Biophysical Journal —
physical / Biophysical Society

Using Evolution to Guide Protein Engineering: The
Devil IS in the Details

Liskin Swint-Kruse'""
"Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas

ABSTRACT For decades, protein engineers have endeavored to reengineer existing proteins for novel applications. Overall,
protein folds and gross functions can be readily transferred from one protein to another by transplanting large blocks of sequence
(i.e., domain recombination). However, predictably fine-tuning function (e.g., by adjusting ligand affinity, specificity, catalysis,
and/or allosteric regulation) remains a challenge. One approach has been to use the sequences of protein families to identify
amino acid positions that change during the evolution of functional variation. The rationale is that these nonconserved positions
could be mutated to predictably fine-tune function. Evolutionary approaches to protein design have had some success, but
the engineered proteins seldom replicate the functional performances of natural proteins. This Biophysical Perspective reviews
several complexities that have been revealed by evolutionary and experimental studies of protein function. These include 1) chal-
lenges in defining computational and biological thresholds that define important amino acids; 2) the co-occurrence of many
different patterns of amino acid changes in evolutionary data; 3) difficulties in mapping the patterns of amino acid changes to
discrete functional parameters; 4) the nonconventional mutational outcomes that occur for a particular group of functionally impor-
tant, nonconserved positions; 5) epistasis (nonadditivity) among multiple mutations; and 6) the fact that a large fraction of a pro-
tein’s amino acids contribute to its overall function. To overcome these challenges, new goals are identified for future studies.

Since the dawn of recombinant DNA technology, a signifi-
cant effort has been made to engineer new protein functions.
The holy grail of protein engineering is de novo rational
design of novel sequences and functions. However, success
in this area has been limited to small proteins (1-3). Thus, to
engineer proteins with more complex functions, researchers
have developed strategies to modify naturally evolved pro-
teins. One strategy directly incorporates evolutionary infor-
mation. Since sequence alignments can be used to reverse
engineer functional changes that occurred during protein
evolution (e.g., (4,5)), the same information should be use-
ful for forward engineering novel protein functions.
Several groups have made efforts to bridge the fields
of evolutionary biology and protein chemistry. Harms and
Thornton (5) described historical disparities that hobbled
this effort, along with efforts to reconcile them. The rela-
tionships among evolution, biophysics, and structure were
recently reviewed (6). In parallel, dozens of computer algo-
rithms have been developed to analyze amino acid (a.a.)
changes in protein sequence alignments, with the rationale
that nonrandom patterns of change reflect evolutionary
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constraints at important positions (7-16). One class of
algorithms identifies positions for which a.a. changes corre-
late with phylogeny. A second class identifies positions that
change together (pairwise or higher-order coevolution). A
third class predicts the outcomes of individual a.a. substitu-
tions, and often includes sequence alignments as input.
Despite their varied mathematical bases and desired
outputs, many of these algorithms share common assump-
tions about a.a. substitutions. This Biophysical Perspective
reviews studies that were designed to explicitly test these
assumptions. The results illuminate several factors that
currently confound predictive protein engineering.

Definitions and context

Despite the efforts that have been made to bridge disciplines,
many communication gaps persist. Thus, the text below
defines our use of the terms “conservation” and “neutrality”
to provide a context for the subject of this Biophysical
Perspective: a.a. positions that are not conserved and for
which mutations are not neutral. Likewise, Fig. 1 provides
a context for the type of mutational outcomes that are covered
here.

Amino acid conservation is identified by two orthogonal
methods. First, for each column in a sequence alignment, the
degree of conservation can be quantified by its sequence
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FIGURE 1 Simple hierarchy of the protein structure-function relation-
ship. When a protein is mutated, bonds and/or motions change. Motion
changes can alter many factors in this hierarchy (gray arrows). Bond
changes (black arrows) can change the conformational ensemble, which in-
cludes subensembles of folded (i.e., functional), intermediate, and unfolded
structures; redistribution among these species is detected as altered sta-
bility. Folded structures carry out function (dashed box). Functional param-
eters are only detected upon ligand binding, which also alters bonds and
motions within the protein molecule. In some proteins, particularly intrin-
sically disordered proteins, stability is tightly coupled to functional param-
eters. In many of the studies reviewed here, this does not appear to be so. To
see this figure in color, go online.
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entropy, which accounts for the number and frequency of
distinct a.a. side chains at each position (17). Some studies
use all 20 a.a. to calculate sequence entropy, whereas others
group a.a. by chemically similar side chains. Our studies
used all 20 a.a. and a stringent value for sequence entropy
to define conserved positions (7,18,19); this context is
used in this Biophysical Perspective. Second, conservation
can be identified via the use of a.a. substitution matrices
(e.g., BLOSUM-62 (20)). These matrices are empirically
determined from groups of related sequences, and different
input sequences produce different matrix values.

