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Time Cells in Hippocampal Area CA3
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Studies on time cells in the hippocampus have so far focused on area CAl in animals performing memory tasks. Some studies have
suggested that temporal processing within the hippocampus may be exclusive to CA1 and CA2, but not CA3, and may occur only under
strong demands for memory. Here we examined the temporal and spatial coding properties of CA3 and CA1 neurons in rats performing
a maze task that demanded working memory and a control task with no explicit working memory demand. In the memory demanding
task, CA3 cells exhibited robust temporal modulation similar to the pattern of time cell activity in CA1, and the same populations of cells
also exhibited typical place coding patterns in the same task. Furthermore, the temporal and spatial coding patterns of CA1 and CA3 were
equivalently robust when animals performed a simplified version of the task that made no demands on working memory. However, time
and place coding did differ in that the resolution of temporal coding decreased over time within the delay interval, whereas the resolution
of place coding was not systematically affected by distance along the track. These findings support the view that CAl and CA3 both

participate in encoding the temporal and spatial organization of ongoing experience.
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ignificance Statement

features of memory are represented in the hippocampus.

Hippocampal “time cells” that fire at specific moments in a temporally structured memory task have so far been observed
only in area CA1, and some studies have suggested that temporal coding within the hippocampus is exclusive to CA1. Here
we describe time cells also in CA3, and time cells in both areas are observed even without working memory demands, similar
to place cells in these areas. However, unlike equivalent spatial coding along a path, temporal coding is nonlinear, with
greater temporal resolution earlier than later in temporally structured experiences. These observations reveal both simi-
larities and differences in temporal and spatial coding within the hippocampus of importance to understanding how these
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Introduction

The hippocampus plays a critical role in the temporal organiza-
tion of memories (Eichenbaum, 2014), and a potential mecha-
nism for this temporal organization are hippocampal “time
cells,” neurons in hippocampal area CA1 that fire at specific mo-
ments in temporally structured experiences (Pastalkova et al.,
2008; MacDonald etal., 2011, 2013; Kraus etal., 2013; Modi et al.,
2014; Wang et al., 2015). So far, time cells have been examined
only in CAl, and it is currently unknown whether other areas of
the hippocampus have time cells or where the temporal proper-

Received Jan. 9, 2016; revised May 27, 2016; accepted June 1, 2016.

Author contributions: D.M.S., M.W.H., and H.E. designed research; D.M.S., Z.T., K., A.K., and M.W.H. performed
research; D.M.S. and D.S. analyzed data; D.M.S. and H.E. wrote the paper.

This work was supported by National Institute of Mental Health Grant MH095297, National Science Foundation
Grant PHY 1444389, and Boston University Initiative for the Physics and Mathematics of Neural Systems.

The authors declare no competing financial interests.

Correspondence should be addressed to Howard Eichenbaum, Center for Memory and Brain, Boston University,
Boston, MA 02215. E-mail: hbe@bu.edu.

DOI:10.1523/JNEUR0SCI.0087-16.2016
Copyright © 2016 the authors  0270-6474/16/367476-09%15.00/0

ties of CA1 time cells originate within the hippocampal circuitry.
One intriguing possibility is that CA1 receives temporal informa-
tion directly from the medial entorhinal cortex (MEC) and is
specialized for the temporal organization of memories within the
hippocampus. Consistent with this possibility, time cells are also
observed in MEC (Kraus et al., 2015), MEC lesions disrupt fine
timing of CAl neuronal activity (Schlesiger et al., 2015), and
MEC cells that project directly to the CA1 are critical for memory
requiring an association across time (Kitamura et al., 2014). Also,
other studies have distinguished a selective role for CA1 and not
CA3 in associating events across time (Kesner et al., 2005; Farovik
et al., 2010) and in the reorganization of spatial representations
over prolonged periods (Mankin et al., 2012). Conversely, within
CA1, temporal coding properties parallel those of spatial coding
properties, including that time and place cells are found in the
same neuronal population and the same cells can encode both
place and time, that both CA1 and CA3 neurons encode specific
events along with place or time, and both respond to a change in
the relevant spatial or temporal cues by a “remapping” or “retim-
ing,” respectively. Place cells are prevalent in CA3, as they are in
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CAl, so the parallels between time and place cells suggests that
the entire hippocampal circuitry is involved in both temporal and
spatial processing (Eichenbaum, 2014).

