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Introduction

Overgrowth of interstitial apatite plaques, so-called Ran-
dall’s plaques (RPs) or renal tubular crystal deposits by 
calcium oxalate (CaOx) seems to be important pathways 
in Ca nephrolithiasis [1–4]. RPs start their formation at the 
interior of the papillary tissue, initially without any contact 
with urine. Hydroxyapatite (HAP) calcification is induced 
by organic debris resulting from tissue injury. Later, when 
HAP deposits cross the epithelial monolayer that covers 
the papilla and enter in contact with urine, the apposition 
of CaOx crystals can occur. Large crystal aggregates being 
retained in collecting ducts and protruding out to papil-
lary surfaces seem to be another starting point for stone 
formation. An initially fixed growth on such deposits or 
RPs allows stones to get a critical size where they cannot 
be washed out anymore from the kidney by the urine flow. 
Scanning electron microscopy of RPs mainly showed pri-
mary CaOx aggregates without direct contact to HAP parti-
cles and thus without an evidence for heterogenous nuclea-
tion of CaOx by HAP. Therefore, stone growth mainly 
seems to be based on crystal aggregation (AGN) on RPs, 
intratubular crystal plugs or preexisting stones during crys-
talluria [5, 6]. Since transit time of urine in the upper uri-
nary tract is only in the order of a dozen of minutes, AGN 
has to occur very rapidly. Like in every biological fluid, uri-
nary crystals are always coated by urinary macromolecules 
(UMs) [7]. UMs consist of a large group of proteins and 
some glycosaminoglycans [8]. The number of UMs iso-
lated in urine is steadily increasing. From HAP precipitated 
in urine of healthy controls 45, and from brushite 77 differ-
ent proteins were extracted [9]. The role of these proteins in 
stone formation is far from being clear. However, coating 
of crystals by UMs seems to prevent or at least retard AGN 
often beyond urinary transit time through the kidney [10]. 
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This may explain why stone incidence and recurrence are 
less frequent than it could be expected from the widespread 
occurrence of RPs and crystalluria.

This paper tries to bring further light on crystal AGN 
in urine and the overgrowth of RPs or intra-tubular crystal 
deposits by CaOx, mechanisms still being poorly under-
stood. To this purpose AGN of CaOx was measured in urine 
after rapid Ox titration in the presence and the absence of 
UM-coated HAP crystals. Since in previous work UMs 
showed some instability with a tendency to self-AGN [11], 
freshly voided spot urine was used having spent only a 
short time in the urinary tract. To mimic the influence of an 
increased diuresis, crystallization tests were repeated with 
diluted urine. Tests were also performed with UMs isolated 
from urine by Ca phosphate precipitation and consecutive 
dissolution of the precipitate. Furthermore, results were 
compared to experiments performed with albumin, being 
an important compound of crystal coats and stone matrix 
[8].

Materials and methods

Special equipment

Ionic Ca and Na concentrations were measured by ion-
selective electrodes (AVL List GmbH). Light absorption 
or optical density (OD), respectively, in urine and solutions 
was measured at 620 nm and 37 °C in a Perkin Elmer spec-
trophotometer 550S (Perkin Elmer, Rotkreuz, Switzerland). 
OD was recorded with a DI-194RS serial port data record-
ing module (DataQ Instruments, Ohio, USA) and for fur-
ther calculation transferred to an Excel sheet. Particle size 
distribution was determined by a Malvern Zetasizer Nano 
ZS (Malvern Instruments Ltd).

