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age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix
(ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force
transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis,
post-synthetic deposition, post-translational modification and degradation may have detrimental effects on

ﬁgr‘;vgoms' myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling,
Extracellular matrix but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal
Collagen models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification
Fibrosis of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent
Heart failure mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst
highlighting potential novel mediators of age-dependent fibrotic pathways.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

It is now apparent that aging is a critical factor to consider in the
study of cardiac remodelling. The majority of patients suffering from
the most debilitating cardiovascular diseases, including heart failure
(HF), are from the aging population. For example the prevalence of HF
in persons aged >75 years is ~8.4% compared with ~0.7% in those
aged 45-54 [1]. Yet this represents a dichotomy, as aged animal
models and elderly patients (the latter arbitrarily defined as those
aged >65 years [2]) are poorly represented in basic and clinical research,
respectively [3-5]. For the appropriate translation of research findings,
a thorough understanding of aging in both the physiological and
pathological setting is required.

Age-associated changes in cardiac physiology occur at the cellular,
extracellular and whole-heart levels. Apoptotic or necrotic pathways
may be responsible for the progressive loss of myocytes with age [6,7].
Decreased peripheral vascular compliance and augmented afterload
leads to increased oxygen consumption, energy deficits and oxidative
stress [8-10]. In an attempt to normalize left ventricular (LV) wall stress
[11,12], both myocyte death and altered loading conditions lead to
hypertrophy of remaining myocytes [13,14], proliferation of cardiac
fibroblasts (CFs) [15-17] and interstitial fibrosis [ 18-20]. Consequently
these changes may manifest as LV hypertrophy, impaired ventricular
relaxation and diastolic dysfunction [21]. Although systolic function
remains relatively preserved in the elderly, contractility may become
impaired during exercise [22,23]. It is thought that these morphological
and functional changes contribute to the prevalence of HF with
preserved ejection fraction (HFpEF) in the aging population [24,25].

Although a primary contributor to these changes, peripheral
vascular stiffening and/or adaptive responses to co-morbidities
may not be the only instigator of age-related myocardial remodelling.
Mounting evidence suggests that chronological aging alone may lead
to intrinsic changes in the myocardium [26-28]. In particular alterations
to the cardiac extracellular matrix (ECM), once thought of merely as a
static myocyte support network, are imperative to the development
of cardiac dysfunction with age. As such, consideration of fibrotic
pathways may be key to the development of future pharmacological
strategies for the treatment of HF; for which there is currently no
cure. This highlights the need for the identification of new therapeutic
targets, and perhaps, the importance of tailored intervention that
accounts for patient variability, including that brought about as a result
of age-related remodelling.

In the present manuscript we will review the role of the collagen
matrix in cardiac remodelling with age. In addition, recent evidence
indicating novel mediators of fibrotic remodelling will be highlighted,
and their potential role in age-related cardiac disease discussed.

2. Components and roles of the cardiac extracellular matrix

The ECM consists of a complex lattice-like network of proteins,
molecules and non-myocyte cells, embedded in a glycosaminoglycan
and proteoglycan hydrogel [26,29,30]. The myocytes are surrounded
by a network of basement membrane proteins, including lattice
networks of collagen type IV and laminin (linked by the proteoglycan
perlecan), and the glycoprotein fibronectin which collectively mediate
collagen fibril attachment to the sarcolemma [31,32]. The myocyte's
actin cytoskeleton is in contact with the surrounding fibrillar collagen
network via integrins — signal mechano-transducers involved in
cell signalling, proliferation, migration, excitation and differentiation
[33-37]. Therefore these matrix proteins perform a variety of roles in
addition to providing structural integrity. Although less abundant than
collagen, alterations to these proteins in disease and indeed aging may
contribute to cardiac dysfunction. However the purpose of the present
review is to focus on the collagen matrix, and the role of other ECM
proteins in aging has been covered elsewhere [26,38,39].

Although most plentiful by volume, cardiac myocytes are greatly
outnumbered by non-myocyte cells, the latter constituting approxi-
mately ~70% of all myocardial cells, of which ~90% are CFs [40]. CFs
are the primary cell type responsible for maintaining ECM homeostasis,
and do so by sensing and responding to mechanical, electrical and neu-
rohormonal cues [16,41-45]. However following cardiac stress or inju-
ry, CFs may differentiate into myofibroblasts; which, by expressing the
contractile protein ai-smooth muscle actin (aSMA), may contract and
migrate, and are particularly sensitive to the molecular signals that are
characteristic of the diseased myocardium (reviewed in [16,26,44]).