Also, when the properties of place and time cells are com-
pared, a striking difference is that time cells have thus far only
been reported in tasks that involve a strong working memory
demand (Pastalkova et al., 2008). In contrast, place cells fire in a
spatially tuned manner whenever there is a fixed spatial environ-
ment regardless of whether or not the rat is engaged in a memory
task. In the previous study, the control task without a memory
demand also lacked a fixed temporal structure of events, perhaps
preventing expression of stable temporal firing fields.

Here, we examined whether temporal processing within the
hippocampus is limited to area CAl, or extends to CA3, by re-
cording from CA1 and CA3 neurons in rats running on a tread-
mill in between alternating paths in a delayed alternation T-maze
task, thus placing a demand on working memory. We also re-
corded from rats running a simplified task almost identical in
structure except without working memory demands. The results
show that CA3 neurons exhibit robust temporal coding, and CA1
and CA3 neurons equivalently code time and space and do so
equivalently both with and without a working memory demand.
Within both areas, temporal coding does differ from spatial cod-
ing in that time representation is decreased in resolution over the
delay interval, whereas spatial coding had the same resolution
over the length of the track.

Materials and Methods

Subjects

Neural activity data were collected from 11 male Long—Evans rats weigh-
ing 400550 g. All rats were water deprived but provided with food ad
libitum. The weight of the rats was monitored regularly as a means of
regulating good health. All animal procedures were approved by the
Boston University Institutional Animal Care and Use Committee.

Task

The apparatus was a 122 X 92 cm rectangular track with a “stem” in the
middle of the long dimension onto which the treadmill was inserted.
Water ports were located at the end of the treadmill and on each long arm
(see Fig. 4C). On the first day of training, rats were allowed to freely
explore the maze and forage for scattered water rewards. On the next day,
rats were allowed to run only in the forward direction on right-turn trials
for water rewards (henceforth called “looping”). Then they were shaped
on treadmill running by providing rewards on the treadmill while pro-
gressively increasing the treadmill speeds for longer periods until the rat
completed a 20 s run at 20 cm/s. Subsequently, the rats were trained
without the treadmill activated to alternate left and right turns at the
choice point to receive rewards after each successful alternation. Once
the rat consistently performed over 90% correct on alternation, treadmill
activation was reinstated and the animals were retrained to alternate with
treadmill running. In this final phase of training, rats were given a small
0.05 ml water reward for entering the treadmill and a large reward of 0.1
ml after a 20 s run at 20 cm/s on the treadmill on each trial. They then
approached a choice point and were required to turn in the direction
opposite to that where they entered the stem to receive another reward of
0.05 ml after correct alternations.

Electrode implants and physiological recording

Once rats performed above 90% correct over 1 week of testing, electrode
drives were implanted. Five rats were trained in alternation before im-
plantation, and neuronal activity was recorded during separate sessions
of alternation and looping. Three other rats were implanted after training
on looping (right-turn) only, and then subsequently neuronal activity
was recorded during the looping task. Then these animals were trained
on the alternation task and subsequently recordings were taken as they
performed this task. Three additional rats were trained and recordings
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were taken only during the looping task. The findings in the experiments
described below did not differ among these training regimens.

Each tetrode comprised four 12 um nichrome wires (Sandvik Heating
Technology) and was gold plated until an impedance of 200-250 k() at
1000 Hz was reached (Komorowski et al., 2009). The microdrive was
implanted 1 mm into the cortex above the hippocampus unilaterally in
seven rats [anteroposterior (AP), —3.3 mm; mediolateral (ML), +2.8
mm] and bilaterally in four rats (AP, —3.4 mm; ML, =3.0 mm). After at
least 1 week of surgical recovery, tetrodes were gradually lowered into
CA1 and later into CA3. Electrical recordings were made using a 96
channel multichannel acquisition processor (Plexon) in which spike
channels were referenced to another ipsilateral electrode to remove
movement-related artifacts. Action potentials were detected by threshold
crossing and digitized at 40 kHz. Preliminary identification of CA1 and
CA3 recordings was made by a combination of tracking the electrode
depth and observation of spike bursting at the theta rhythm, strong theta
power, and the presence of sharp wave ripples during sleep. Position data
were captured using light-emitting diodes situated on the rat’s head stage
that were monitored at 30 Hz by a Cineplex Digital Capture System
(Plexon) and synchronized to neural data.