Preparation of urine, coated HAP crystals (cHAP), 
control (CS) and albumin solution (AS)

15 spot urines were collected every morning freshly from 
one of 5 healthy men. pH was adapted to 6.0, ionic sodium 
(Na+) measured and ionic calcium (Ca2+) adapted to 
2 mM. In one portion of this urine a crystallization test was 
performed without further pretreatment. In a second por-
tion 0.05  mg/mL hydroxyapatite (HAP) crystals (Sigma-
Aldrich Co., Germany) was incubated under continuous 
stirring. The other urine samples were always diluted to 50 
or 33 % with distilled water immediately before perform-
ing crystallization tests. After dilution pH was readapted to 
6.0 and Ca2+ to 2 mM. CS was prepared in distilled water 
buffered with 5 mM sodium cacodylate to pH 6.0 and with 

concentrations of 100 mM Na+ and 2 mM Ca2+. HAP-sat-
urated CS (HCS) was obtained by incubation of CS with 
10 mg/mL HAP during at least 1 week and centrifugation 
at a relative centrifugal force (rcf) of 2000g for 10  min. 
AS was freshly prepared for every experiment dissolving 
powdered human serum albumin (Sigma-Aldrich Co., Ger-
many) in CS or HCS to a final albumin concentration of 
20 µg/mL. This concentration corresponds to a high physi-
ological urinary excretion varying from 1.6 to 34 mg/day 
[8]. Albumin-coated HAP crystals were prepared in HCS as 
mentioned above for urine.

Preparation of dissolved Ca phosphate precipitates 
(DP) from urine and albumin solution

2  mL of urine or AS was titrated in the spectrophotome-
ter under continuous stirring at pH 7.0 by adding 0.5 mM/
min of a 100  mM NaH2PO4 solution. The critical phos-
phate addition for an increase of OD was determined and 
calculated in mM. In 20 mL of new urine or AS, respec-
tively, after adaptation of pH to 7.0 a phosphate load was 
performed, exceeding the critical addition for precipitation 
by 1.0 mM. After 30 min. of stirring, urine or AS was cen-
trifuged and the supernatant discharged. The remaining 
sediment was dissolved in 20 mL of distilled water being 
buffered to pH 5.0. Complete dissolution was checked in 
the spectrophotometer. pH was adjusted to 6.0 and after 
measurement of Ca2+ and Na+ these values were adapted 
to 2 or 100 mM, respectively. Particle size distribution was 
measured in AS and in DP prepared from AS.

CaOx crystallization test

CaOx crystallization was monitored by the spectrophotom-
eter. Therefore, a quartz macro cuvette containing 2 mL of 
urine, CS or AS, respectively, was placed into the thermost-
attable cell holder of the spectrophotometer at 37 °C. Under 
continuous stirring 0.3 mM/min sodium oxalate was added 
from a 80 mM solution up to a final addition of 1.5 mM. 
At the end of the oxalate titration stirring was stopped and 
optical density (OD) was followed during further 25  min 
at 620 nm wavelength. To perform experiments with HAP, 
2 mL of the 0.05 mg/mL HAP suspension in urine or HAP-
saturated AS (HAS) was centrifuged (2000g for 10  min), 
the supernatant discharged and the sediment resuspended in 
2 mL of new urine or HAS, respectively.

Evaluation of crystallization curves

Characteristic crystallization curves are shown in Fig.  1. 
During Ox titration after a short period to reach the 
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metastable limit, OD steadily increases to a maximal value 
(mOD) being proportional to the crystal concentration in 
the suspension [12]. At the end of Ox titration and after 
stopping stirring, two different patterns of OD decrease 
are observed. One type where in the sediment by scan-
ning microscopy only single crystals are found shows a 
slow and continuous OD decrease. The other type where 
large crystal aggregates in the sediment are present, after 
a short period of slow OD decrease is characterized by a 
sharp kink with a rapid OD drop [13]. For the evaluation 
of crystallization curves, mOD and the maximal rate of OD 
decrease (mdOD/dt, min−1) were measured. OD decrease 
or the clearance of the particle suspension, respectively, 
occurs either when particles disappear by sedimentation 
out from the observation field of the spectrophotometer or 
when particle concentration or OD, respectively, is rapidly 
reduced by the association of many individual crystals in a 
few aggregates [10]. Results were indicated as mean ± SD 
and probabilities were calculated by Mann–Whitney U test.

Results

Evaluation of crystallization curves observed 
in undiluted urine

8 of 15 crystallization curves obtained in urine with coated 
HAP (cHAP) showed 10 ± 4 min after the stop of stirring 
a sharp kink of OD decrease indicating AGN. This kink as 
demonstrated in Fig. 1 also was found in CS. In 14 of 15 
tests being performed without HAP only a slight and con-
tinuous OD decrease without a kink was observed.

