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Abstract

Interpersonal relationships are vital for our daily [4_TD$DIFF]functioning and wellbeing.

Social networks may form the primary means by which environmental

influences determine individual traits. Several studies have shown the influence

of social networks on decision-making, behaviors and wellbeing. Smartphones

have great potential for measuring social networks in a real world setting. Here

we tested the feasibility of using people's own smartphones as a data collection

platform for face-to-face interactions. We developed an application for iOS and

Android to collect Bluetooth data and acquired one week of data from 14

participants in our organization. The Bluetooth scanning statistics were used to

quantify the time-resolved connection strength between participants and define

the weights of a dynamic social network. We used network metrics to quantify

changes in network topology over time and non-negative matrix factorization to

identify cliques or subgroups that reoccurred during the week. The scanning rate

varied considerably between smartphones running Android and iOS and

egocentric networks metrics were correlated with the scanning rate. The time

courses of two identified subgroups matched with two meetings that took place

that week. [5_TD$DIFF] These findings demonstrate the feasibility of using participants' own

smartphones to map social network, whilst identifying current limitations of

Received:
12 May 2015

Revised:
2 September 2015

Accepted:
6 October 2015

Heliyon (2015) e00037

http://dx.doi.org/10.1016/j.heliyon.2015.e00037

2405-8440/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:t.boonstra@unsw.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2015.e00037&domain=pdf
http://dx.doi.org/10.1016/j.heliyon.2015.e00037


using generic smartphones. The bias introduced by variations in scanning rate

and missing data is an important limitation that needs to be addressed in future

studies.

Keywords: Data mining, Social sciences methodology, Data networks, Mental

health

1. Introduction

Humans are highly social beings. Not only do we like to be surrounded by

friends, many of our activities require interaction with other people. Given its

pervasive role in our functioning, there has been a longstanding scientific

interest in the analysis of social interactions. In 1934, Moreno introduced

‘sociograms’ – a diagram of points and lines used to represent relationships

within a group of people – which laid the foundation of sociometry [1]. The

development of methodologies to quantify social interactions, such as the use of

matrix algebra and graph theory, made it possible to formalize fundamental

social-psychological concepts such as groups and social circles in network terms

and to objectively discover emergent groups in network data [2] [3]. Social

network analysis has found a wide range of applications, such as quantifying

social capital in organizations [4] [5], to determine how diseases spread in the

community [6] [7], investigate the role of social networks in the development of

brain diseases such as dementia [8], or the protection social support can offer

for mental heath [9] [10] [11]. Much of this interest can be attributed to the

appealing focus of social network analysis on the relationships among people,

and on the patterns and implications of these relationships.

Networks are defined by nodes and the edges between them. In the case of

social networks, the nodes represent individual people and the edges the

relationships between them. Quantifying the relationships between people is

hence fundamental in characterizing social networks. To estimate these

relationships, most studies have tended to follow the lead of the pioneering

study by Moreno, who used questionnaires to investigate friendship choices

among selected children [1]. In these studies, researchers simply ask respondents

to identify their friends and use these data to define the edges of the social

network. For example, in the Framingham Heart study – a long-term, ongoing

cardiovascular study of the residents of the town of Framingham, Massachusetts

– researchers used contact information provided by subjects over a 30-year

period to map the social network of friends and family in the study. These data

have been used to investigate how the behavior of individual people is

influenced by their social network and has demonstrated how their happiness

[12], obesity [7], and smoking behavior [12] spreads as a function of their

social network. This approach to define the edges is time consuming, subjective
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and depends on the nature of the questions – or name generators – that are

asked [13] [14] [15]. That is, respondents will describe networks of varied size

and the characteristics of relationships will vary considerably depending on the

questions asked [13].

Sensor-enabled mobile phones have the potential to collect vast amounts of

objective data at low cost [16] [17] [18] [19], and are particularly suited to

ecological momentary assessment, i.e. monitoring and assessment in real-time

and real-world conditions [20]. Smartphones have been used to map social

networks by assessing physical proximity using either Bluetooth [21], location

data [22] or by combining different data modalities [23] [24] [25] [26]. It was

shown that physical proximity data can be used to accurately infer friendships

between participants [21]. It has hence been well established that smartphones

can be used to efficiently map face-to-face interactions and provide valuable

information about the dynamics of social interactions, which may have many

applications. For instance, if we understand the principles that govern social

networks and how egocentric networks – the local network surrounding an

individual – influence behavior, we may be able to use network metrics to

inform the design of interventions to prevent social withdrawal or the spread of

negative and stigmatizing attitudes.