After completion of the experiments, rats were anesthetized with 2.5%
isoflurane, and small lesions were made at the end of the tetrodes by
passing 40 pA of direct current through each wire. Animals were then
injected with an overdose of pentobarbital sodium/phenytoin sodium
(Euthasol; Virbac Animal Health) and transcardially perfused with
0.05 M PBS, followed by 4% paraformaldehyde in 0.05 M PBS. The brain
was removed, postfixed in 4% paraformaldehyde, and then cryopro-
tected using a 30% sucrose solution in 0.05 m K-PBS. Slices were then
stained with cresyl violet to perform histological confirmation of tetrode
locations in CA1 and CA3 (Fig. 1).

Analysis of temporal and spatial firing patterns

Individual neurons were isolated by manually sorting clusters of wave-
forms using Offline Sorter (Plexon). Sorting was performed using the
relative amplitudes across each wire, the waveform width, and the peak-
to-valley distance. The sorted clusters were screened for interspike inter-
vals shorter than the neuronal refractory period, indicating that there
could multiple units. Spiking and tracking data were imported into
MATLAB 2015b for additional analysis with custom scripts.

Maximum likelihood estimation of temporally modulated firing. We an-
alyzed cell firing patterns while rats ran on a treadmill to identify tempo-
rally modulated cells. We classified time cells by comparing nested
maximum likelihood models of the spike train of a cell, with models that
included or did not include time. For each model, we performed the
maximum likelihood fit across all the treadmill runs. Nested models were
compared using a likelihood ratio test to assess the probability that add-
ing parameters significantly (p < 0.02, Bonferroni’s corrected for the
number of cells) improved the fit.

We compared the following four models to find the model that best fit
the spiking data. First, we calculated the maximum likelihood estimation
of a spike train assuming constant firing across the whole treadmill run.
This model, p,(t; 0,), gives the probability of a spike at any given time
point tbut did not include any temporal terms, so the set of parameters 6,
only includes a constant term (a,):

pi(t; 0,) = a,. (1)

This model was compared with a nested four-parameter model, p,(# 6,)
(Eq. 2), that includes a temporally modulated term T, which modeled a
Gaussian time field with two parameters:

pa(t; 0,) = a, + asT, (2)
where T'is just a Gaussian field controlled by w and o:

—(t-w?
Tt 0, p) =e 20 . (3)

To be classified as a time cell, we required that model p,, which included
a term for temporal modulation, provide a better fit than the constant
model p,. In addition, we evaluated another set of models. The three-
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Figure1.
(blue circles) with sections taken from the atlas of Paxinos and Watson (2007).

parameter p; included a temporal term but did not include a constant
background firing rate:

ps(t 05) = a,T, (4)

and a seven-parameter model, p,(t; 6,) (Eq. 5), includes a constant term
with amplitude a, along with two Gaussian time fields, T, and T,, defined
using the function T(#; o, w) as defined in Equation 3. Each time field is
defined with separate parameters for the amplitude of the two time fields
(ag, a,), the temporal shift of the peak of each of the time fields (u,, 1),
and the SD for each of the time fields (o, 0,):

pa(t; 0,) = as + a T, + a,T,. (5)

Cells that significantly improved their fit with a model that included
temporal parameters were considered time cells if they passed a reliability
test. Reliability of the firing field of a time cell was tested by separating
even and odd trials and performing the analysis separately using the
above procedures. Cells that were significantly fit by models with tempo-
ral parameters in both even and odd trials and whose even and odd fits
had a Pearson’s correlation coefficient r > 0.4 were considered to have
reliable firing and labeled time cells. We did not find any cells for which
p, fit better than p, so we will not consider multiple time fields further.
Sixty-one cells were fit better by p, than p,. For these cells, we used the
estimates of u and o taken from ps.

Implementation of maximum likelihood estimation. We allowed u to
vary between —20 and 40 s, and o had to be <40 s. Given that the
duration of each treadmill run was 20 s and the temporal resolution was
1 ms for each trial, there are 20,000 points per trial. If a spike was observed
inaparticular 1 ms time bin, f(#) was set to 1; otherwise, it was set to 0. For
each time bin, the model gives us probability that a spike occurs. To avoid
numerical errors, instead of using the likelihood, we computed the neg-
ative log-likelihood (nLL):

arg min nLL = — Ezf(t) log[ p(1; 6)]

trials ¢

+[1 — fin]log[1 — p(t; 6)] (6)

Tetrode location in CA3. 4, Representative coronal slices of CA1 (red circles) and CA3 (blue circle) recording lesionssites. B, Reconstruction of all recording sites in CA1 (red circles) and CA3

To find the best fitting model in a maximum likelihood sense in an
automated and efficient way, we searched the parameter space using a
combination of particle swarming and the Quasi-Newton method. Par-
ticle swarming (Poli et al., 2007) was performed first (with the swarm size
equal to 50), and its output was used to initialize the Quasi-Newton
method, which was performed second (the number of maximum func-
tion evaluations was set to 10,000).