Measurements of the crystallization parameters together 
with the initial urinary sodium concentration (Na+) are sum-
marized in Table  1. Results are separately listed for urine 
samples without (U) and with a kink (Uk) in the crystalliza-
tion curve. The table shows that Na+ was significantly higher 
in Uk than in U. The maximal OD reached after Ox titration 
(mOD) reflecting crystal concentration was generally higher 
in urine than in CS. The difference mainly can be attributed 
to the additional Ox brought with urine to the test system. A 
significantly elevated maximal rate of OD decrease (mdOD/
dt) indicating AGN was, as could be expected from the 
above-mentioned observation, exclusively found in experi-
ments performed in Uk containing cHAP. Values were in the 
range of those found in CS, where the addition of HAP pro-
duced only a slight and non-significant further increase of 
mdOD/dt. Contrary to results obtained in CS almost all crys-
tallization tests performed in urine without cHAP showed a 
low mdOD/dt indicating inhibition of AGN. cHAP at high 
Na+, the latter being an indicator for concentrated urine 
[14], seems to overwhelm this inhibition and promote CaOx 
AGN. For further investigation crystallization experiments 
were repeated after dilution of Uk samples.

Effect of dilution

Figure 2 shows the effect of the dilution of initially con-
centrated Uk on mdOD/dt. The figure demonstrates that 
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Fig. 1   Crystallization curves represented by optical density (OD) in 
urine without (U), in urine with a kink in OD decrease (Uk) and in 
control solution (CS), the kink indicating AGN

Table 1   Urinary sodium 
concentration (Na, mM), 
maximal optical density (mOD) 
and maximal rate of OD 
decrease (mdOD/dt, min−1) 
in U, Uk and CS (for further 
details see Fig. 1)

Experiments performed in the presence of coated HAP are indicated by (+).  Results (mean ± SD) are 
marked by a, b and c to indicate probability (p) of differences

U Uk CS p

Na+ 67.9 ± 22.6a) 125.3 ± 17.2b) 100 (a) vs (b) <0.01

mOD 0.77 ± 0.08a) 0.86 ± 0.08b) 0.55 ± 0.09c) (a) vs (c) <0.01
(b) vs (c) < 0.01

mOD+ 0.73 ± 0.08a) 0.77 ± 0.18b) 0.43 ± 0.05c) (a) vs (c) <0.01
(b) vs (c) <0.05

mdOD/dt 0.008 ± 0.002a) 0.011 ± 0.004b) 0.033 ± 0.008c) (a) vs (c) <0.01
(b) vs (c) <0.01

mdOD/dt+ 0.011 ± 0.004a) 0.034 ± 0.011b) 0.044 ± 0.013c) (a) vs (b) <0.01
(a) vs (c) <0.01
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dilution significantly (p  <  0.01) reduced the elevated 
mdOD/dt observed in the concentrated Uk containing 
cHAP. The inhibition of AGN observed in tests per-
formed without cHAP was not significantly changed 
even by an urine dilution down to 33  %. These experi-
ments confirmed that a high urine concentration together 
with cHAP was responsible for CaOx AGN and fur-
thermore showed that this cHAP-induced AGN could 
be prevented by urine dilution. Therefore, the question 
rises whether at high urinary concentration a weak pro-
moter becomes active or inhibitory substances turn to 
promoters.

Comparison of tests performed with Uk and albumin 
solution (AS) and with dissolved Ca phosphate 
precipitates (DP) from Uk and AS

Uk and AS in high physiological concentration of 20 µg/mL 
showed, as Fig. 3 demonstrates, an almost identical behav-
ior with respect to mdOD/dt. Both revealed without cHAP 
a very low mdOD/dt indicating an excellent inhibition of 
AGN. Exposition of Uk and AS to pre-incubated HAP and 
the extract from Uk and AS in DP produced the same pro-
nounced increase of mdOD/dt (p < 0.01). Albumin being the 
only crystallization modulator in the corresponding experi-
ments changed, thus by adsorption on Ca phosphate, from 
an inhibitor to a promoter of CaOx AGN. Analysis of parti-
cle size distribution of AS showed apart from the main peak 
at 10 nm further smaller peaks of higher particle size, dem-
onstrating some self-AGN. In DP, after temporary adsorp-
tion on Ca Phosphate, all albumin self-aggregated to a small 
single peak with a maximum at 470 ± 14 nm (Fig. 4).