The most abundant protein of the cardiac ECM is fibrillar collagen
(elastic fibres are present to a lesser extent in the ventricular myocardium
[46-49]). Most myocardial collagen fibres consist of collagen types I and
III, which, (depending on species), account for approximately 80% and
10% of collagen in the healthy heart, respectively [50,51]. Organization
of collagen fibres is intricate and occurs at the level of the myocyte and
myofibrillar bundles (see Fig. 1). The endomysial collagen network con-
nects individual myocytes via Z-band-integrin connections, and prevents
ventricular dilatation by maintaining myocyte alignment [52,53]. The
perimysial collagen surrounds entire myofibrillar bundles; often in a
weave-like structure that provides tensile strength [54]. Thus the primary
role of collagen in the heart is to provide a structural framework to
the cardiac myocytes, impart stiffness to the myocardial wall and aid
force transmission [55,56]. It is therefore understandable why collagen
synthesis, post-translational modification and degradation are highly
regulated processes, and even slight variations to the collagen matrix
may have drastic effects on myocardial force development [57], re-
laxation and diastolic stiffness [58] and conduction properties lead-
ing to arrhythmogenesis [59]. However, modulation of the collagen
matrix may also play a reparative role, for example in the case of
scar formation following injury which prevents wall rupture [60,61].

Collagen is synthesized by CFs as a procollagen molecule containing N-
and C-terminal propeptide regions. In order for collagen to be deposited
as a mature fibril, a sequence of post-synthetic processing steps is
carried out within the extracellular space. This involves cleavage of the
propeptides by specific enzymes [62-66], association with matricellular
proteins [67,68] and self-assembly of collagen molecules into staggered
fibrils [69,70]. Collagen may be further stabilized by cross-link addition
that occurs by at least two known mechanisms: (i), lysyl oxidase (LOX)-
mediated aldehyde formation between lysine or hydroxylysine residues
[71,72]; and (ii), advanced glycation end product (AGE) formation be-
tween amino groups by reducing sugars [73]. Enhanced collagen cross-
linking has been associated with augmented myocardial stiffness [74,75].

In addition to synthesizing collagen, CFs are also the primary source
of the matrix metalloproteinases (MMPs) — a group of endopeptidases
responsible for matrix protein degradation. Of the 25 MMP family mem-
bers identified to date, a subset is present in the myocardium [26,76,77].
Collectively the MMPs display activity towards both traditional
matrix proteins, as well as non-structural and non-matrix substrates;
including those involved in collagen deposition and pro-fibrotic signal-
ling [78-81] (see Section 4.2). Perhaps as an indication of their impor-
tance to myocardial function [77,82-84], the MMPs are inhibited by
an endogenous group of inhibitors known as the tissue inhibitor of
metalloproteinases (TIMPs). All four known TIMP family members are
expressed in the myocardium, predominantly by CFs but also a variety
of other cell types [85]. Like the MMPs, evidence suggests a cause and
effect relationship between TIMP expression and myocardial function
[86-88]. The roles of MMPs and TIMPs in myocardial remodelling
with disease have been discussed in detail elsewhere ([76,85,89,90]).

3. Collagen synthesis, deposition and modification in aging
3.1. Age-related alterations to myocardial collagen content

It is now generally accepted that aging is associated with collagen
accumulation in several organs including the heart (Fig. 1). Studies in
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Fig. 1. Schematic representation of age-related alterations to the cardiac collagen matrix. Both cellular and interstitial remodelling occur as a result of aging in the myocardium. Myocyte
loss occurs through apoptotic and/or necrotic pathways. This results in hypertrophy of remaining myocytes and replacement fibrosis. Perivascular and reactive fibrosis occurs by
accumulation of collagen in the interstitial space. Post-translational modification of collagen, including enhanced cross-linking is also present.

rodents demonstrate that collagen content of the LV increases pro-
gressively with age and is associated with increased wall stress and
contractile dysfunction [19,28,91]. Importantly it has been shown
that LV fibrosis may occur without changes to systolic or diastolic
blood pressure [91], suggesting that age-related fibrosis is not necessar-
ily a consequence of underlying hypertension. Similar findings of
age-related LV fibrosis have also been found in large animal models,
including the sheep [20] and the dog [92].

Is this also the case in terms of the human aging? It is often argued
that age-related fibrotic remodelling may occur as a result of underlying
pathology rather than chronological aging. Nowhere is this more
difficult resolve than with human samples — where the difficulty
of obtaining non-diseased “control” tissue, and the potential
anti/pro-fibrotic effects of therapeutic agents, are likely to hinder the
separation of “healthy aging” and subclinical disease. Nevertheless,
there are some studies that have quantified LV collagen levels in the
aged human heart. Using picrosirius red staining and polarized light
microscopy, Debessa et al. reported an increase in collagen content
with age (~5.9% vs. ~3.9%) in human hearts obtained from autopsy
with no previous pathologies (age range 67-87 vs. 20-25) [18]. More
recently, clinical studies have employed imaging technologies to
estimate areas of interstitial fibrosis, scar size and extracellular volume
in vivo, as an alternative to the invasive collection of ventricular biopsies
[93]. Liu et al. studied over 1200 patients in the age range of 54-93 years
using cardiac magnetic resonance (CMR) imaging, late gadolinium
enhancement and T; mapping [94]. The authors found that older age
was associated with augmented indices indicative of cardiac fibrosis, in-
cluding extracellular volume fraction (ECV), but this varied with patient
gender depending on multivariable adjustments [94]. ECV increased

with age in men both before and following adjustment for markers of
subclinical disease (including hypertension, body weight, heart rate,
diabetes and LV mass:volume ratio), whereas these differences were
only present in women following these adjustments [94]. Neilan et al.
also observed a gradual augmentation of ECV with age in patient groups
divided as follows: (i) <40 years, (ii) 40-60 years and (iii) >60 years
[95]. Additionally, this study showed that age was the strongest
independent predictor of ECV [95]. Therefore as in the studies using
animal models, aging in humans appears to be characterized by
myocardial collagen accumulation.