To ensure that a model had an accurate assessment of the center and
width of a time field, we only considered cells that clearly peaked during
the treadmill run. For the beginning of the treadmill run, only cells with
amodel parameter p that was greater than o were included for additional
analysis. Because fields at the end of the treadmill run are much wider
than cells in the beginning of the run, the largest o that was used to
remove a cell at the beginning of the treadmill, o,,,,, was used as the
cutoff for u for all cells at the end of the treadmill run (20 s — o). For
a model with two time fields to be considered, both fields had to have
their centers during the treadmill run as above. Additionally, the two
fields had to be non-overlapping such that u, and p, were separated by at
least o, + 0.

Analysis of spatial firing patterns. Spatial firing patterns were also ana-
lyzed as animals traversed the maze outside the treadmill. For the analysis
of spatial firing, the maze path was linearized by transforming the track-
ing signals into polar coordinates, and maze segments were binned using
the angle of the tracking and a 2 cm binned linear definition of the maze.
Spatial activity patterns were assessed for periods when the rat was mov-
ing 4 cm/s or faster on the arms of the maze excluding the stem and areas
where rats slowed before entering or leaving the stem. The total linearized
distance during alternation trials was 400 cm, the same distance rats ran
on the treadmill. For looping sessions, we linearized the entire maze
traversed, except the treadmill, for a total linearized distance of 330 cm.

Cells were categorized as place cells using a similar method to the
method used to define time cells above. The identical equations were
used, except time was replaced with x(¢), the path across the linearized
portion of the maze interpolated to 1 ms resolution. In alternation ses-
sions, the two linearized sections of the maze are separated by an inter-
section with the stem. To avoid treating the two maze segments as one
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Time cellfiring patterns of CA3 neurons. 4, Three CA3 neurons are represented on top of each other, each with the following three graphs: (1) raster plots showing temporally modulated

spiking during all the individual trials over the duration of the treadmill run; (2) perievent time histogram showing the average firing rate (Hertz) across the treadmill run; and (3) normalized firing
rate map of the neuron over the treadmill run. Red correlates to the highest firing rate observed, and blue correlates to the lowest firing rate observed. B, The firing patterns of all identified CA3 time
cells, including both alternation and looping sessions. Each row represents the normalized firing rate of one neuron over the duration of the treadmill run (as seen in A), and the order of neurons

presented is determined by the peak firing times.

unified segment, the two maze segments were treated separately. The
other difference in methodology was the model parameter u was
bounded by an extra maze length larger and smaller than the range of the
maze definition in x, and o was bounded between 0 and twice the maze
length. After the maximum likelihood estimation was completed, to only
include cells with clear centers and widths, place cells were only consid-
ered if the center of field parameter w was o from all the maze edges. Only
12 place cells were fit by the model including two fields. Because of the
small number of place cells with two fields, we did not analyze these cells.
Other analysis methods. Spatial tuning curves for each neuron were
created for periods when the rat was moving at a speed of 4 cm/s or
greater by comparing firing rate as a function of linearized spatial posi-
tion on the linearized maze in 2 cm spatial bins. The spike counts and
occupancy times in each bin were independently smoothed for time or
space by convolving with a Gaussian smoothing kernel of 6 s time or 60
cm distance, respectively. Session average tuning curves were compiled
in an identical way but by averaging bins across trials before smoothing.
When comparing the firing fields of time cells and place cells between
different distributions, we used a two-sample ¢ test along with Hedges’ g
effect size and its 95% confidence interval. This effect size is a variation on
Cohen’s D that corrects for biases attributable to small sample sizes
(Hedges and Olkin, 2014) and is calculated using the following formulas:
X —X
g="a (7)

-~ /(”171)5f+(”271)5§
T P —

These controlled effect sizes may be conservatively interpreted with Bo-
renstein and Cohen’s (1988) convention of small (0.2), medium (0.5),
and large (0.8) (Hedges and Olkin, 2014). Exact analytical confidence
intervals for Hedges’ ¢ were calculated by iteratively calculating how far
the centrality of the distribution deviates from the null hypothesis.
Hedges’ g was calculated using the “Measures of Effect Size” toolbox for
MATLAB version 1.4. In case these measures were biased from non-
normal distributions, we also tested for differences between these distri-
butions by running a two-sample Kolmogorov—Smirnov (KS) test.
When comparing two nominal variables for independence, we per-
formed Fisher’s exact test to calculate the two-tailed p value. Descriptive

*

(8)

statistics are listed with =SEM. Information scores were calculated in bits
per second in space using the linear maze in 4 cm bins and during the
treadmill run in 200 ms bins (in which rats traveled 4 cm distance) using
Equation 9.