Discussion

This paper tries to give some answers to how urinary CaOx 
crystals especially in the presence of HAP can aggregate 
despite of their UM coat and how this AGN could be pre-
vented. To induce spectrophotometrically measurable AGN 
within a time being similar to the generally short urinary 
transit time through the kidney, spot urine of healthy con-
trols was rapidly titrated by a relative high dose of 1.5 mM 
Ox. In a previous study performed after thawing of frozen 
urine, this Ox dose was able to induce CaOx AGN in 10 
urine samples of 30 healthy controls and in 20 of 30 stone 
patients [10]. Interestingly, in the present study under 
almost identical conditions only in 1 of 15 freshly voided 
urine samples AGN was observed. These urines revealed 
thus a high inhibitory activity with respect to CaOx AGN 
which after freezing and thawing partially was lost. How-
ever, HAP crystals which previously were incubated in 
urine induced CaOx AGN in all urine samples with a rela-
tive high Na+. A high Na+ as mentioned above is an indi-
cator for concentrated urine. Dilution of urine abolished 
HAP-induced AGN but did not diminish the inhibitory 
activity with respect to pure CaOx crystallization even at 
urinary concentration in the test system of only 33 %. This 
agrees with the findings of others that urine of healthy sub-
jects diluted to 20  % strongly inhibited CaOx AGN [15]. 
Furthermore, a study of CaOx crystallization in urine of 
stone patients and controls under different states of diure-
sis revealed an inverse relationship between urine volume 
and the intensity of AGN [14]. The paradoxical fact that the 
dilution of urinary inhibitors prevented AGN was addressed 
but could not be explained by this study.
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AGN generally is ascribed to the attraction of particles 
by Van der Waal’s forces (VWF) which are only effec-
tive at very short distances [16]. Other factors are viscous 
binding and solid bound formation. The first is a rapid pro-
cess, the latter is slower as it requires deposition of further 
crystal material between already formed crystals. Particles 
like CaOx crystals have an electronegative surface charge 
which by electrostatic repulsion of the identically charged 
crystals normally prevents their AGN. By Ca addition to 
CaOx suspensions this surface charge was neutralized [17] 
and at sufficient crystal concentration, as demonstrated by 
our experiments performed in CS, crystals rapidly aggre-
gated. In urine crystals normally are protected by a UM 
coat with a thickness of 10–20 nm [7] and with an electron-
egative potential in the order of −15 mV [13]. Such poten-
tials are able to counteract VWF by repulsion of the identi-
cally charged particles [16]. However, as mentioned above, 
after high oxalate additions or at high crystal concentra-
tions, respectively, CaOx AGN also occurred in urine.

Three different theories try to explain the AGN of UM-
coated particles: incomplete coating of crystals, insufficient 
surface potential of coats and bridging between crystals 
by altered proteins being called viscous binding [5]. Scan-
ning microscopy of crystal aggregates being produced in 
protein solutions showed gaps in protein coats where some 
crystals were aggregated in direct contact with each other 