Neutrality has alternative meanings in different fields.
The term can refer to mutations that do not change the over-
all protein structure (21). Alternatively, neutrality can refer
to a.a. variants that function like wild-type protein (as in this
Biophysical Perspective). Kimura (22) discussed functional
neutrality in 1968, when he hypothesized that most indi-
vidual a.a. substitutions are neutral, else catastrophe would
preclude protein evolution. More recently, some analyses
implicitly expanded this idea to include neutral positions
in sequence alignments, i.e., positions at which any a.a.
variant functions like a wild-type protein.

Nonneutral mutations can have a wide range of outcomes
(Fig. 1). Simplistically, they are divided into two levels:
conserved and nonconserved. Conserved positions convey
overall protein folds and gross functions, which can be fairly
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easily transferred by transplanting large blocks of sequence
(i.e., domain recombination); within these blocks, mutagen-
esis of individual conserved positions is often catastrophic.
Nonconserved positions can be mutated to fine-tune func-
tional parameters without disrupting the overall structure
or function. Detailed parameters include the binding affin-
ity, ligand specificity, magnitude of the allosteric response,
catalytic rate, catalytic mechanism, and stability. Setting
aside stability as distinct, this Biophysical Perspective fo-
cuses primarily on our ability to predictably modify func-
tional parameters of the folded ensemble (Fig. 1, dashed
box) by changing a.a. at nonconserved positions.

Justification for this focus comes from comparing pa-
ralogs, which exhibit functional variation without a signifi-
cant change in the overall protein fold. For example, the
Lacl and PurR transcription regulators have the same func-
tion of binding DNA under allosteric regulation by a small
molecule. Superimposition of Lacl (lefa (23)) and PurR
(1wet (24)) monomer structures yields a C* root mean-square
deviation of 1.7 A. However, these two proteins have evolved
sequence differences that fine-tune this function for different
biological purposes: they bind different DNA ligands and
thereby regulate different operons, they bind different small
molecules, and they have inverted allosteric responses (25).

Finally, explicit definitions are needed for the functional
parameters in Fig. 1. For most protein functions, the primor-
dial step is a binding event, quantified as the binding affinity.
Two or more binding affinities are needed to define the
allosteric response (the change in binding for one ligand
in the presence of a second one; cooperativity is a subtype
of allostery) and ligand specificity (the rank order of binding
affinities for all ligands). For enzymes, the chemical rates
for catalytic steps can be quantified, whereas the order
and types of steps that comprise the catalytic mechanism
are descriptive.

A brief history of evolution-guided protein
redesign

Evolution-based protein redesign has been approached from
two directions. The first uses evolutionary information to
rationally identify positions that can be mutated to achieve
a desired functional change. The second—directed evolu-
tion—relies on selection or screening of random changes
to identify a desired function. These approaches have also
been combined with structural and energetic calculations
to yield the desired functional variation. (The extensive field
of structure-based redesign is beyond the scope of this
Biophysical Perspective.) The successes and shortcomings
of the evolutionary approaches are briefly reviewed here.

Rationalization

As soon as the first homologs were identified, their se-
quences were compared to predict which a.a. changes
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convey functional variation. The thought was that a few
key a.a. could then be exchanged between homologs to
exchange their functions. However, exchange experiments
have had modest success: designed proteins showed some
transfer of the desired function, but performance seldom
(if ever) reached that of natural proteins.

Exchange experiments produced complicated results
even between closely related proteins. For example, in an
early study by Park and Plapp (26), various combinations
of a.a were exchanged between two isozymes of alcohol de-
hydrogenase that differed by 10 a.a. widely distributed over
the protein structure. The results provided an early example
that changes that do not occur directly in the active site can
alter function. Further, many of the intermediate alcohol de-
hydrogenase variants (those with a subset of the 10 possible
changes) had worse function than either of the natural pro-
teins. In the years since that early work, similar studies using
a wide range of proteins have suggested that these two re-
sults are rules rather than exceptions. Indeed, the fact that
long-range effects are difficult to identify from structural
comparisons provides a strong motivation for using evolu-
tionary information to guide protein redesign.