3.2. Alterations to collagen synthesis with age

Although reports of aging-associated myocardial fibrosis are plenti-
ful, the mechanisms responsible for this are less clear. If disease models
are used as a paradigm, one could assume that an important instigator
would be increased collagen synthesis. For example, in both humans
and animal models of cardiovascular disease, elevated levels of collagen
mRNA are reported in addition to collagen accumulation [96,97]. That
said, evidence suggests that elevated myocardial collagen in aging is
most likely due to post-synthetic or degradative processes. Generally
speaking, collagen types I and IIl mRNA levels either decrease or do
not change with age in the heart [20,98-100]. Indeed a study in rats
has shown that collagen synthesis rates in vivo were at least 10-fold
less in the hearts of animals aged 24 months compared to those aged
1 month [101]. Confirming this, another study has shown that both
hydroxyproline content and histological quantification of LV collagen
increased with age in rats, yet mRNA levels of both procollagen types I
and Il decreased [102].
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3.3. Alterations to collagen post-translational modifications with age

Cross-linking of collagen has proven to significantly alter myocardial
stiffness without changes to total collagen content and the degree of
myocardial collagen cross-linking increases with age [103]. In particu-
lar, glucose-mediated formation of AGEs accumulate with age [104],
by modifying the structure of proteins with low turnover rates [73].
Furthermore studies have shown that interruption of AGE formation
in the senescent heart can improve myocardial function. Treatment of
aged dogs with an AGE cross-link breaker decreased age-associated
chamber stiffening and diastolic dysfunction compared to non-treated
age-matched animals [105]. In another study, induction of diabetes in
older dogs with alloxan monohydrate (a glucose analogue which is
toxic to insulin-producing 3 cells [106]) caused upregulation of LV
collagen types I and III, increased LV mass and decreased ejection
fraction [107]. However treatment of aged, diabetic animals with an
AGE cross-link breaker normalized these parameters without affecting
blood glucose level [107]. Additionally the increase in LV collagen
solubility following treatment with the cross-link breaker suggests
that the mechanism of action was by decreasing collagen cross-
linking. Others have suggested that exercise training may reduce
age-related augmentation of collagen cross-linking and decrease
collagen type I and IIl mRNA synthesis without affecting total collagen
levels [99]. Therefore decreasing collagen cross-linking may in turn
affect total collagen content or synthesis of collagen mRNA.

In addition to collagen cross-linking, the matricellular protein
secreted protein acidic and rich in cysteine (SPARC) facilitates post-
translational processing and thus deposition of mature collagen in the
myocardium [108]. Studies in mice have demonstrated that the age-
associated increase in myocardial collagen is blunted in SPARC-null
animals [109,110]. Furthermore SPARC deletion reduced the relative
proportion of insoluble collagen and decreased papillary muscle
stiffness in aged mice [109]. Therefore SPARC is likely an important
mediator of collagen deposition and myocardial stiffness in aging, and
is discussed in detail by others in this Special Issue [111].

3.4. Patterns of myocardial fibrosis in the aging heart

Generally there are two “types” of fibrotic remodelling: (i) reactive
fibrosis (also known as diffuse fibrosis) which describes the expansion
of existing collagen fibres without a significant loss of myocytes;
and (ii) replacement/reparative fibrosis or “scar” formation (focal
fibrosis) which occurs when collagen is newly deposited in place
of necrotic/apoptotic myocytes (see Fig. 1) [15,93,112,113]. Both
histological and contrast-enhanced CMR imaging modalities provide
visual evidence suggesting that diffuse, reactive fibrosis is common
in the aged heart [94,114]. However as it has been suggested
that myocyte apoptosis and necrosis increases with age [14], it is
plausible to assume that replacement fibrosis may also occur — a
hypothesis which has been suggested in some animal models of
aging [91]. Conversely others have shown that neither reactive nor
reparative fibrosis correlates with age in patients with idiopathic
dilated cardiomyopathy [115], although this study was conducted
in patients with a disease background rather than observing the
isolated effects of aging.

The significance of these fibrotic patterns are likely diverse, as the na-
ture or quality of the collagen network may differentially impact myocar-
dial stiffness or signal propagation. Although it is known that reactive
fibrosis increases LV stiffness [116], and electrical mapping studies sug-
gest that the architecture of fibrotic remodelling in disease may differen-
tially impact electrical propagation and conduction delay [117,118], there
is little evidence that directly compares the functional consequences of
reactive vs. reparative fibrosis, particularly in the setting of aging.