However, most studies have handed out specially programmed mobile phones to

study participants [19] [21] [22] [23] [24] [25] [27] [28]. Using people's own

smartphones will be critical for scaling up this technology for potential mHealth

applications. This will also provide the ability to provide users with feedback on

their own social connectedness, which fits in the wider trend of using mobile

phones for continuous self-monitoring of physical and mental health [20] [29]

[30]. Here we assess the feasibility of using people's own smartphones as a data

collection platform to gather information about the dynamics of their individual

social network via Bluetooth. We developed an application for iOS and Android

to collect Bluetooth data from participants' own smartphones and tested the

application on participants within our organization to validate the social network

dynamics obtained using their own smartphone against the events that occurred

during the period of data acquisition. The study aims to identify potential

limitations of the technology and methodology that can inform larger studies on

the role of social networks in mental health.

2. Materials and methods

2.1. Procedure

We collected data for one working week (24–28 November 2014). A team

meeting was planned on Monday and a staff meeting on Wednesday, enabling

validation of the proposed methodology. We used the Bluetooth scanning
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statistics to quantify the connection strength between participants and to define a

weighted, undirected social network. Graph metrics were used to quantify the

structure of relationships and the position of participants within the social

network. Non-negative matrix factorization (NMF) was used to decompose the

dynamic connectivity matrix and identify a small number of factors that capture

the dominant recurring network configurations.

2.2. Participants

Staff and research students within the Black Dog Institute were sent an email

via the general distribution email list, inviting them to participate in the study.

The email contained a link to a participant information sheet, and participants

were asked to sign an online consent form. This study was reviewed and

approved by the University of New South Wales Human Research Ethics

Committee (HC14172).

2.3. Data acquisition

Custom applications were developed for the Android and iOS operating systems.

The Android application was based on the Purple Robot open-source data

collection platform [31]. For the iOS application we used the BluetoothManager

private API. Both versions of the application asked the user to confirm consent

prior to the commencement of Bluetooth data collection. Bluetooth is a short-

range communication protocol designed to allow a wireless connection between

nearby devices, such as smartphones. A key feature of a Bluetooth device is the

ability to scan for other nearby devices. When a Bluetooth device conducts a

discovery scan, other Bluetooth devices within a range of 5–10 m respond with

their user-defined name, the device type, and a unique 12-hexadecimal-digit

hardware media access control (MAC) address. A device's MAC address is

fixed and can be used to differentiate one device from another, irrespective of

the device name and type. When a participant's MAC address is discovered by

a periodic Bluetooth scan performed by another participant, it indicates that the

two smartphones are within 5–10 m of each other (see also [21]).

The Android application was configured to perform a Bluetooth discovery scan

every five minutes during the study period. It was not possible to specify a

scan frequency in the iOS application due to operating system restrictions on

background execution; therefore data was collected on a best-effort basis, as

often as permitted by the handset.

As the Bluetooth MAC address of a device is potentially personally identifiable

information, to ensure the privacy of participants these data were

cryptographically hashed on the handset to prevent re-identification. Hashing
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generates a consistent ‘signature’ for each data item that cannot be reversed to

reveal the original data value.

2.4. Connectivity analysis

We estimate the connectivity between participants based on the Bluetooth

scanning statistics of their smartphones, and from these statistics we define the

connection strengths between participants and thus the weights of the network.