For proteins with a large number of a.a. differences, more
complicated sequence comparisons have been devised to
identify key a.a. for exchange. Yin and Kirsch (27) used
Venn diagrams to predict five positions that differentiate
malate dehydrogenase and lactate dehydrogenase (LDH).
When the five LDH positions were exchanged into malate
dehydrogenase, the desired substrate specificity improved
by nearly nine orders of magnitude. However, the catalytic
efficiency was still three orders of magnitude below that
of natural LDH proteins (27). In another example, Rodri-
guez et al. (28) used evolutionary trace analysis to identify
key positions that differ among G-protein-coupled receptors
with alternative specificities for dopamine or serotonin.
Individually swapping high-scoring positions conveyed
enhanced serotonin binding to the dopamine receptor,
whereas swapping low-scoring positions did not. However,
when the set of substitutions were combined into one
construct, the resulting protein could not be expressed.
Thus, the high-scoring positions did not capture all of the
key differences between the two proteins, and a.a. contri-
butions to function were not cleanly parsed from those to
stability.

Directed evolution

Given the partial success of rationalization, the strategy of
directed evolution was developed. The rationale is that
when an organism is subjected to the appropriate environ-
mental stress, it will generate mutations that convey the
desired functional change (e.g., (29)). A variation of this
approach is to build a library of protein mutants and screen
or select for the desired function (e.g., (30,31)). Both ap-
proaches generate proteins with functional efficiencies
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similar to those of natural proteins, but they are limited
by the number of mutants that can be sampled: a library
of 10" variants only samples complete a.a. diversity at a
maximum of seven to eight positions. Further, some protein
functions are not easily adapted for high-throughput
screening or the biological fitness assays that are needed
for directed evolution.

Several strategies have been developed to enhance the
success of directed evolution. For example, structural com-
parisons were used to exclude mutations that were pre-
dicted to disrupt structure (32). Other studies iterated
between rationalization (sequence or structure based) and
selection/screening (e.g., (33)). For example, a heroic
effort was recently made to redesign Lacl so that DNA
binding could be regulated by four nonnatural inducers
(34). However, this required the combined efforts of
several large labs and the generation and characterization
of several thousand variants. Many of the best-performing
variants required 100 mM ligand to elicit a strong allo-
steric response, whereas wild-type Lacl had a strong
response at 0.1 mM isopropyl 3-D-1-thiogalactopyranoside
and the strongest response at 10 mM. Thus, even a combi-
nation of many strategies requires expensive resources and
person hours.

Factors that confound the rational design of
functional variation

The limitations of directed evolution and library screening
justify continued efforts to improve rational protein design.
One avenue is to examine the common assumptions that
underlie computational analyses of protein families. The re-
sults described below come from many types of experiments
and computations, but together they identify current limita-
tions and specify new directions that must be explored
before we can fully understand the protein sequence-struc-
ture-function relationship.

Data thresholding greatly influences results

One of the biggest hurdles in our studies, both computa-
tional and experimental, has been to identify thresholds
that discriminate between significant and insignificant for
each type of results.

First, to use evolutionary information to guide engineer-
ing, one must choose a sequence identity threshold to define
the protein family. A common threshold has been ~40%,
although dozens of studies have used the Lacl/GalR
paralogs with a threshold of ~15% (19). However, depend-
ing on the threshold, various sequence analyses generate
entirely different results. For example, some positions
that are nonconserved in the full Lacl/GalR family (15%
threshold) are conserved in the subfamilies (40% threshold).
The recognition of different thresholds allows nested ana-
lyses that identify family- and subfamily-specific positions,



thereby identifying a greater number of important positions
(18,28).