Additionally, perivascular fibrosis, or accumulation of collagen sur-
rounding blood vessels in the heart, may precede or act as an extension
of reactive fibrosis [119]. It has been suggested that perivascular fibrosis

increases in the aged heart. For example accumulation of perivascular
and interstitial collagen occurred in advanced-aged rhesus macaques
(1.5%) compared to young animals (0.33%) [120]. In patients with
non-ischemic HF, although perivascular fibrosis was independent of
cardiac dysfunction, it was associated with decreased coronary flow of
the left anterior descending artery [121]. The authors concluded that
perivascular fibrosis may lead to impaired coronary blood flow, which
has been demonstrated to correlate with elevated LV wall stress in HF
patients [122]. Thus if perivascular fibrosis occurs in aging, this may
have local or paracrine effects on the surrounding myocardium which
in turn could contribute to cardiac dysfunction in elderly subjects.

3.5. Age-related fibrosis and diastolic dysfunction

As discussed previously, impaired relaxation and therefore diastolic
dysfunction is a common characteristic of the aged heart, and it is be-
coming apparent that myocardial fibrosis may be a contributing factor
leading to this phenotype. Interventional studies in disease models sug-
gest that it is excess collagen, and not myocyte hypertrophy that causes
myocardial stiffness. For example, following angiotensin II (Angll)
receptor antagonism with candesartan in rats with hypertension-
induced diastolic HF, collagen deposition, hypertrophic remodelling
and myocardial stiffness were all abrogated [123]. Conversely,
treatment with a calcenurin inhibitor (which will inhibit some,
non-physiological hypertrophic pathways by blocking intracellular
calcium signalling), had no effect on cardiac fibrosis and stiffness de-
spite limiting compensated hypertrophy [123]. Furthermore in a clinical
study of hypertensive patients, those presenting with diastolic HF were
older, and had higher levels of serum markers of collagen turnover
[124]. However, others have found no correlation between diastolic
dysfunction and collagen content in the aged heart [104]. Further
work is required to characterize the role of myocardial fibrosis and
diastolic dysfunction specifically in an aged cohort.

4. Role of MMPs and TIMPs in the aged heart
4.1. MMP/TIMP levels in the aged heart

Alterations to myocardial MMPs and TIMPs have been described in
animal models of aging. Interestingly whether MMP and TIMP expres-
sion is found to increase or decrease seems to depend greatly on the spe-
cies, ages chosen and soluble vs. insoluble (matrix-bound) localization
[125,126]. Additionally, such inconsistencies in the literature are likely
a result of complexity in the roles of MMPs and TIMPs which have
been described in detail elsewhere [76,85,89,127,128]. For example,
it is now apparent that MMPs may act in a pro-fibrotic manner in addi-
tion to their matrix-degrading capabilities [129] (discussed below).
Nevertheless, the majority of available data concerning MMPs and
TIMPs in human aging has been limited to circulating rather than
cardiac-specific expression. In the absence of cardiovascular disease,
circulating MMP-2, MMP-7, TIMP-1 and TIMP-2 increased with age,
whereas MMP-9 decreased in patients aged 20-90 years [130].
Furthermore circulating MMP-7, TIMP-1 and TIMP-2 inversely
correlated with decreased E/A ratio [130]. Thus enhancement of
both MMP and TIMP protein levels are associated with diastolic
dysfunction in elderly, non-diseased humans. However studies
such as these must be interpreted with caution and further work is
required not only to identify which specific MMPs and TIMPs are
involved in age-related matrix remodelling, but also to elucidate
how increased MMP levels/activity may result in LV fibrosis with age.

4.2. Novel actions of MMPs leading to fibrotic remodelling in the aged
heart-non-matrix-degrading roles

Gene manipulation, specifically in aged mice, has begun to address
the pro-fibrotic actions of certain MMPs in the aged heart [26]. Global
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deletion of MMP-9 in aged mice blunted the aged-associated LV fibrosis
and diastolic dysfunction present in aged wildtype mice, suggesting that
MMP-9 is pro-fibrotic in the aged mouse heart [100]. In this study, the
authors found that MMP-9 deletion attenuated the age-associated in-
crease in transforming growth factor-p (TGF-R3)-induced protein and
phosphorylated Smad2, as well as mRNA expression of pro-fibrotic
periostin and connective tissue growth factor (CTGF) [100]. Further-
more others have demonstrated that MMP-9 can cleave latent TGF-P3,
leading to activation in vitro [131]. Finally MMP-9 knockout resulted
in a compensatory increase in MMP-8 levels only in the aged mice,
which could contribute to the decrease in age-associated fibrosis in
the knockout animals [100]. Thus in the aged myocardium MMP-9
may be pro-fibrotic by increasing availability of active TGF-3, enhancing
periostin and CTGF expression and therefore potentiating collagen
deposition. However, the age-associated increase in circulating levels
of MMP-9 in the mouse [132] is in contrast to the human study men-
tioned previously [130], highlighting the complexity of investigating
the role of the MMPs in aging.