Smartphones scan at irregular intervals and the scanning behavior {ti} can be

regarded a point process. It is completely specified by a series of scanning times

and the start and end points of the recording interval [0, T]. It is convenient to

introduce some notation that enables formulae to be written in a compact form

[32]. The counting process N(t) is defined as the number of scans that occur

between the start of the interval (t = 0) and time t. The average connection

strength between device i and j can then be represented as

Rij ¼ Nij Tð Þ þ Nji Tð Þ
Ni Tð Þ þ Nj Tð Þ (1)

where Nij is the number of scans where device i detected device j and Ni the

number of times device i scanned on time interval T. By normalizing the

number of times one of the devices detected the other by the number of times

each device scanned, the connection strength Rij is bound on the interval [0,1],

where 1 indicates that both devices always detected each other when they

scanned and 0 indicates that the devices never detected each other. If both

devices did not scan during the interval of interest, Rij is set to zero. By

defining the connection strengths as a ratio we regard the particular scores as

stochastic or probabilistic realizations drawn by random sampling from an

underlying true tendency or probability distribution of relationship strengths

[33] [34].

To obtain a time-resolved definition of Eq. (1), we convert the point process

into a time series using a binning method to make it accessible for methods of

time series analysis [35] [36]. We hence define a time series

xi tð Þ ¼ 1; if device i scanned at time t
0; elsewhere

�
(2)

that represents the times device i scanned and

xij tð Þ ¼ 1; if device i detected j at time t
0; elsewhere

�
(3)

as the times device i detected device j. Using a time-domain smoothing

operator, we can then define connectivity strength between device i and device

j in a time-resolved manner as
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Γij tð Þ ¼
S xij tð Þ þ xji tð Þ
� �
S xi tð Þ þ xj tð Þ
� � ; t ¼ 1; 2; : : : ; T (4)

where S{.} is a suitable smoothing operator (see also [37]). Here we use a

Gaussian window of either 10 min or 2 h duration to estimate connectivity

dynamics at short and longer time scales. Smoothing was implemented by

convolving the smoothing window with the time series.

2.5. Network analysis

We then use graph theory to examine the structure of relationships detected

using Bluetooth (see [38] for an introduction to graph theory). The participants

are the nodes and the connectivity matrix defines the edges of the network.

The connectivity (adjacency) matrix can be determined by estimating the

connection strength between all pairs of smartphones. As the connection

strengths in Eqs. (1) and (4) are ratios and symmetric (the connection strength

between device i and j is equal to the connection strength between j and i),

the connection matrix defines a weighted undirected graph. A wide range of

network metrics are available to quantify the topology of weighted undirected

graphs (see [39] for an overview). Networks metrics quantify either global

or local properties of a graph, which characterize how the network is organized

and how specific actors are positioned within this network [2]. For instance,

measures of ‘centrality’ quantify how central an actor is within a network,

which is thought to determine its influence on the network. In particular,

betweenness centrality indexes the percentage of all shortest paths from

neighbor to neighbor that pass through a particular node and hence measures

the potential for control of communication [40]. Nodes with high betweenness

centrality are often referred to as hubs. The clustering coefficient quantifies the

density of the neighborhood of each node and is equivalent to the fraction of

the node's neighbors that are also neighbors of each other [41]. The clustering

coefficient is used to detect the presence of clusters or cliques within a

network.

Network metrics can be used to quantify both static and dynamic networks. For

dynamic networks, static ‘snapshots’ can be generated for particular time points

or time intervals and the network topology at that time point can be assessed.

If the network topology is assessed at each time point (t =1,2, . . . , T), this

yields time series of the network metrics that specify if and how the position

of specific actors within the network changes over time. Rather than analyzing

these snapshots separately, the dynamic connectivity matrix can be analyzed

as a whole. Matrix factorization techniques can be used to decompose the

connectivity matrix into its basic building blocks and hence obtain a low-

dimensional representation that makes its analysis tractable [34] [42]. Non-
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negative matrix factorization has been used to detect overlapping communities

in social networks [43] [44]. As it provides a low-dimensional approximation

of the data, non-negative matrix factorization is particularly useful to recover

large recurring network configurations and separate these distinct network states

from continuous data. Here we use non-negative matrix factorization (NMF) to

decompose the dynamic connectivity matrix (time-resolved connectivity for each

pair of participants) into two non-negative matrices reflecting the connectivity

matrices (basis vectors) and the corresponding time courses, respectively. The

basis vectors delineate the communities or subgroups that are present in the

data and the time courses when these subgroups were observed. NMF is

distinguished from other methods by its non-negativity constraints [45] and both

the time courses and the connectivity matrices are hence non-negative. For the

estimation of most network metrics it is required that the connectivity matrix

does not contain any negative entries [39].