Second, thresholding is necessary to interpret output
scores from computer algorithms. For example, algorithms
that detect nonrandom patterns of a.a. changes calculate a
score for every position (or pair of positions), and top scores
presumably indicate the most important a.a. positions. How-
ever, we have never seen a natural break in the scores that
delineates the difference between important and nonimpor-
tant (Fig. 2). A conservative solution to this problem is to
take the top percent of scores or to set a Z-score threshold,
but this carries the risk of truncating important results. More
information can be gleaned by assessing the results as a
function of the threshold cutoff. For example, in a compar-
ison of two sets of scores, Jaccard analyses can quantify the
similarities across all possible thresholds (18). A second
approach is to defer thresholding until the final step in the
analysis, which prevents the loss of top positions that only
emerge from downstream calculations (7).

Ideally, the choice of a computational threshold should be
guided by biology: a significant sequence change should
cause a functional change large enough to alter the host or-
ganism. However, and contrary to many expectations, this
can be surprisingly small. For example, <2-fold differences
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FIGURE 2 Computational scores do not contain obvious thresholds.
The histogram shows the distribution of pairwise coevolution scores deter-
mined for the aldolase family (7) using the McBASC algorithm (11). A few
scores are excerpted for the bar centered at 0.8 and the score at Z = 4 is
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threshold. To see this figure in color, go online.
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in the K, for the tetracycline resistance protein proved
adaptive at clinically relevant drug concentrations (35). In
humans, various normal phenotypes have been predicted
to arise through combinations of weakly nonneutral protein
variants (36).

Further, biological thresholds can be difficult to approxi-
mate in the lab because in real life, various conditions
impose different thresholds (37). For example, de Vos
et al. (38) showed that the same mutation can have different
outcomes in alternative environments, subsequently leading
to different trajectories of evolutionary change. Steinberg
and Ostermeier (39) showed that transient environmental
changes early in protein evolution can allow a temporary
tolerance to deleterious mutations, which in turn allows
subsequent mutations that become beneficial in the final
environment. Rockah-Shmuel et al. (40) showed that neutral
substitutions in DNA methyl-transferase are actually delete-
rious under some conditions.

Indeed, the influence of experimental thresholds and
assay resolution has perhaps been underappreciated in
computational studies. For example, many researchers do
not realize that in the large Lacl mutational data set (41),
wild-type variants have a repression range of ~40-fold.
The influence of biological thresholds is especially impor-
tant to consider with regard to the newly popular approach
of deep mutational scanning, which uses biological compe-
tition and next-generation sequencing to infer functional
changes from massively mutated libraries (42). The influ-
ences of threshold on such experiments were recently sum-
marized (43).

Based on these observations, the ideal experiments for
benchmarking algorithms would directly report protein func-
tion, with minimal contributions from other cellular or envi-
ronmental processes. One could then use the resulting data in
a variety of settings after applying the relevant biological
threshold(s). Computer algorithms should strive to predict
mutation outcomes at this same level of resolution. If large
sets of mutational variants are assessed with in vivo func-
tional assays, they should be benchmarked to in vitro studies.
For example, Lacl/GalR studies monitored in vivo repression
under conditions in which repression was highly correlated
with the K4 for DNA binding (44). In another example, Firn-
berg et al. (43) performed deep mutational scanning in 13
different environments to avoid thresholds that would have
truncated the functional results.

The sequences of protein families show multiple patterns of
a.a. change

When using evolutionary information to understand protein
function, one assumes that a.a. changes at important posi-
tions will be constrained (nonrandom) during evolution.
Many algorithms have been developed to identify nonrandom
patterns, including (with representative citations) overall
conservation/sequence entropy (8), a.a. changes that mirror
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the branching of phylogenetic trees (9,45), combinations
of conservation and phylogeny (10), pairwise and higher-
order coevolving positions (11-13,46), and coevolutionary
network centrality (7).

These patterns are often treated as alternative and
competing options, with the supposition that one pattern
predicts important positions better than the others do. Alter-
natively, each pattern may contain distinct information, with
the combination of multiple patterns giving rise to the
emergent protein function. This idea is supported by exper-
iment: when calculations were compared with experimental
mutation outcomes in Lacl, different algorithms identified
different top-scoring positions, but all of the top-scoring
positions were mutationally sensitive (7,18,19).

