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Preclinical and clinical evaluation of autonomic function
in humans
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Abstract This review focuses on how to assess autonomic function in humans including various
ways to measure heart rate, catecholamines, and sympathetic neural activity. The need to assess
autonomic function is paramount in many experimental paradigms because of the following.
(1) Autonomic dysfunction is present in common diseases like hypertension, diabetes and heart
failure, and the magnitude of this dysfunction is broadly related to morbidity and mortality in
these disorders. (2) The relationship between autonomic dysfunction and morbidity and mortality
can be causal. (3) Interventions that modulate or reverse autonomic dysfunction can improve
outcomes in the affected patients. The techniques discussed are also frequently used to understand
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the autonomic response to sympathoexcitatory manoeuvres like exercise, the cold pressor test or
mental stress. Because these manoeuvres can engage a variety of sensory and efferent pathways,
under some circumstances the physiological responses measured by many of the techniques are
directionally similar, in others they are divergent. Thus any investigator seeking to study the
autonomic nervous system or its contribution to either normal physiology or pathophysiological
conditions must carefully balance a number of considerations to ensure that the right technique
is used to address the question of interest.
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Abstract figure legend Schematic diagram highlighting how autonomic function can be measured in humans. (1) Heart
rate can be measured and heart rate variability calculated to assess vagal tone. Blockade of ACH receptors with atropine
eliminates heart rate variability. Blockade of noradrenaline (NA) with β-adrenergic antagonists has little effect on heart
rate variability; hence it is largely seen as an index of vagal tone. (2) Plasma NA concentrations and spillover can also be
measured to assess sympathetic activity. (3) Peripheral sympathetic activity to skin and muscle can be measured directly
with microneurography. (4) Manoeuvres that influence baroreceptor discharge can be used to evoke changes in heart rate
and peripheral sympathetic activity to understand the dynamic components of key autonomic responses. Depending
on issues related to experimental design, these techniques can be used to assess responses to various sympathoexcitatory
stressors, and gain insight into physiological regulation.

This brief review on how to assess autonomic function
in humans is based on my presentation at the second
‘UCLA Autonomic Nervous System Control of the Heart
in Health and Disease Symposium’ held in 2015. The
fundamental ideas underpinning the talk are threefold.
First, autonomic dysfunction is present in many common
diseases like hypertension, diabetes and heart failure,
and the magnitude of this dysfunction is broadly related
to morbidity and mortality in these disorders. Second,
the relationship between autonomic dysfunction and
morbidity and mortality can be causal. Third, efforts via
lifestyle (especially exercise training), pharmacological, or
device interventions to modulate or reverse autonomic
dysfunction should then generally improve outcomes in
the affected patients. With this perspective as a back-
ground I will start with simple measures of heart rate and
move to more complex and invasive techniques like micro-
neurography to measure sympathetic neural discharge in
humans, and noradrenaline spillover to provide an index
of whole body or regional sympathetic activity. In general
the more invasive techniques beyond heart rate are only
available in specialized research labs and are not used
clinically. An important caveat to this effort is that the
literature cited will be selective to either reinforce a point or
direct the interested reader to more comprehensive review
articles.

Heart rate

Heart rate is perhaps the simplest measure of autonomic
function, and interest in its measurement and ‘pulsology’
predates technological medicine in a number of traditions
(Chamsi-Pasha & Chamsi-Pasha, 2014). It is also the one

index of autonomic function that can be measured easily,
accurately and unambiguously and is thus suitable for
large population-based or epidemiological trials.

On a population basis high resting heart rate is generally
associated with higher morbidity and mortality in both
unselected populations and in patients with underlying
diseases (Cook et al. 2006; Zhang et al. 2015). Additionally,
in subjects followed over time a marked increase in resting
heart rate is linked to an increased risk of death from
ischaemic heart disease and all-cause mortality (Nauman
et al. 2011). Finally, a slow heart rate recovery after exercise
is also associated with increased mortality (Cole et al.
1999).

From a mechanistic perspective administration of high
doses of β-adrenergic blocking drugs causes only a small
(5–10 beat) reduction in resting heart rate while blockade
of muscarinic receptors with atropine causes a much larger
(�40 beat) increase in resting hear rate (Martin et al.
1974). Such observations have led to the concept that
resting heart rate is typically dominated by vagal tone and
that loss of this tone has pathophysiological implications
perhaps because it normally can suppress life threatening
arrhythmias (Smith et al. 2005).