Nevertheless, TGF-3-related signalling may be a common pathway
influencing the pro-fibrotic nature of some MMPs. In a study comparing
young (3 month) and “middle-aged” (14 month) mice, cardiac-specific
over-expression of membrane type MMP-1 (MT1-MMP) not only
caused LV fibrosis in the young, but also potentiated the age-related
increase in LV collagen (more than 2-fold), LV dilatation and decreased
ejection fraction [133]. Low molecular weight latency-associated
TGF-binding protein (LTBP-1) increased with age (consistent with
increased processing to active TGF-p), but to a greater extent in the
aged, MT1-MMP over-expressing mice. Protein levels of TGF-[3 receptor
I (TGF-BRI) and phosphorylated Smad2 were also highest in aged,
transgenics [133]. Finally in silico mapping predicted an MT1-MMP
binding site on full-length LTBP-1, and a cleavage product equating to
the approximate weight of the processed, low molecular weight protein
[133]. This was confirmed by in vitro experiments, where wildtype
myocardial extracts incubated with recombinant MT1-MMP, resulted
in increased levels of the low molecular weight protein following
immunoblotting for LTBP-1 [133]. Thus again, this data suggests
that certain MMPs may exhibit pro-fibrotic behaviour through TGF-3
signalling in the aged heart.

5. Impact of age-related collagen remodelling on cardiac disease in
the elderly

The studies described thus far provide evidence for the role of age-
related collagen remodelling in the heart. However they also pose an
important question — if the aged myocardium is phenotypically and
functionally different from the young, does the aged heart undergo a
different course of remodelling with injury or disease? Several studies
reviewed previously suggest that this may be the case [26]. Generally
speaking, investigations that compare aged animal models of disease
to young, find that global remodelling and dysfunction is exacerbated
with age [20,92,134-136]. In a mouse model of ischaemia-reperfusion
(IR), aging led to a suppressed inflammatory response and reduced
collagen deposition in the infarct region compared to young animals,
alongside worse LV function after injury [134]. Similarly, others show
that older rats exhibited blunted myocyte hypertrophy and myocardial
fibrosis following MI-induced HF [137]. In a canine model of reperfused
MI, markers of matrix turnover were increased in the infarct region with
age [92,135]. Furthermore we find that following tachypacing-induced
HF in the sheep, LV collagen is decreased in the aged heart and is
associated with greater contractile dysfunction, whereas interstitial
fibrosis occurred in the young following tachypacing [20]. Therefore if
age is a factor influencing the way in which the heart remodels with
injury, this will likely impact the development of therapeutic strategies
aimed to treat cardiovascular disease. As an example, in the canine
model, the beneficial effects of candesartan (an Angll receptor antagonist)

on post-infarct injury, apoptosis and systolic dysfunction were impaired
in aged animals compared to young [92].

6. Novel mediators of cardiac fibrosis and their potential role
in aging

As aging leads to alterations to the cardiac interstitium, which may
alter the course of remodelling with disease, it seems necessary that
aging is considered an important factor in the identification of new
therapeutic targets for the treatment of cardiac remodelling. In the
following sections, we highlight a selection of novel mediators of
fibrotic remodelling in disease, and discuss their potential role in
age-related cardiac remodelling (see Table 1). We have chosen these
particular mediators for discussion based on three lines of evidence:
(i), recent clinical studies/trials implicating a potential role in the
pathogenesis or treatment of HF; (ii), potential mechanism of action
through the collagen matrix; and (iii), potential for aging to further
influence this collagen-mediated mechanism of action. We do however
acknowledge that several other, important bioactive molecules will
be therapeutically relevant for the treatment of HF in the elderly;
however these have been reviewed in detail elsewhere (for example
TGF-p signalling [138,139] and renin-angiotensin-aldosterone
(RAAS)/natriuretic peptide systems [140-142], and are therefore not
considered in detail here).

6.1. Relaxin

Relaxin is a vasoactive peptide hormone encoded by the human re-
laxin genes RLN1 and RLN2 (producing H1 and H2 relaxin, respectively).
By binding to the relaxin family peptide receptor (RXFP), relaxin exerts
its actions through G-protein-coupled signalling and downstream
mediators including cyclic AMP (cAMP), mitogen activated protein
kinases (MAPKs) and nitric oxide [143]. Relaxin has pleiotropic actions
on the cardiovascular system [143], and recent clinical trials using
serelaxin (a human recombinant form of relaxin-2) suggest that treat-
ment improved dyspnoea and 180-day mortality in patients with
acute HF [144,145]. Notably, it has been demonstrated that relaxin has
direct effects on the collagen matrix, and has been shown to decrease
collagen accumulation in several fibrotic models of disease [146-148].
In a recent study using a mouse model of isoprenaline-induced LV
fibrosis, serelaxin was a more effective anti-fibrotic agent than the
angiotensin converting enzyme (ACE) inhibitor enalapril [149]. Here,
the authors show that both treatments attenuated isoprenaline-
induced LV fibrosis, TGF-31 and phosphorylated Smad2 immunoreac-
tivity, but improvement was greatest with serelaxin treatment [149].
Furthermore although combined treatment improved injury-induced
remodelling, it was to no greater extent than with serelaxin alone.
Others show that relaxin treatment reverses atrial fibrosis and de-
creases mRNA expression of collagen type I, collagen type III, MMP-
2 and MMP-9, and decreases AF vulnerability in the spontaneously
hypertensive rat [150]. Collectively these data suggest that relaxin
exhibits anti-fibrotic effects following myocardial injury. In vitro
models further support this. Treatment of CFs in culture with
human recombinant relaxin-2 abrogated the TGF-B or Angll-
mediated increase in collagen type [ and III secretion, collagen depo-
sition, proliferation, fibroblast-myofibroblast differentiation and
increased MMP-2 expression — despite having no effect on baseline
levels [151]. Furthermore treatment of (3,-adrecoreceptor overex-
pressing mice with relaxin over a 14 day period significantly reduced
LV collagen content in this model of established fibrosis [151].