Furthermore, the distinct patterns may or may not
comprise overlapping positions. For example, high-scoring
positions for the patterns of network centrality and phylog-
eny were shown to have significant overlap in the Lacl/GalR
family (7). In contrast, for the aldolase family, positions
in the two patterns were largely separate (7). To our knowl-
edge, the ramifications of pattern overlap have only been
considered for coevolution and phylogeny, with phylogeny
treated as a contaminant in coevolutionary signals (47,48).
However, another possibility is that some coevolving posi-
tions track with phylogeny due to biologically meaningful
constraints. Since both coevolution and phylogenetic pat-
terns identify mutationally sensitive positions, discerning
between these alternatives will be difficult.

Another complication is that a common structural scaffold
can be plastic with respect to the locations of constrained po-
sitions. For example, conserved and coevolving positions in
the full Lacl/GalR family were compared with those in six
Lacl/GalR subfamilies (18). As expected, all subfamilies
had a common set of constrained positions. In addition,
each subfamily had uniquely constrained positions that
were unconstrained in other subfamilies. Other protein fam-
ilies show similar plasticity in the locations of constrained
positions (10), and thus plasticity must be widespread.

Individual evolutionary patterns may not correlate with
specific functional parameters

Some studies have attempted to match specific patterns
of a.a. change with specific functional parameters. For
example, coevolutionary patterns were proposed to identify
allosteric positions, but this approach is unlikely to gener-
alize to a wide range of allosteric proteins (49). In another
example, paralog sequences were analyzed for specificity
determinants, and nonconserved positions that correlate
with phylogeny were proposed to alter ligand specificity
(45). However, ligand specificity is not the sole parameter
that changes during paralog evolution. Enzyme evolution
can change the catalytic mechanism and/or the final chem-
istry (50), the evolution of allosterically regulated proteins
can alter the degree of the allosteric response (51,52), and
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if host organisms thrive at different temperatures, muta-
tions can be required to alter protein stability (53). Changes
in affinity may also be present in the evolutionary record.
For example, one paralog may have 10-fold stronger
binding affinities for its ligands compared with another pa-
ralog. Indeed, for several Lacl/GalR homologs, mutations at
specificity-determinant positions most often altered the
overall affinity, and changes in ligand specificity occurred
for <25% of the variants (52,54).

Nor should changes in binding affinities (or other pa-
rameters) be treated as contamination in the evolutionary
record. Affinity changes in both paralog and ortholog evolu-
tion can allow organisms to adapt to new environments.
Affinity changes are also needed in protein engineering:
even in domain recombination, affinity modulation is often
needed to compensate for the far- and mid-range influences
of nonconserved positions on domain-domain or subunit-
subunit interfaces (55-57).

Mutations at some nonconserved positions do not follow
conventional substitution rules

In many computational studies, the results were validated
according to the criterion that important nonconserved posi-
tions were mutationally sensitive. Further, mutations at
these positions were expected to follow the conventional
rules (Box 1) that arose from our collective laboratory expe-
riences. However, most laboratory experiments have been
biased to mutations at conserved positions (58), which are
expected to abolish function (toggle off) unless the substitu-
tion is chemically similar (e.g., Ser for Thr; toggle on).
Notably, nonconserved positions have seldom been the sub-
ject of experiment, and therefore we must consider whether
the rules apply to these positions.

In experiments to directly test these rules, multiple a.a.
were substituted at nonconserved positions in Lacl/GalR
proteins (59). Instead of partitioning variants into the ex-
pected on/off pattern, the mutational outcomes ranged pro-
gressively over orders of magnitude (Fig. 3), which was
described as a rheostatic pattern of change (59). This rheo-
stat mutational behavior was also observed for variants of
Bcl-2 family proteins (60), a PDZ domain (61), an E3 ubig-
uitin ligase (62), and pyruvate kinase (51). Thus, rheostat
positions are probably widespread in the protein universe,

BOX 1 Conventional Rules for Mutating Important Positions

Most substitutions damage function or structure
A few amino acids allow normal function
Physicochemically similar
Presence allowed during evolution
Substitution = same outcome in any homolog
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FIGURE 3 Example of an evolutionary rheostat. Data are shown for 12
variants of a synthetic Lacl/GalR transcription repressor (Lacl:FruR)
(59). The checkered bar and dashed line represent the activity of the parent
protein. The gray bars represent the activities for variants at position 52.
Mutations with increased repression fall below the dashed line; those
with diminished repression fall above the line. The black bar depicts re-
porter gene activity in the absence of repressor protein.

and a variety of protein functions appear to have the poten-
tial for rheostatic changes.