We used Gephi for visualization of the network topologies [46].

3. Results

Fourteen participants agreed to join the study; five participants had Android

handsets and 9 participants had iPhones. The smartphones scanned a total of

4581 times and detected 381 unique devices. Here we only analyze the

connections between the fourteen participants that entered the study. The

scanning behavior differed considerably between smartphones (Fig. 1A).

Smartphones running Android scanned more often (on average 845 ± 294 scans

during the 5-day period) than smartphones running iOS (40 ± 60). To estimate

the connection strength between two participants – the weights of the network

[(Fig._1)TD$FIG]

Fig. 1. Bluetooth scanning statistics. A) The total number of scans made by each smartphone in the

5-day period displayed on a logarithmic scale. B) Scanning rate for each edge of the network. The

scanning rate between node A and B is determined by the number of scans by smartphone A and B

combined, as the edges are undirected (symmetric). The horizontal dotted line reflects a scanning

rate of 1 scan every 10 min; the dashed line 1 scan every 2 h.
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edges – we combined the data from both smartphones, improving the scanning

rate for each edge of the network (Fig. 1B). The scanning rate per edges,

determined based on the inter-scan intervals, was on average 6.5 scans/h

(Android-Android: 16.4 ± 3.3 scans/h, Android-iOS: 8.8 ± 2.7 scans/h, iOS-

iOS: 0.89 ± 0.82 scans/h). Of the 91 edges, 73 edges were assessed at least

once every 2 h on average (dashed line) and 42 edges were assessed at least

once every 10 min (dotted line).

We first determined the static social network by pooling the data across the

whole 5-day period (see Eq. (1)). By estimating the connection strength Rij

between each pair of participants, the connectivity matrix was determined

(Fig. 2A). The connectivity matrix shows the percentage of time each pair of

participants was connected, that is, [10_TD$DIFF] that both participants were in close physical

proximity such that their smartphones could detect each other via Bluetooth.

The connection strength varied considerably between pairs of participants: the

devices of some participants never detected each other, whereas some devices

detected each other up to 60% of the times their devices scanned (participants

5 and 9). Fig. 2B shows the weighted undirected graph that is defined by this

connectivity matrix. The graph shows that some nodes are more strongly

connected than others, such as participants 1, 5 and 9.

We then analyzed the dynamic social network by estimating the connection

strength in a time-resolved manner. Temporal changes in connection strength

were estimated by convolving the scanning behavior with a Gaussian smoothing

window (Eq. (4)). We used a [11_TD$DIFF]10-min and a 2-h smoothing window to assess the

[(Fig._2)TD$FIG]

Fig. 2. Static social network. A) Connectivity matrix in which the weights are determined by the

total of number times two devices detected each other divided by the total number of scans

(Eq. (1)). Participants 1–5 had Android handsets; participants 6–14 had iPhones. B) Network

topology of the corresponding graph: The color of the nodes reflects the weighted degree and the

width and color of the edges reflect the weights. The network topology is generated using

ForceAtlas 2.
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fast and slower network dynamics, respectively. Fig. 3A shows the fast changes

in connection strength between participants 1 and 6 as example. A short

smoothing window can be used when high temporal resolution is required,

e.g. to determine the duration of interactions (Fig. 3C). This shows that, across

all participants, shorter interactions are more frequent, although some people

were in close proximity for longer durations up to 280 min (about 4.5 h). Such

information can be used to investigate the natural time scale of face-to-face

interactions [47].