Heart rate variability

Like heart rate, heart rate variability can have a strong
relationship with morbidity and mortality (Ponikowski
et al. 1997; La Rovere et al. 2003; Hemingway et al. 2005).
Heart rate variability is assessed by measuring beat to
beat changes in heart rate (Agelink et al. 2001). There
are a number of statistical indices that can be derived
from these measurements but because atropine attenuates
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or abolishes most of them they are generally thought
to reflect vagal tone (Toska & Eriksen, 1993; Yamamoto
& Hughson, 1994). This interpretation is based on the
differential effects of muscarinic vs. β-adrenergic blockade
on heart rate variability (HRV) at this frequency; the effects
of muscarinic blockade are much more dramatic than
β-adrenergic blockade.

Either lower baseline levels or loss of variability at
this frequency is associated with poor outcomes for both
cardiovascular and all-cause mortality. Exercise training
can prevent the age-related decline in heart rate variability
and restore it in those with low values (Sandercock et al.
2005). Of note, low dose administration of muscarinic
antagonists can have paradoxical vagotonic effects that
also restore vagal tone in diseases like heart failure,
but large-scale definitive randomized clinical trials of
such therapy have been limited and the small-scale trials
have not been judged to be promising (La Rovere et al.
1994). Finally, there is controversy in the literature about
the extent to which heart rate variability is driven by
subtle respiration-associated changes in blood pressure,
pulmonary stretch reflexes or via central mechanisms
that link vagal tone and respiratory motor output in the
brainstem (Eckberg, 2000). However, whatever the driving
mechanisms, my perspective based on the autonomic
blocking studies noted above is that HRV largely reflects
changes in vagal tone. That HRV is linked to outcomes
in a number of conditions (irrespective of mechanism)
is an essential point when considering its utility as a test
of autonomic function. Because the mechanisms behind
HRV and the role of vagal tone as a major driver of
it are contentious issues, additional ideas and historical
context can be found in a number of outstanding papers
(Pomeranz et al. 1985; Kollai & Mizsei, 1990; Jokkel et al.
1995; Schlafke, 1995).

Plasma catecholamines

Plasma catecholamines are relatively easy to measure, and
can also be linked to outcomes. They also rise during
sympathoexcitatory physiological stressors like exercise
and track other indices of sympathoexcitation (Seals et al.
1988). A key caveat is that the term sympathoexcitatory
is an oversimplification and commonly used manoeuvres
like whole body exercise, handgripping, the cold pressor
test, mental stress, hypoxia and/or hypercapnia differ in
the sensory and efferent systems they engage. Extensive
discussion of the physiological nuances of each class
of manoeuvres is beyond the scope of this review, but
care must be used in the design and interpretation of
experiments depending on the stressor used and outcomes
measured.

Perhaps the most notable example of this linkage
is the relationship between plasma catecholamines
(especially noradrenaline) and outcomes in congestive

heart failure (Cohn, 1995). Observations that higher
levels of noradrenaline were associated with worsening
outcomes in heart failure also underpin the highly
successful (and initially controversial) use of β-blocking
drugs in heart failure (Bristow, 2000). Of note, exercise
training interventions appear useful in blunting the
so-called neurohumoral activation in congestive heart
failure (Gademan et al. 2007).

The main limitation of plasma noradrenaline (and also
adrenaline) in the evaluation of autonomic function is
that it represents a snap shot of activity (unless serial
measurements are made). Additionally, values measured
in the plasma reflect the net balance of neural release,
neural reuptake and other forms of clearance. For example,
under some circumstances like acute hypoxia, there can
be clear increases in sympathetic neural activation, but
limited increases in plasma noradrenaline (Rowell et al.
1989).