Notably, rheostat mutations in the Lacl/GalR family do
not follow any of the conventional rules for mutational
outcomes (59). Nor is the rule-breaking limited to this fam-
ily: in one study, evolutionary frequency did not correlate
with mutation outcomes in Hsp90 (63), and in another,
mutational outcomes in human growth hormone did not
correlate with a.a. chemistry (64). The idea of conservative
substitutions based on chemical similarities was challenged
in a study that compared a.a. distributions on the structures
of natural proteins (65).

Thus, the existence of rheostat positions has important
ramifications for computational predictions of a.a. changes.
As far as we can tell, most evolutionary algorithms and/or
their interpretation explicitly or implicitly assume the rules
in Box 1. As such, they will incorrectly handle mutations at
rheostat positions. To improve predictions, new rules must
be devised to explain mutational outcomes at rheostat
positions. One challenge will be to distinguish noncon-
served positions at which similar a.a. are interchangeable
from rheostat positions that do not follow this rule. It also
remains to be seen whether rheostat behaviors correlate
with evolutionary patterns or with specific functional pa-
rameters. For the Lacl/GalR proteins, rheostat positions
might correlate with phylogenetic patterns (59). For these
and other proteins, we expect that changes in affinity,
catalytic rates, and stability can be incrementally modified
by mutating various rheostat positions. The behavior would
then propagate to any derived parameters, such as the
magnitude of the allosteric response.

Epistasis among multiple a.a. positions

In every analysis that uses a protein sequence alignment, an
explicit assumption is that the a.a. present in a column pro-
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vide information about the importance of that position in in-
dividual homologs. The interpretative corollary is that when
a mutational outcome is known for one homolog, similar
outcomes are expected for all other homologs. As with the
other rules listed in Box 1, this assumption was largely
derived from mutations at conserved positions. However,
for nonconserved positions, this need not be true.

To test this possibility, mutations must be created in
multiple proteins at analogous nonconserved positions.
Such a study was carried out using 10 members of the
Lacl/GalR family (55,66,67). The results showed that
changes at nonconserved positions had protein-specific out-
comes: commonly, a given a.a. substitution was detrimental
in one protein, neutral in another, and enhancing in yet
another. Disparate outcomes were common even among
closely related homologs.

This behavior (i.e., the same variant causing different
mutational outcomes in different sequence contexts) is
the hallmark of epistasis. Epistasis has confounded many
attempts to design proteins. For example, epistasis was
observed during efforts to transplant protein-protein inter-
faces among PDZ domains (68). Epistasis is now recognized
to be a dominant feature in the evolution of natural proteins
such the influenza A surface proteins (69) and TEM-1 §-lac-
tamase (70). Since a huge number of mutated proteins are
needed to explore epistasis experimentally, this will be
one of the most significant challenges to the field of rational
protein design.

A high percentage of amino acids contribute to a protein’s
function

As far as we are aware, attempts to identify a discrete subset
of amino acids for functional exchange have never yielded a
protein that functions as well as natural proteins. One reason
may be that numerous a.a. positions contribute to overall
function. This notion is based on the aggregate results of
many different mutational experiments. One example comes
from a screen for novel aminotransferase activity, which
yielded 12 variants with desirable function (71). Together,
these proteins had more than 40 substitutions, seven of
which were common to all. When only these seven a.a.
were mutated on the parent protein, the resulting protein
had only 60% of the functionality of the selected proteins
(71). Thus, the other 30-plus positions must contribute to
the final function.

Another example comes from a study involving whole-
protein mutagenesis of wild-type Lacl, in which 12-13
a.a. were substituted at nearly every position (41). The re-
sulting data set has been used in dozens of studies to verify
that high scores from computational algorithms identify
important positions. However, an examination of the full
data set shows that at least 50% of all Lacl positions
contribute to function. Indeed, when the full data set was
compared with three algorithms, mutationally sensitive
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positions were found to occur over the full range of scores
(see Fig. 5 in (19)). Thus, no single evolutionary pattern
has captured all of the relevant functional information for
this family.

Future directions

The results described above have led us to consider what
kinds of studies are needed in the future to advance protein
engineering. An immediate and economical approach would
be to glean more information from existing directed-evo-
lution experiments by retrospectively comparing the muta-
tions with analyses of sequence alignments. However,
one must remember that such experiments were designed
to generate “winners” and do not yield much information
about “losers.”