Characterization of the relaxin knockout mouse suggests that relaxin
may also play a role in fibrotic remodelling in the aged heart. Although
restricted to male animals, relaxin-null mice exhibited age-related pro-
gression of fibrosis in several organs including the myocardium [152].
By 12-24 months of age, relaxin-null mice had a 40-50% increase in
cardiac collagen whilst exhibiting increased LV stiffness and decreased
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Table 1
Novel mediators of cardiac fibrosis and their potential role in aging.

Mediator Type Extracellular matrix roles Evidence for role in aging

Relaxin Hormone | established fibrosis [149,151]. Male relaxin—/~ mice 1 age-related progression cardiac
| TGF-B/Angll-mediated collagen synthesis, fibrosis, diastolic dysfunction [152].
CF proliferation and differentiation [151].
1 MMP levels [151,199].

Galectin-3 Lectin 1 collagen synthesis, deposition and LV fibrosis Circulating galectin-3 1 with age [166]. Conflicting

at baseline and with disease [161,200].

Cardiotrophin-1 Cytokine

1 procollagen types [ and Il synthesis [174,201].
1 interstitial and perivascular fibrosis [201].

evidence for association between circulating galectin-3
and LV/fibrotic remodelling in the elderly [167,168].
Aged cardiotrophin-1~/~ mice | arterial fibrosis and
stiffness, 1 longevity [175].

1 MMP-2, MMP-13:TIMP-1, osteopontin and periostin [201].
1 fibroblast proliferation and differentiation [174,202].

miRNAs
miR-22

Non-coding RNAs

miR-17-92 cluster

miR-34a

Osteopontin Cytokine/matricellular protein

1 recruitment of inflammatory cells post-injury [203].
1 collagen deposition post-injury [192].

1 fibroblast-myofibroblast differentiation [191].
Proteolytically processed by MMPs [204]

1 miR-22 in aged myocardium [183].

1 CF senescence with pre-miR-22 transfection [183].

| miR-17 with age in several cell types [188].

| cardiac tissue/cellular senescence in miR-17 transgenic
mice [187].

| miR-18a, -19a, -19b associated with 1 CTGF and TSP-1
in aged, HF mice [186].

1 CTGF, TSP-1, collagen types I and Il mRNA following
cardiomyocyte transfection with antagomirs to miR-18a
or -19b [186].

t miR-34a aged myocardium and vasculature [184,185].
| age-related myocyte death, age-related cardiac
dysfunction and scar formation following MI in
miR-34a~/~ mice [184].

1 senescence and pro-inflammatory factor secretion

in VSMCs overexpressing miR34a [185].

1 osteopontin in aged rat aorta [195].

1 osteopontin mRNA in cardiac biopsies from elderly
patients with cardiac fibrosis [196].

Alterations to osteopontin levels following IR injury are
age-dependent [92,134,135].

1, increase; |, decrease; TGF-P, transforming growth factor-; Angll, angiotensin II; CF, cardiac fibroblast; —/—, genetic deletion; MMP, matrix metalloproteinase; LV, left ventricle; TIMP,
tissue inhibitor of metalloproteinase; miRNA, microRNA; CTGF, connective tissue growth factor; TSP-1, thrombospondin-1; VSMC, vascular smooth muscle cell; IR, ischaemia reperfusion.

diastolic filling although systolic function was maintained. Moreover,
treatment of relaxin knockout mice with human recombinant relaxin
reversed the established fibrosis [152]. Therefore relaxin may play a
protective role in limiting age-related cardiac fibrosis and development
of diastolic dysfunction.