Noradrenaline spillover

Using radioactive tracer technology it is possible to
overcome many of the limitations associated with the
simple measures of plasma catecholamines including those
related to reuptake and clearance (Meredith et al. 1993).
It is also possible to make both whole body measurements
and measurements across vascular beds that perfuse a
given organ, for example the kidney. The main limitation
to the widespread application of these measurements
is that they are invasive and require multiple catheters
in various locations in the vasculature, and the use of
radioactive material can pose logistical and regulatory
challenges at some institutions. However, these techniques
essentially have no rival or alternative for the measurement
of regional sympathetic activity to areas not accessible to
direct neural recording. With the exception of skeletal
muscle and skin, such direct recording techniques are
limited by technical and ethical considerations in humans.

Microneurography

In humans, as noted above, it is possible to use micro-
electrodes to measure sympathetic neural activity to
muscle and skin peripheral nerves (Charkoudian & Wallin,
2014). The nerves used for measurement innervate limbs
and thus contain a mixture of motor, sensory and
sympathetic nerves and are typically close to the surface of
the body. The most frequently used site being the common
peroneal nerve on the lateral aspect of the leg near the knee.
The history of how this technique was developed and how
it emerged in part by accident from efforts to study motor
function in humans is also an object lesson in scientific
serendipity (Vallbo et al. 2004).

As is the case with heart rate, heart rate variability,
plasma catecholamines and spillover measurements,
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muscle sympathetic nerve activity (MSNA) is also
deranged in conditions like congestive heart failure
(Leimbach et al. 1986). However, the technical difficulty
of the technique means that it has not been used in large
outcome studies. Other limitations of microneurography
include its snap-shot measurement window, need for a
still subject, and concerns about how measurements made
in skin or muscle reflect other organs. However, for a
given subject the MSNA is highly reproducible, but there
is wide (5- to 10-fold) subject to subject variability and
the relationship between MSNA and blood pressure is
dependent on the subject’s age and sex (Joyner et al.
2015). In middle aged and older subjects there is a direct
relationship between baseline MSNA and blood pressure
with the relationship being stronger in women than men.
Additionally, while it has been difficult to directly link
higher levels of MSNA to blood pressure, the fall in blood
pressure during ganglionic blockade is directly related to
baseline levels of MSNA and also plasma noradrenaline
(Jones et al. 2001; Barnes et al. 2014). Unfortunately, the
drugs needed to routinely perform ganglionic blockade in
humans are no longer available.

In contrast to MSNA, skin sympathetic activity is highly
variable because it is temperature dependent. Additionally,
the sympathetic nerves to the skin control both sweating
and skin blood flow and the skin contains sympathetic
dilator nerves. Thus both vasoconstriction and vaso-
dilatation in most areas of human skin can be neurally
mediated (Johnson et al. 2014). Thus, in addition to its
technically demanding nature, there are many caveats
that need to be appreciated to successfully use micro-
neurography to study the sympathetic nervous system in
humans.

Summary and perspective

In this brief summary, I have emphasized that alterations
in autonomic function are broadly associated with both
increased cardiovascular and in many cases all-cause
mortality in humans. Each technique to assess autonomic
function outlined above has strengths and weaknesses.
They also vary by several orders of magnitude in
complexity, invasiveness and the degree of logistical
support required for their successful application and inter-
pretation. These techniques are also frequently applied
during manoeuvres like tilting, baroreflex testing, exercise
and various other tests of sympathoexcitation (e.g. mental
stress). Under some circumstances the ‘answers’ generated
by any of the techniques are generally or directionally
similar; in others they are divergent. This means that
any investigator seeking to study the autonomic nervous
system or its contribution to either normal physiology
or pathophysiological conditions must carefully balance
a number of considerations. Foremost are the questions
being asked and then the experimental design and

interventions needed to address them. For large outcome
studies and clinical trials, measurements of MSNA or
noradrenaline spillover might be intellectually ideal but
impossible in a practical sense. This general problem was
recently highlighted in the ‘failed’ phase III clinical trial
of catheter-based renal denervation for resistant hyper-
tension (Bakris et al. 2014). Part of this failure might have
been because there was no easy way to select patients
who clearly had resistant hypertension driven by high
sympathetic activity and because there was no easy way
to assess the efficacy of the ablation (Joyner, 2014).
This experience stresses the ongoing need to assess auto-
nomic function in humans especially in so-called trans-
lational research. It also highlights the many challenges
associated with making these measurements and trans-
lating laboratory-based insights to human clinical trials.
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