Fig. 3B shows slower changes in connection strength obtained using the [3_TD$DIFF]2-h

smoothing window. Although the temporal resolution is reduced, the precision

of the estimate is improved, as connection strength is determined based on a

larger number of scanning events. By estimating dynamic connectivity between

all pairs of participants we obtain a dynamic connectivity matrix that defines

how the social network develops over time. The changes in network

configuration can then be quantified by estimating network metrics at each

point in time. In Fig. 3D we show the change in the clustering coefficient over

time for two nodes of the network (participants 1 and 6). The clustering

coefficient is a measure of the degree to which nodes in a graph tend to cluster

together [41]. In particular in social networks,[12_TD$DIFF] nodes tend to create tightly knit

[(Fig._3)TD$FIG]

Fig. 3. Connectivity dynamics. Temporal changes in connection strength were determined by

convolving the scanning events with a Gaussian smoothing window (Eq. (4)). A) Change in

connection strength between two exemplar participants over the 5-day period when smoothed over [2_TD$DIFF]

10-min intervals. B) Change in connection strength when smoothed over [3_TD$DIFF]2-h intervals. C) Histogram

of the duration of interactions across all pairs of participants. Events reflect a period during which

two smartphones detected each other without interruptions. A [2_TD$DIFF]10-min smoothing window was used

and only edges with at least 6 scans/h were included. D) Change in clustering coefficient of two

nodes of the network (participants 1 and 6) over the 5-day period using a [3_TD$DIFF]2-h smoothing window.
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groups characterized by a relatively high density of edges. The local clustering

coefficient of a node quantifies how close its neighbors are to being a clique.

To explore the temporal changes in network topology, we computed the

connectivity matrices for each of the five days separately. The static

connectivity matrix was determined over the time interval from 9 am to 5 pm

using Eq. (1). Fig. 4 shows the network topology for each day as well as the

cluster coefficients for all the nodes. The network topologies differed

considerable between days. On Monday group of strongly connected nodes was

observed including participants 1, 2, 5, 6, 7 and 10. A much sparser network

was observed on Tuesday revealing strong connections between participants 1,

5 and 9. On Wednesday a broadly connected network consisting of most of the

participants was observed, whereas on Thursday a similar network configuration

as on Tuesday was observed. Friday showed again strong coupling between

participants 1, 5 and 9, but now also included strong connections to participants

2, 7 and 8.

In addition to providing these snapshots of the social network as shown in

Fig. 4, the dynamic connectivity matrix can be analyzed at each time point.

Video S1 shows the evolution of the network configuration over time. To

assess the network configurations that commonly reoccurred during the week,

we decompose the complete dynamic connectivity matrix using NMF. NMF

yields a low-dimensional approximation of a dataset by minimizing the squared

error [45], and will hence only recover the coarse structure of social networks.

Four factors were extracted that each consist of the time courses of dynamic

connectivity and the corresponding network weights. The first factor reveals a

[(Fig._4)TD$FIG]

Fig. 4. Dynamics of network topology. The connectivity matrix is estimated for each day of the

week to assess the corresponding network topology. A) Network topology: The color of the nodes

reflects the weighted degree and the width and color of the edges reflect the weights. The network

topologies are generated using ForceAtlas 2. B) The local clustering coefficient at each day of the

week.
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sparse network with strong connections between participants 1, 5, 6 and 9

(Fig. 5A). This network configuration is consistently observed each day of the

week, but most strongly expressed on Tuesday and Thursday. The second factor

captures a larger network, which in addition to participants 1, 5 and 9 also

includes strong connections to other participants such as 7, 8 and 10. This

network configuration is observed on Monday, Wednesday and Friday. The third

factor shows a large clique of most of the participants. This network

configuration was mainly observed on Wednesday and peaked during lunchtime,

while the first two factors showed a distinct dip at this time. The peak in the

expression of factor 3 coincided with the staff meeting at the Black Dog

Institute at which most employees were present. Finally, the fourth factor shows

a smaller clique consisting of participants 1, 2, 5, 6, 7, and 10 and this

configuration was mainly observed on Monday and peaked in the afternoon.

[(Fig._5)TD$FIG]

Fig. 5. Factorization of network dynamics. The connectivity matrix is estimated in a time-resolved

manner using a [3_TD$DIFF]2-h smoothing window and decomposed into 4 factors (A-D) using non-negative

matrix factorization. Each factor is characterized by the extracted featured (the time courses in the

right column) and the loadings of this feature in the original time-resolved connectivity matrix. The

left column shows the loadings that give the weights of the connectivity matrix. The middle column

shows the corresponding network topology. The color of the nodes reflects the weighted degree and

the width and color of the edges reflect the weights. The network topologies are generated using

ForceAtlas 2.
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This coincided with the research group team meeting and several team members

were participants in this study.