N Z; Z;
I= Z P log, 9)
where P; is the probability of occupying the ith spatial or temporal bin, Z;
is the firing rate in the ith bin, and Z is the mean firing rate across all bins
(Skaggs and McNaughton, 1998).

Results

Analyses were performed on data from 11 rats in 74 recording
sessions that yielded a total of 463 CA1 cells and 481 CA3 cells.
Examples of recording sites and their distribution are shown in
Figure 1. Neurons with an average firing rate over the entire
session >5 Hz were considered interneurons and excluded from
additional analysis, leaving 386 putative CA1 pyramidal cells and
379 putative CA3 pyramidal cells.

Time cells in CA3

Time cells are equally prevalent in CAI and CA3

Of all putative pyramidal cells, 206 CA1 cells and 227 CA3 cells
that had an average firing rate of at least 0.2 Hz during treadmill
running were considered in analyses aimed to determine whether
their activity was temporally modulated. Time cells were identi-
fied as neurons with temporally modulated firing patterns by
comparing nested maximum likelihood estimation models (for
details, see Materials and Methods). Using this operational defi-
nition, 62 of 227 (27.3%) CA3 cells qualified as time cells. This
proportion of CA3 cells that were time cells was not different
from the proportion of CA1 cells that were time cells [61 of 206
(29.6%); Fisher’s exact test, p = 0.670, two-tailed]. Examples of
CA3 time cells that fired at three different moments of the tread-
mill run are shown in Figure 2A, and the time fields of all re-
corded CA3 time cells are depicted in Figure 2B. Also, there was
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of those fields. D, Same as A except distance traveled along the looping maze. E, Same as B except the x-axis is distance traveled from the previous water ports on the looping maze. Note that neither
CA1 or CA3 stray far from the uniform distribution. F, Same as C except the x-axis is distance traveled from the previous water ports on the looping maze.

no reliable difference in mean firing rate between CA1 and CA3
time cells (CA1,4.20 £ 0.42 Hz; CA3, 4.25 £ 0.32 Hz; two sample
ttest, t5, = —0.05, p = 0.96).

Time cell sequences represent time with decreasing resolution with

increasing time

A striking aspect of time cells coding is an overabundance of time
cells early in the treadmill run and an accompanying expansion of
the duration of elevated activity later in the run (Fig. 2B). By
combining CA1 and CA3 time cells, the non-uniform distribu-
tion of time cells centers is evident when compared with the
uniform distribution (Fig. 3A,B, dashed line). These relation-
ships are most apparent in the cumulative distributions of CA1
and CA3 time field centers, in which it can be seen that the dis-
tributions for CA1 and CA3 rise faster than the uniform distri-
bution (dashed line) early in the delay interval and overlap
with one another (Fig. 3B). The distributions of combined
CA1 and CA3 time cells significantly differed from uniform
(KS test, D(y,3y = 0.17, p = 0.001), but the distributions for
CA1 and CA3 did not significantly differ from each other (KS
test, Dygy 62y = 0.14, p = 0.57).

In addition, a scatter plot of time field widths over the period
of treadmill running suggests that the width of time fields in-
creases during running on the treadmill (Fig. 3C). A multiple
linear regression of field widths in CA1 and CA3 along with times
of the field centers confirmed a strong linear relationship
(F(1.121) = 301.66, p < 0.001, > = 0.71) such that width of a time
field increased 0.62 = 0.04 s for every second of treadmill run-
ning. The intercept of the regression was not significant. To ex-
plore potential differences between regions, we performed a
multiple regression of width onto center location interacting with

region. Because we did not observe a reliable intercept in the
previous regression, we did not allow an intercept term in this
model. The interaction of region and the field center was signif-
icant, indicating that time field widths of cellsin CA1 and CA3 are
significantly different from each other (F(, ;,,, = 11.12,p < 0.01,
r? = 0.89). An analogous multiple regression analysis on tempo-
ral information scores with field center as a covariate showed a
nonsignificant interaction between region and the location of the
center of fields, indicating there was no significant difference
between the information scores of the two regions (F, ;,9) =
1.46, p = 0.23).