6.2. Galectin-3

Galectin-3 is a -galactoside-binding lectin protein that is secreted
from both inflammatory cells and fibroblasts in several organs including
the heart [153]. Galectin-3 can bind to several ECM proteins [154], and
as it's protein structure contains collagen-like domains, it is a substrate
for cleavage by MMPs-2, -7 and -9 [155,156]. Recent clinical studies
suggest that increased levels of circulating galectin-3 are associated
with risk and severity of HF, re-hospitalization and all-cause mortality
[157-159]. Evidence from studies using animal models suggests that
galectin-3 is involved in fibrotic remodelling with disease. For example,
Ren-2 rats (rats expressing the mouse gene for submandibular gland
renin [160]) with HF had higher galectin-3 protein levels, and
galectin-3 mRNA expression was greater in human heart biopsies
from aortic stenosis patients with reduced ejection fraction compared
to those with preserved ejection fraction [ 161]. Intrapericardial infusion
of recombinant murine galectin-3 in healthy rats for 4 weeks decreased
LV ejection fraction and caused LV collagen accumulation [161]. Finally
stimulation of neonatal rat CFs with recombinant galectin-3 increased
cell proliferation and collagen production [161]. Others have shown
that cardiac fibrosis induced by 3-week aldosterone treatment is
abrogated in galectin-3 knockout mice [162], and pharmacological
inhibition of galectin-3 with modified citrus pectin improved indices
of cardiac fibrosis and inflammation in the spontaneously hypertensive
rat without modifying blood pressure [163]. In humans, circulating
levels of galectin-3 correlate with diffuse myocardial fibrosis estimated

by late gadolinium enhancement CMR and T1 mapping [164], as well as
predicting incidence of HF and mortality [ 165]. Interestingly in the latter
study, patients with higher plasma galectin-3 levels tended to be older
[165], suggesting that increased galectin-3 levels with age may play a
role in cardiac remodelling.

To this end, there is little evidence directly correlating a role for
galectin-3 in collagen remodelling with age. Some clinical studies report
a correlation between circulating galectin-3 levels and advancing age in
the general population [166], and an association has been found
between circulating galectin-3 and LV remodelling in HF patients with
a mean age of ~71 years [167]. However others suggest that age-
related increases in galectin-3 are not associated with either fibrosis or
clinical characteristics of HFpEF [168]. Clearly there is a need for further
studies (perhaps using aged animal models), to elucidate the potential
role of cardiac galectin-3 and fibrotic remodelling with age.

6.3. Cardiotrophin-1

As a member of the IL-6 superfamily of cytokines, cardiotrophin-1 is
secreted from cardiac myocytes and fibroblasts in response to both
stretch [169] and neurohormonal activations [153]. Recent clinical
studies suggest that circulating cardiotrophin-1 levels are higher in
both hypertensive patients and those with diastolic HF compared to
controls [170,171]. Initially, the role of cardiotrophin-1 was described
as potentiating myocyte hypertrophy and promotion of myocyte surviv-
al by inhibition of apoptosis [172,173]. However, further studies have
now characterized a role for cardiotrophin-1 in fibrotic remodelling in
disease. For example, cardiotrophin-1 protein levels were increased in
endomyocardial biopsies from hypertensive patients with HF compared
to control cardiac tissue [174]. Additionally, cardiotrophin-1 levels cor-
related with collagen type I and III protein, and stimulation of isolated
human CFs with cardiotrophin-1 increased mRNA expression of aSMA
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and procollagen types I and IIl [ 174]. With regards to aging, the effect of
cardiotrophin-1 deletion on age-dependent arterial remodelling has
been investigated. In this study, cardiotrophin-1 knockout mice aged
29 months exhibited less arterial fibrosis, decreased arterial stiffness
and survived on average 5 months longer than wildtype mice [175].
Thus cardiotrophin-1 may be an important mediator of age-associated
vascular remodelling. Further work is required to elucidate its role in
the myocardium with age.

6.4. miRNAs

MicroRNAs (miRNAs) are small (approximately 22 nucleotides
in length), non-coding RNAs that can post-transcriptionally modify
gene expression. miRNAs have complementary binding sequences to
mRNA, leading to either degradation or translational repression of
their target mRNA [176,177]. Although miRNAs are likely to take part
in all cellular processes, several specific miRNAs have been identified
as critical mediators of fibrotic remodelling in disease. This subject has
been reviewed elsewhere [176,178,179]. However it is of note that the
properties of miRNAs mean the potential to exploit or target specific
miRNAs therapeutically in the treatment of HF is great [180-182].
In contrast to these studies of miRNA roles in disease, relatively
little information exists depicting which miRNAs are involved in
cardiac remodelling with age. Herein we describe a few examples
from the literature of miRNAs which may play a role in age-related
cardiac remodelling.