Finally, we test whether differences in scanning rates may have introduced a

bias in the estimation of the social network metrics. The scanning rate differed

significantly between devices from as low as 1 scan to almost 1200 scans during

the 5-day period (see Fig. 1A). A low scanning rate [13_TD$DIFF]increases the chance that a

connection was not observed even though the participants were in close physical

proximity. This problem is partly resolved, because even if a device itself does

not scan regularly, other devices are still able to detect it. The scanning rates per

edge are therefore more consistent, although 18 of the 91 edges were assessed

less than once every 2 h (Fig. 1B). To test whether this affects the accuracy and

precision of estimating networks metrics, we correlated the scanning rate with

the mean and SD of three commonly used network metrics (weighted degree,

clustering coefficient and betweenness centrality). The means and SDs of all

three network metrics were positively correlated with the number of times the

smartphone scanned during the 5-day period (r = 0.29 ± 0.15), but only the

correlation between the mean clustering coefficient and the times scanned was

significant (r = 0.55, p = 0.04, Fig. 6).

4. Discussion

We tested the feasibility of using people's own smartphones as a data collection

platform to map dynamic social networks. We developed an application for iOS

[(Fig._6)TD$FIG]

Fig. 6. Correlation between network metrics and the number of times a smartphone scanned. Three

network metrics (weighted degree, clustering coefficient and betweenness centrality) are estimated at

each time point using a [3_TD$DIFF]2-h smoothing window. The mean and standard deviation of the network

metrics are correlated against the number of times the smartphones scanned during the 5-day period.

Each panels shows the 14 data points as well the linear regression line.
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and Android to collect Bluetooth data and tested the application on participants

within our organization to validate the social network dynamics obtained using

their own smartphone against the events that occurred during the period of data

acquisition. One week of data was collected from 14 participants, five of whom

had Android handsets and 9 had iPhones. Time-resolved connectivity was

derived from the Bluetooth scanning statistics and used to define the dynamic

weights of an undirected network. Network metrics such as the weighted degree,

clustering coefficient and betweenness centrality provided quantitative measures

of how the topology of the network evolves over time. Non-negative matrix

factorization was used to extract network configurations that commonly

reoccurred during the week. This data-driven approach revealed a core network

that was consistently observed throughout the week, as well as two networks

that were only observed on a single day. These latter two networks correspond

to a team meeting on Monday and a staff meeting on Wednesday and provide

face validity of the proposed methodology. These findings demonstrate the

feasibility of using participants' own smartphones to map dynamic social

networks in real life. The ability to use personal smartphones will be vital for

the translation of this technology to clinical applications.

The present study uses Bluetooth to measure physical proximity and define the

edges of the network. It hence belongs to a wider group of studies using

physical proximity or location-based features as a proxy for social ties [21] [22]

[23] [24] [26] [48] [49]. While previous studies used designated smartphones

that were handed out to the participants, the current study is the first to use

participants' own smartphones to map social networks. This approach to define

social networks is supported by studies showing that similarities between two

individuals' movements strongly correlate with their proximity in the social

network and that such correlations can be exploited to predict which new links

will develop in a social network [21] [50] [51]. In fact, one study found that the

decision to install an app on a phone relies more on the face-to-face interaction

ties than the self-perceived friendship ties [27]. Here we use graph theory to

quantify the relationships between multiple participants, rather than focusing on

dyadic relationships between pairs of participants. Although we only tested the

approach on a limited number of participants (n = 14) during a 5-day period,

we were able to identify four distinct network configurations. The structure of

these cliques or subgroups and in particular the position or centrality of

individuals within these cliques may be important determinants of the effect

of social relationships on individual behavior [40] [52] [53] [54]. Network

metrics such as the clustering coefficient and betweenness centrality may hence

provide important predictors of individual characteristics and behaviors.