Time cells are equally prevalent with and without a working
memory demand

We also recorded CA3 and CA1 time cells in animals performing
a “looping” task that did not require that animals remember the
path of the previous trial (Fig. 4). During treadmill running in the
looping task, robust time cell patterns were apparent throughout
the delay in both CA1 and CA3 neurons (Fig. 4A,B and D,E).
Time cells in CA1 and CA3 were equally prevalent in both loop-
ing and alternation sessions [CA1l: looping, 37 of 116 (31.9%);
alternation, 24 of 89 (27.0%); CA3: looping, 35 of 130 (27.0%);
alternation, 27 of 97 (27.8%); Fisher’s exact test, p = 0.82,
two-tailed].

Comparison of time and place cell firing properties in

CAl and CA3

Place cells are equally prevalent in CA1 and CA3

We also examined the spatial firing properties of the same popu-
lation of recorded neurons as animals traversed the maze outside
the treadmill (Fig. 5). Of all the recorded putative pyramidal cells,
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249 CA1 cells and 322 CA3 cells that had an average firing rate of
at least 0.2 Hz on the linearized portions of the maze were in-
cluded in spatial analyses. Using a similar methodology with a
linearized maze that was used with time, cells were tested using
the maximum likelihood estimation criteria for reliable spatial
modulation (see Materials and Methods). With this metric, 122
of 322 (37.9%) CA3 cells and 99 of 249 (39.8%) CA1 cells were
considered spatially modulated, and these proportions were not
statistically different (Fisher’s exact test, p = 0.67, two-tailed).
CA3 place cells had significantly higher peak firing rates than CA1
place cells (CAIL, 3.91 = 0.33 Hz; CA3, 5.23 * 0.39 Hz; two-
sample t test, t,,9) = —2.5, p = 0.02, Hedges g = —0.36). Con-
versely, as observed for time cells, CA3 and CA1 place field widths
were not significantly different from each other (CAl, 41.39 =
3.21 cm; CA3,48.20 = 3.01 cm; two-sample ¢ test, t(,,0) = —1.54,
p = 0.12, Hedges ¢ = —0.21), and information scores of CA3
place cells were not significantly different from those of CAl
place cells (CAIL, 2.81 * 0.40 bits/s; CA3, 3.70 = 0.41 bits/s;
two-sample f test, t,,0) = —1.53, p = 0.13, Hedges g = —0.21).

Time cells in CAI and CA3 are sometimes also place cells

Some neurons that were time cells on the treadmill were also
place cells on the maze. To compare the proportions of cells that
had fields on the maze and fields during the treadmill run, only
cells that had a firing rate average of at least 0.2 Hz on both the
treadmill and the maze were considered. This resulted in 155 cells
[1550f386 (40.2%)] in CA1 and 168 cells [168 0f 379 (44.3%)] in
CA3 that fired under both conditions. In CA3, 13 0of 168 (7.7%) of
these cells had both a time field when the rat ran in the treadmill
and a place field when the rat traversed the maze. In comparison,
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Time cell firing patterns in CAT and CA3 during treadmill running in alternation (4, B) and looping (D, E) sessions. C, F, Representations of the alternation and looping mazes.

in CA1, 16 of 155 (10.3%) cells had a reliable time field and place
field. These proportions did not significantly differ (Fisher’s exact
test, p = 0.44, two-tailed), and these proportions did not differ
from the expectation of random conjoint coincidence of time and
place coding by the same neuron in CA1 (Fisher’s exact test, p =
0.24, two-tailed) or CA3 (Fisher’s exact test, p = 0.17, two-
tailed). These findings are consistent with the possibility that time
cells and place cells were drawn from the same population of cells
with a global remapping between the treadmill run and the maze.