[7]. But it could not be decided whether crystal coating 
had occurred before or after AGN and in other aggregates 
at points of crystal convergence large amorphous material 
was observed suggesting a bridging function of protein. 
The electronegative charge of UMs can be attributed to ani-
onic residues like carboxyglutamic acid [18, 19], phosphate 
[20–22] and sialic acid [23, 24] which were found reduced 
in UMs of some stone patients. A lack of electrostatic 
repulsion is, therefore, often claimed to be responsible for 
AGN of urinary crystals. However, a reduction of anionic 
groups also enhances the hydrophobic effect in UMs which 
can provoke self-AGN. This was demonstrated by desia-
lylation of Tamm Horsfall protein (THP) [24], an important 
UM involved in crystal adherence to RPs [2]. Normal THP 
in high concentration and at low pH, high ionic strength 
and high Ca concentration too tend to self-AGN and pro-
mote CaOx AGN [25, 26]. This promotion probably bases 
on a bridging function. In electrolyte containing solutions, 
surface potentials rapidly decrease with increasing distance 
from negatively charged particles by cation accumulation 
in their surroundings [16]. In urine with increasing concen-
tration and ionic strength surface potentials are compressed 
to a few nanometers. Identically charged particles can, 
therefore, approach each other to a critical distance where 
diffusion, sedimentation or mechanic forces like stirring 
or shaking are compensated by the electrostatic repulsion. 

Fig. 4   Particle size distribution of AS and of DP from AS
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Large UM aggregates probably are able to bridge such 
zones of repulsion and to bind to crystal coats by hydro-
phobic effects [5].

The almost identical behavior of concentrated urine and 
albumin solution (AS) in our crystallization experiments 
showed that albumin is an ideal compound to mimic the 
overall effect of UMs under our special test conditions. In 
the presence of coated HAP (cHAP) the inhibition of CaOx 
AGN turned in both mediums to promotion. This effect was 
not directly related to cHAP since it was also observed in 
the dissolved Ca Phosphate precipitates (DP) of urine and 
AS. In this respect it is interesting to note that the forma-
tion of HAP in some loops of Henle with an urinary pH of 
7.4 appears to be a normal phenomenon and that this HAP 
then dissolves in the distal part of the nephron where pH 
decreases [27]. Under these conditions the promoting effect 
of temporarily adsorbed UMs may persist and may favor 
the AGN of newely formed crystals in the distal nephron. 
A promoting effect on crystal AGN was also found in UMs 
isolated from urine by a hemofiltration procedure [11]. 
Crystal deposits as well as hemofilters provide a large sur-
face for adsorption. Ca phosphate as demonstrated by the 
adsorption of 77 different proteins on brushite and of 45 
on HAP [9] has a special ability for protein accumulation 
which may explain the essential role of HAP containing 
Randall’s plaques (RPs) in idiopathic Ca nephrolithiasis 
[2]. With respect to albumin it could be demonstrated that 
adsorption on Ca phosphate produced albumin aggregates 
with an average diameter of 470 nm largely being able to 
take over a bridging function. However, in our study such 
a bridging probably was counteracted by urine dilution 
which by diminishing ionic strength increases the radius of 
electrostatic repulsion and thus the distance between crys-
tals to be bridged for AGN. On the other hand, our experi-
ments performed with cHAP suggests that at a critical uri-
nary concentration RPs and intratubular crystal deposits 
being coated by aggregated UMs are ideal platforms for 
stone growth by crystal AGN during crystalluria. Scanning 
electron microscopy of urinary sediments performed after 
HAP-induced CaOx AGN showed in agreement with find-
ings on RPs large CaOx aggregates which were in the sur-
roundings of HAP but not in direct contact with HAP crys-
tals [28]. HAP thus seems not to act as nucleator of CaOx 
crystallization in urine but as mediator for the self-AGN of 
UMs which promote crystal AGN.

Conclusions

Our findings give further evidence that CaOx AGN in 
urine probably is mediated by self-aggregated UMs form-
ing bridges between UM-coated crystals. Whether patho-
logical UMs or as our study suggests a pathological urine 

concentration is more relevant for CaOx AGN cannot be 
decided. However, the observation that crystal AGN is 
enhanced by a high urine concentration is a further argument 
in stone metaphylaxis to increase diuresis as being already 
established to diminish urinary supersaturation as well as 
urinary transit time in the renal collecting system. The influ-
ence of freezing and hemofiltration on results of crystal-
lization experiments demonstrates that tests performed in 
freshly voided and unpretreated urine are important for the 
study of inhibitors and promoters in stone research.
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