We obtained dynamic networks by integrating Bluetooth scanning statistics

across short time intervals (see Eq. (4)). The ability to define time-resolved
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connectivity critically depends on the scanning rate of the data collection

platform. We observed large variability in scanning rates between smartphones:

smartphones running Android performed on average 7.5 scans/h, whereas

iPhones performed 0.35 scans/h. App development on the Android OS and iOS

platform requires different approaches and programming languages [55]. In an

attempt to ensure a particular overall user experience, iOS imposes restrictions

on the background execution of apps, restricting the scope for passive data

collection applications that can be achieved on Android devices. Further

development of the app is required to increase the scanning rate on iPhones.

A next step may be using Bluetooth Low Energy (BLE) to act as a ‘beacon’ to
share a unique ID. However, it is currently not feasible to use BLE to map

social networks, due to the inability of iOS devices to detect another iOS device

when both are in a locked state [56]. In the current study we therefore used the

BluetoothManager private API, as the public CoreBluetooth API only contains

functions for interacting with low-energy devices. The use of private APIs

prevents distribution via the App Store and hence obstructs the application of

this technology at scale.

Even if the differences between platforms can be resolved, differences in

scanning behavior and missing data will be unavoidable when mapping social

networks in real life, as participants forget to bring their smartphones or to

charge them before the battery runs out. These variations in scanning behavior

may introduce a bias in the estimation of social networks. Here we assessed the

extent of this bias and found weak correlations between the scanning rate and

egocentrically defined networks metrics. Only the correlation between the

scanning rate and the mean clustering coefficient was moderate and statistically

significant. These weak correlations are surprising given the large variations in

scanning rates. This is partly due to the symmetric measure of connectivity

strength that was used: even if a device does not scan regularly itself, the other

devices can still detect it. However, this will not resolve the edges between two

iOS devices with low scanning rates. In addition, the network metrics are

defined over all the edges connecting a particular node: even if the weights of a

few edges are underestimated, the effect on network metrics is limited. Although

these properties of network metrics may partly compensate for the effects of

variations in scanning rate, this bias will affect the network that is obtained

[57]. The bias introduced by variation in scanning rate and missing data may be

addressed by using connectivity measures that are robust against missing data

[58] or by compensating for missing data in the statistical model used for

comparing network metrics [59]. It demonstrates the importance of monitoring

scanning statistics rather than just recording the times two devices detect each

other, as missing data will otherwise be overlooked.
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These finding are a step towards using a participant's own handset in the passive

detection of social network structures. We present an application for Android

and iOS to collect Bluetooth data and methods for mapping dynamic social

networks and to quantify the position of individual participants within multiple

subgroups in which they engage. Social network analysis provides important

information about the natural and externally imposed social mechanisms related

to behavior and decision making [27], which could help to design and evaluate

new tools for helping people with mental health problems. Several studies have

shown that emotional states strongly depend on the structure of social networks

and that people with similar levels of happiness, loneliness and depressive

symptoms cluster together [12] [60] [61]. This clustering is caused both by

direct peer-to-peer influence (contagion) as well as the tendency of individuals

to connect with similar people (homophily) [60] [62] [63]. In addition to direct

peer-to-peer influence, mental health may also be affected by the location of

individuals within their social network or the number and strength of their

connections. For instance, lonely people are disproportionately represented at the

periphery of the social network [60] and adolescent girls with more depressive

symptoms have a smaller network size [28].

Social networks are not stable; the creation and dissolution of relationships are

fundamental social processes with profound implications for human outcomes

[64]. Most individuals display a distinctive and robust pattern of social

interactions that tends to persist over time irrespective of the changes in the

identity of peers [65]. Changes in the structure of egocentric social networks

may hence provide key indicators of developing mental health issues (see also

[66]). The ability to map dynamic social networks using participants' own

smartphones offers a non-intrusive and scalable method to investigate the

influence of changes in social interactions on mental health. Social withdrawal

is a common telltale sign of depression and several studies have shown that

socially withdrawn children at risk for a wide range of negative adjustment

outcomes [67]. Dynamic network analysis may help to objectively quantify

social withdrawal and investigate its consequences on mental health. Future

studies are needed to determine if and how the shorter timescales (durations of

interactions, switching between subgroups) and the longer timescales (creation

and dissolution of relationships, social withdrawal) of dynamic social networks

relate to the development of mental health problems.
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