Time cells differ from place cells on some basic firing properties

Place cells and time cells in CA1 and CA3 were compared to
explore the possibility of differences between their firing
properties during the treadmill run and when traversing the
maze. There were no significant differences between the peak
firing rate of cells on the treadmill or maze in CA1 (treadmill,
4.20 *= 0.42 Hz; maze, 3.87 * 0.32 Hz; two-sample ¢ test,
t60) = 0.64, p = 0.52, Hedges ¢ = 0.11) or CA3 (treadmill,
4.25 * 0.32 Hz; maze, 5.12 £ 0.38 Hz; two-sample t test,
tasy = —1.57, p = 0.12, Hedges g = —0.25). Information
scores of cells were not significantly different between the
maze and the treadmill in both CA1 (treadmill, 2.43 *+ 0.13
bits/s; maze, 2.81 = 0.41 bits/s; two-sample t test, t(;59) =
—0.73, p = 0.47, Hedges ¢ = —0.12) and CA3 (treadmill,
2.90 £ 0.15 bits/s; maze, 3.70 £ 0.41 bits/s; two-sample t test,
tasy = —1.37, p = 0.17, Hedges ¢ = —0.21). Because the
distribution of information scores on the treadmill may not be
normal, we also compared the distribution of information
scores on the maze and the treadmill and found that they were
significantly different in CA1 (KS test, D, 99y = 0.32, p =
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mazes in which spatial firing patterns were analyzed.

5e %) and CA3 (KS test, D(4,,15,) = 0.37, p = le ~%°). Finally,
the widths of firing fields on the maze and treadmill were
compared with each other by converting the time running on
the treadmill into distance traveled on the treadmill. Field
widths of cells were significantly larger on the treadmill than
on the maze in both CA1 (treadmill, 87.37 * 9.40 cm; maze,
41.39 * 3.21 cm; two-sample f test, t(140) = 5.46, p = 2¢ ",
Hedges g = 0.88, KS test, D6, 00y = 0.37, p = 4e ~*°) and CA3
(treadmill, 115.23 = 11.56 cm; maze, 48.20 = 3.01 cm; two-
sample ttest, t(55) = 7.25,p = le ' Hedges g = 1.13, KS test,
D120y = 0.47,p = 1e ).

Place coding did not show a systematic decrease in resolution with
distance traveled

The firing fields of place cells covered the entire maze, and the
distribution of those fields was not reliably different from a
uniform distribution across the maze (Fig. 3D,E; KS test,
D3,y = 0.10, p = 0.12). To directly compare distributions of
firing fields on the maze and the treadmill, the distance trav-
eled during the treadmill run was considered instead of the
time passed during the treadmill run. Because the distance
traveled on the treadmill run was substantially longer than the
length of the maze segments, the comparison was approached
in three ways. First, only the firing fields on the first 160 cm
traveled on the treadmill were compared with the firing fields
on the same-sized maze segments between water ports on
looping trials used above, and these distributions were signif-
icantly different (KS test, D(s; 14 = 0.23, p = 0.02). In case
the distribution is scaled between reward events, the analysis

linearized distance (cm)

CA3 Looping Maze

80 120
linearized distance (cm)
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Place cellfiring patterns in CAT and CA3 during alternation (A, B) and looping (D, E) sessions. C, F, Diagram of the alternation and looping mazes with red areas indicating parts of the

was redone by rescaling the distance until the center of firing
fields by the proportion of the run on the treadmill and maze
segment, and the difference in distributions was also signifi-
cant (KS test, D(5; 116, = 0.21, p = 0.004). The final possibility
tested was that the boundaries of the distributions of fields on
the treadmill and maze was not the water reward but the be-
ginning and end of the treadmill run. This comparison was
made between the full linearized looping maze of 330 cm,
including the reward location, and the first 330 cm of the
treadmill run. The maze and treadmill distributions were still
significantly different (KS test, D(;,4,,,) = 0.21, p = 0.003).

Place field width does not vary with distance traveled on the maze
We examined whether place field width varies with distance run
along segments of the maze between water ports during looping
sessions. In Figure 3F, a scatter plot of place field widths and the
distance from the previous water port did not reveal an obvious
difference in place field size along the maze run, and this obser-
vation was confirmed in a simple linear regression (r> = 0.005,
F(1 129y = 0.67, p = 0.41). Unlike time fields during the treadmill
run that grow wider with elapsed time, the width of place fields on
the maze do not significantly vary with the distance traveled on
the maze since the previous reward.

Place cells and time cells are equally prevalent regardless of
working memory demands

Time cells were shown previously to be equally prevalent re-
gardless of working memory load and region. Place cells in
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CA1 and CA3 were also active on the maze in both looping and
alternation sessions (Fig. 5). Similar to the findings on time
cells, working memory load did not affect the proportion of
cells that were place cells [CA1: looping, 57 of 137 (41.6%);
alternation, 42 of 112 (37.5%); CA3: looping, 72 of 183
(39.3%); alternation, 49 of 139 (35.3%); Fisher’s exact test, p
= 0.74, two-tailed]. When directly comparing the proportion
of cells in CA1 and CA3 that had fields on the treadmill run in
looping and alternation sessions and the proportion of cells in
CAl and CA3 that had fields on the maze in looping and
alternation sessions, the proportions of place cells were all
higher than the proportions of time cells, but this difference
failed to reach significance (X3 ,-190s = 13.25, p = 0.07).