Jazbutyte et al. identified miR-22 and its target mimecan (also
known as osteoglycin) as a regulator of CF senescence [183]. In this
study, normotensive mice (neonatal to 19 months of age) were
characterized by LV fibrosis and increased miR-22 expression; the latter
inversely correlating with mimecan expression [183]. Furthermore
transfection of neonatal rat CFs with either the precursor to
miR-22 (pre-miR-22) or siRNA targeted to mimecan, increased
[>-galactosidase expression (a marker of cellular senescence) [183].
Others demonstrate a critical role for elevated miR-34a expression in
cardiac aging in both mice and humans [184]. In a cardiac myocyte-
mediated role, miR-34a deletion in the mouse offered protection
against age-related myocyte death, contractile dysfunction and scar for-
mation following myocardial infarction [184]. This finding of increased
miR-34a in aging has been confirmed by others with regards to vascular
smooth muscle cell senescence and age-related inflammation [185].
Thus miRNA involvement in cardiac aging may encompass both cardiac
myocytes as well as fibroblasts. Other important miRNAs involved in
aging include members of the miR-17-92 cluster. Van Almen et al.
found that age-associated increases in the matricellular proteins CTGF
and thrombospondin-1 (TSP-1) were associated with decreased ex-
pression of miR-18a, -19a and -19b in a mouse model of age-related
HF [186]. Additionally in vitro transfection using mimics of miR-18a or
19b decreased CTGF and TSP-1 protein and collagen type I and III
mRNA, whereas transfection with antagomirs resulted in increased
CTGF and TSP-1 and collagen mRNA [186]. Interestingly however
these effects were limited to myocytes and not fibroblasts — signifying
the importance of myocyte-mediated miRNA-induced ECM remodel-
ling with age. That said, both CFs transfected with miR-17 expression
constructs, and miR-17 transgenic mice exhibit blunted senescence at
the cellular and tissue level, respectively, as well as increased CF viabil-
ity [187]. This is further supported by evidence that miR-17 is downreg-
ulated with age in several cell types [188]. Thus members of the
miR-17-92 cluster may be important in post-transcriptional regulation
of ECM remodelling with age, although direct experimental evidence
to this effect is currently lacking.

6.5. Osteopontin

Osteopontin is an acidic, matricellular cytokine involved in numer-
ous tissue-remodelling processes including ECM turnover, post-injury

recruitment of inflammatory cells and fibroblast-myofibroblast dif-
ferentiation [189-191]. Classical pro-fibrotic and pro-inflammatory
mediators stimulate osteopontin expression [190], and as a typical
matricellular protein, osteopontin is upregulated following injury de-
spite low basal level expression. Specifically with regards to collagen re-
modelling, osteopontin may be minimally significant in normal hearts,
as osteopontin null mice exhibit normal cardiac structure and function
[192]. Conversely, MI-induced upregulation of collagen type I mRNA
and protein was dramatically attenuated in osteopontin knockout
mice [192]. Furthermore osteopontin levels were predictive of all-
cause mortality in patients with acute congestive HF, and HF patients
had higher osteopontin levels than control subjects [193,194]. These
data suggest a critical role for this cytokine in collagen remodelling
following injury.

There is little direct evidence supporting a role for osteopontin
in cardiac remodelling with age, although increased osteopontin
expression has been observed in aged rat aorta [195]. However
as discussed in previous sections of this review, it is known that
MI-induced remodelling may be influenced by age [92,134,135].
Therefore could osteopontin-mediated collagen remodelling following
injury be affected further in senescent subjects? Aged mice subjected
to IR injury displayed decreased osteopontin expression in the infarct
compared to young IR hearts [134]. Conversely in a canine model,
osteopontin expression was increased in the ischemic region compared
to young [92,135]. The explanation for this apparent discrepancy is
unknown, however it may reflect species differences. Nevertheless,
collectively this data suggest that osteopontin may play a role in age-
related remodelling following ischemic injury. Interestingly, a recent
study elegantly demonstrates a relationship between osteopontin and
miR-21 in fibrotic remodelling with disease [196]. Here, the authors
show that both osteopontin mRNA and miR-21 are increased in cardiac
biopsies from patients with aortic stenosis, whereas Angll receptor
blockade was associated with decreased osteopontin expression [196].
Furthermore whilst miR-21 was increased in the hearts of wildtype
mice following Angll infusion via minipump, this did not occur in
osteopontin null mice. Finally Angll-mediated fibrosis was augmented
further following cardiotropic AAV9-mediated overexpression of osteo-
pontin — an effect abolished with further treatment with locked nucleic
acids (LNA) targeted to miR-21 [196]. Although not an aging study per
se, it is noteworthy that mean age of the patients in this study was
~78 years [196]. Moreover, in addition to the recognized, critical
role of miR-21 in myocardial fibrotic remodelling with disease [197],
miR-21 has also been implicated in age-associated skeletal muscle
fibrosis [198]. Therefore a role may exist for osteopontin and miR-21
in age-dependent collagen remodelling with disease.

7. Conclusions

The myocardium undergoes fibrotic remodelling as a function of age
resulting in decreased myocardial compliance and altered functionality.
Although the precise mechanisms resulting in the age-dependent
accumulation of collagen have yet to be fully identified, it is becoming
apparent that enhanced collagen synthesis is not (or at least not
solely) responsible. The emerging roles for collagen cross-linkers
and matricellular proteins in post-synthetic collagen modulation, and
MMPs as pro-fibrotic mediators afford further complexity to the process
of “fibrosis” in aging. Our understanding of these processes will
undoubtedly increase, aided by the use of aged animal models in
research, and imaging technologies such as late gadolinium enhance-
ment CMR imaging. In doing so, novel mediators of collagen remodel-
ling may become future therapeutic targets in the aged, diseased heart.
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