

interest. In addition, models to predict skin sensitization potency will be constructed and 

evaluated to more completely inform classification and risk assessment applications.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Abbreviations

ICCVAM Interagency Coordinating Committee for the Validation of Alternative 

Methods

OECD Organisation for Economic Co-operation and Development

EPA U.S. Environmental Protection Agency

NIH U.S. National Institutes of Health

NIEHS U.S. National Institute of Environmental Health Sciences

FDA U.S. Food and Drug Administration

LLNA murine local lymph node assay

REACH Registration, Evaluation, Authorisation and Restriction of Chemicals

AOP adverse outcome pathway

IDS integrated decision strategy

DPRA direct peptide reactivity assay

Strickland et al. Page 14

J Appl Toxicol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



h-CLAT human cell line activation test

SVM support vector machine

LOOCV leave-one-out cross-validation
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Figure 1. Adverse Outcome Pathway for Skin Sensitization Initiated by Covalent Binding to 
Proteins
Abbreviations: DPRA = direct peptide reactivity assay; h-CLAT = human cell line activation 

test; LLNA = murine local lymph node assay.

Note: Although KeratinoSens, h-CLAT, and LLNA are aligned with single key events, these 

assays also recapitulate the prior key events.
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Figure 2. Product Uses for 120 Substances
Total number of substances exceeds 120 because most substances were associated with more 

than one product use.
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Figure 3. Frequency of Appearance of 192 Chemotypes in the 120 Substance Set
Bars show the number of substances with each of 192 chemotypes.
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Table 1

Data Sources

Test Method Reference

DPRA

Bauch et al. (2011)

Bauch et al. (2012)

Gerberick et al. (2004)

Gerberick et al. (2007)

Jaworska et al. (2011)

Jaworska et al. (2013)

Joint Research Centre of the European Union (2013)

Natsch et al. (2013)

Nukada et al. (2013)

KeratinoSens

Ball et al. (2011)

Bauch et al. (2011)

Bauch et al. (2012)

Natsch et al. (2011)

Emter et al. (2010)

Joint Research Centre of the European Union (2014)

Natsch et al. (2013)

h-CLAT

Ashikaga et al. (2010)

Bauch et al. (2011)

Bauch et al. (2012)

Nukada et al. (2011)

Nukada et al. (2012)

Nukada et al. (2013)

Sakaguchi et al. (2010)

Takenouchi et al. (2013)

LLNA

NICEATM LLNA database

Basketter et al. (1996) and Estrada et al. (2003) (xylene)

Basketter and Kimber (2006) (diphenylcyclopropenone, maleic anhydride, and propyl gallate)

Montelius et al. (1998) (nonanoic acid)

Smith and Hotchkiss (2001) (2,4,6-trinitrobenzensulfonic acid)

Van Och et al. (2000) (phthalic anhydride)

Abbreviations: DPRA = direct peptide reactivity assay; h-CLAT = human cell line activation test; LLNA = murine local lymph node assay; 
NICEATM = National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods.
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Table 3

Performance of Individual Methods and Simple Test Battery Approaches for Predicting LLNA Outcomes for 

Training and Test Sets

Method Data Seta Sensitivity (%) Specificity (%) Accuracy (%)

DPRA

Training 85 69 81

Test 74 71 73

All 83 70 79

KeratinoSens

Training 79 65 74

Test 63 57 62

All 76 64 73

h-CLAT

Training 83 58 75

Test 84 86 85

All 84 64 78

Toolbox

Training 78 73 75

Test 74 86 77

All 77 76 77

Test Battery 1 (≥ 1 positive)

Training 97 27 78

Test 100 43 85

All 98 30 79

Test Battery 2 (≥ 2 positive)

Training 91 62 83

Test 90 71 84

All 91 64 83

Abbreviations: DPRA = direct peptide reactivity assay; h-CLAT = human cell line activation test; LLNA = murine local lymph node assay; Toolbox 
= read-across using QSAR Toolbox.

a
The training set of 94 substances contains 68 LLNA sensitizers and 26 LLNA nonsensitizers. The test set of 26 substances contains 19 LLNA 

sensitizers and 7 LLNA nonsensitizers. The entire set (All) contains 120 substances; 87 sensitizers and 33 nonsensitizers.
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Table 6

LOOCV Results for Seven Highest Performing SVM Models

No. Model (Accuracya) Sensitivity (%) Specificity (%) Accuracy (%)

1 DPRA + KeratinoSens + h-CLAT + Toolbox + Lys + Cys + Avg.Lys.Cys + 6 
properties (95%) 89 91 89

5 KeratinoSens + h-CLAT + Toolbox + Avg.Lys.Cys + 6 properties (95%) 92 79 88

7 h-CLAT + Toolbox + 6 properties (97%) 85 94 88

8 KeratinoSens + Toolbox + Avg.Lys.Cys + 6 properties (94%) 84 91 86

9 KeratinoSens + h-CLAT + Avg.Lys.Cys + 6 properties (92%) 89 73 84

10 h-CLAT + Toolbox + Avg.Lys.Cys + 6 properties (92%) 90 88 89

11 KeratinoSens + h-CLAT + Toolbox + 6 properties (92%) 89 79 86

Abbreviations: Avg.Lys.Cys = average depletion for lysine and cysteine; Cys = average % cysteine; DPRA = direct peptide reactivity assay; h-
CLAT = human cell line activation test; LOOCV = leave-one-out cross-validation; Lys = average % lysine depletion; Toolbox = read-across using 
QSAR Toolbox; SVM = support vector machine.

a
Average accuracy of the training and test sets for predicting the reference LLNA outcomes.
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