Table 4.
Dataset | Algorithm | Positive | Neutral | Negative | Average |
---|---|---|---|---|---|
GSR_SEL | RF | 90.00 | 83.57 | 79.29 | 84.29 |
MCC,BAG,RF | 89.29 | 85.00 | 80.71 | 85.00 | |
ASC,RF | 90.00 | 83.57 | 79.29 | 84.29 | |
AB,RF | 92.14 | 85.00 | 83.57 | 86.90 | |
MCC,AB,RF | 91.43 | 85.00 | 81.43 | 85.95 | |
GSR_SEL + HRV_SEL | RF | 95.00 | 89.29 | 78.57 | 87.62 |
MCC,BAG,RF | 94.29 | 87.86 | 78.57 | 86.90 | |
ASC,RF | 95.00 | 89.29 | 78.57 | 87.62 | |
AB,RF | 95.00 | 91.43 | 80.71 | 89.05 | |
MCC,AB,RF | 95.00 | 91.43 | 82.86 | 89.76 | |
GSR_SEL + HRV_SEL + EEG_IND_SEL | RF | 78.45 | 89.66 | 91.38 | 86.49 |
MCC,BAG,RF | 77.59 | 91.38 | 92.24 | 87.07 | |
ASC,RF | 79.31 | 87.93 | 88.79 | 85.34 | |
AB,RF | 80.17 | 87.93 | 91.38 | 86.49 | |
MCC,AB,RF | 78.45 | 87.07 | 93.10 | 86.21 |
Classifiers applied to the best datasets using only the features selected previously. Percentage of positive, neutral, negative and average results for the instances classified correctly.
Bold values indicate the best performance obtained in each test and highlight the optimal combination of features for each dataset.