Another approach would be to expand the number
of experimental variants available for comparison with
sequence analyses by characterizing multiple a.a. substitu-
tions at each position studied. For example, as noted above,
no correlation has yet been documented between specific
patterns and specific functional parameters. A more fruitful
approach could be to correlate an orthogonal classification
of mutation outcomes (e.g., toggle, rheostat, and neutral
behaviors) with patterns of evolutionary change. Toggle
behavior strongly correlates with mutations at conserved
positions. Rheostat behavior may correlate with positions
that show phylogenetic patterns of change; this should
be tested in other protein families. And although it is
commonly assumed that positions that show unconstrained,
random changes during evolution are functionally neutral,
to my knowledge, this has never been tested.

Rheostat behavior, epistasis, and the fact that many a.a.
positions contribute to protein function are likely to affect
structure-based, de novo, and evolution-based engineering.
This issue could be addressed by tying functional changes
back to other areas shown in Fig. 1. To that end, the
biophysical community has begun useful studies. Several
have explored the apparent trade-off between function
and protein stability (e.g., (72,73)), and a compelling
link was noted between changes in protein dynamics dur-
ing the evolution of functional variation (74,75). It will be
particularly interesting to understand the biophysics that
underlies mutational outcomes at evolutionary rheostat
positions, and this simply requires that common tools be
systematically applied to a series of a.a. at each rheostat
position. To illuminate epistatic relationships, researchers
will need to generate all possible (pairwise through
n-wise) mutational combinations, which would be orders
of magnitude larger than the number generated in studies
completed to date. Deep mutational scanning (42) has
been used to compare functions for large sets of protein
variants, but the characterization strategies must be scaled
up to yield more detailed functional and biophysical
information.

16 Biophysical Journal 111, 10-18, July 12, 2016

Another area to consider is the different classes of protein
structures (globular soluble, integral membrane, and intrin-
sically disordered). To date, most attempts to integrate pro-
tein design with evolutionary information have been carried
out on soluble proteins, and only a few studies have focused
on membrane proteins. However, these three classes have
been subjected to fundamentally different structural con-
straints during evolution, which may give rise to different
correlations between evolutionary patterns of change and
mutational outcomes (76).

Finally, some protein structures may have evolved to
evolve, that is, the underlying structural scaffold of a protein
family can support a wide range of functional variation. For
example, the >45 paralog groups of the Lacl/GalR family
(19) have a common structure that tolerates a large num-
ber of a.a. changes to effect wide functional variation. As
evolvable scaffolds may be more useful for redesign, it is
imperative to understand what features make one structure
more amenable to functional variation than another one.
Bloom et al. (21,77) found that proteins with enhanced
stability can accept a wider range of a.a. mutations. T6th-
Petr6czy and Tawfik (78) proposed that highly evolvable
proteins have a high fraction of functional positions in
flexible regions. It will be interesting to compare efforts to
redesign proteins that do and do not have these features.
(This will almost certainly pose another gradient/threshold
problem, with different protein families tolerating varied
mutation loads.) At the same time, it may be harder to pre-
dict mutational outcomes in highly evolvable proteins than
in proteins with stronger structural, functional, and evolu-
tionary constraints.

CONCLUSIONS

The applications for which proteins are engineered often
require complex, nuanced functions. Directed evolution
and library screening have limitations that could be circum-
vented by rational protein design. Likewise, the widely used
structure/energy calculations used to guide protein redesign
(too extensive to review here) are limited by the need for
1) a protein structure and 2) user input about the targeted
region, which is difficult to identify outside of binding
sites. Evolution-guided redesign has the potential to circum-
vent these problems and to complement structural/energetic
approaches.

The confounding factors described above suggest several
reasons why attempts to guide rational protein engineering
with evolutionary information have not been fully suc-
cessful. Further, these factors impact more than protein
engineering: they hamper the ability to predict mutation out-
comes for genomic diagnoses, and they hamper the ability to
assign functions to uncharacterized proteins.

Although these confounding factors are challenging, I
remain hopeful that they can be overcome. Since directed
evolution and selection from massive libraries are successful



strategies, the correct mutational answers exist in the protein
universe. Rational protein design is not limited by nature,
only by our own understanding.
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