Discussion

The present findings provide evidence that CA3 neurons fire
at specific, successive moments during a fixed interval, indi-
cating that temporal coding within the hippocampus is not
exclusively supported by CAl. The system of temporal pro-
cessing instead mirrors spatial processing such that time and
place are both robustly represented in CA3 and CA1l, as well as
MEC (Kraus et al., 2015). Furthermore, the firing properties of
time cells in CA3 were quite similar to those in CAl, just as
place cells from the two regions also were mostly similar. Not-
withstanding these general similarities, the distribution of
time cells and their firing field widths resulted in a temporal
representation that decreased in resolution with the passage of
time on the treadmill, whereas there was no analogous ten-
dency for place cells as a function of distance along the maze.

This overrepresentation of time early in the treadmill run
confirms previous reports on CAl time cells (MacDonald et
al., 2011; Kraus et al., 2013) and extends the finding to CA3
and is in stark contrast to place cells, which were evenly dis-
tributed on the maze without any bias of field width along the
maze arm. This difference between temporal and spatial rep-
resentation may be attributable to absence of temporal cues
beyond the onset of running in contrast to the prevalence of
spatial cues throughout traversal of the maze. This account is
consistent with reports that, when environmental cues are
reduced, spatial information in place cell activity is dimin-
ished (Wang et al., 2015). Increasing field width and decreas-
ing representation over time is a central feature of temporal
coding that enables increased efficiency when encoding in a
scale invariant manner (Howard et al., 2014).

This difference in the organization of network coding
of time and space is paralleled by a recent observation that,
whereas hippocampal time cell representations depend on the
theta rhythm, place cell representations do not (Wang et al.,
2015). Thus, although time and space coding are very similar
in many ways described here, the circuit mechanisms and
consequent organization of network representation may be
distinct and adaptive to differing demands for internal infor-
mation processing in the time domain as contrasted with ex-
ternal information processing in the spatial domain.

The observation of time cells in both CA1 and CA3 in the absence
of a working memory demand differs from a previous report that
time cells are evident only when a working memory demand is im-
posed (Pastalkova et al., 2008). A possible explanation for the dis-
crepancy of these results is that the control task of the previous study
lacked a fixed temporal structure of events within trials. Additional

J. Neurosci., July 13,2016 - 36(28):7476 —7484 + 7483

work will be necessary to define exactly what task elements are nec-
essary and sufficient to produce time cells. We speculate that these
elements will be related to the regular spatiotemporal aspects of a
task. On a network level, a reliable history of temporal structure
might place the network into a experience-specific initial state at the
outset of a delay, allowing the network thereafter to read out a reli-
able sequence of cells without a changing external stimulus driver of
the system.

The present findings of similar time coding in CAl and
CA3 contrast with reports of differential effects of selective
CAl and CA3 damage on tasks that involve temporal proc-
essing demands (Kesner et al., 2005; Farovik et al., 2010).
This discrepancy mirrors many observations on the robust
appearance of place cells in both CA1 and CA3 in tasks that do
not require navigation or spatial memory (e.g., random forag-
ing for food, running in a linear track), contrary to the com-
mon finding that damage to either area impairs spatial
memory. Thus, hippocampal areas may encode both the spa-
tial and temporal organization of experiences regardless of
whether these representations are required for current task
performance.

Mankin et al. (2012, 2015) reported that place cell patterns in
CAl and CA2, but not CA3, evolve over periods of several hours and
days and have suggested that a temporal signal for long periods
might be selectively represented in the final stages of intrinsic hip-
pocampal processing. In contrast, the current findings indicate sim-
ilar temporal processing in CAl and CA3, in addition to MEC
(Kraus et al., 2015), suggesting that mechanisms for temporal orga-
nization of specific experiences and neural drift over long periods of
time may involve distinct coding mechanisms.

Together, the present results are consistent with the view that
the properties of time cells parallel those of place cells, such that,
like spatial processing, temporal processing is prevalent through-
out the hippocampus regardless of distinctions in memory de-
mands. These observations are consistent with the view that the
hippocampus performs the same computations on spatial and
temporal information to construct an organization of experi-
ence, and both dimensions require only consistency of temporal
and spatial input (Eichenbaum, 2014).
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