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Abstract

The purpose of this article is to inform readers about technical challenges that we encountered when assembling exome
sequencing data from the ‘Simplifying Complex Exomes’ (SIMPLEXO) consortium—whose mandate is the discovery of novel
genes predisposing to breast and ovarian cancers. Our motivation is to share these obstacles—and our solutions to them—
as a means of communicating important technical details that should be discussed early in projects involving massively
parallel sequencing.
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Introduction

The study of common genetic variants using genome-wide asso-
ciation studies (GWAS) have revealed multiple loci predisposing
to several complex diseases including common human cancers.
These genetic markers predominantly map outside of known
functional genes [1]. They have added modestly to the overall
narrow-sense heritability [2]. Advances in the sequencing tech-
nologies and rapid reduction in costs have helped in the identifi-
cation of rare causal variants using next-generation sequencing
techniques in Mendelian phenotypes. It is widely believed that
rare variants with moderate to large effect sizes will contribute to
the missing heritability of common diseases [3–6]. However, be-
cause such variants are presumed rare, successful statistical
approaches for agnostic discovery may require many thousands
of samples for the primary analysis of a disease type [7].
Additional samples are required when variance is partitioned
among subtypes, treatment endpoints, ethnic/racial subgroups,
geographic strata and environmental exposures. Because exome
sequencing is still relatively expensive compared with array-
based genotyping, it is less likely that a single center will procure
sufficient funding to perform sequencing to achieve robust power
required for novel discoveries. Combining and sharing exome
sequencing data from multiple groups—or consortia—provides
the resources necessary to identify novel genes for genetically
complex phenotypes. So far, many of the common disease vari-
ants were discovered through GWAS, coordinated by large multi-
national consortia [8–10]. While some standards of compatibility
and interoperability have been established for data such as
FASTQ, BAM and VCF files produced from next-generation
sequencing, many challenges still remain.

Even though several guidelines have been recently estab-
lished regarding the design and interpretation of human exome
sequencing data [11], other significant limitations remain and
have not been effectively disseminated to the community. In this
article, we discuss the technical challenges that we encountered
when assembling exome sequencing data from the ‘Simplifying
Complex Exomes’ (SIMPLEXO) consortium whose mandate is the
discovery of novel genes predisposing to breast and ovarian can-
cers and resolving the missing heritability of breast cancer. In
contrast to efforts in other consortiums to identify candidate
breast cancer susceptibility genes from aggregate findings of
next-generation sequencing [12], SIMPLEXO aims to combine and
harmonize primary sequencing data from multiple centers, and
then take these findings on to validation in other data sets. We
detail relevant postsequencing steps at multiple centers with the
aim of germ line gene discovery in a common human cancer.

Step 1: Alignment

In many cases, the BAM file is considered the raw data from
exome sequencing. It contains all necessary information about

each read including mapping location, quality scores and raw
sequence. Multiple methods exist to generate BAM files, and
sequencing biases may be introduced depending on the
method. Therefore, an early discussion of the methods to create
the BAM files is essential.

The first element to decide on is which reference genome to
use, as several ‘flavors’ of the reference genome are available for
the same organism. A reference genome may include alternative
haplotypes, unplaced contigs and decoy sequences, whereas
others may mask the pseudo-autosomal region of chromosome
Y (to reduce false-positive variant calls) or be generated from a
‘patched’ (i.e. updated from the initial release) version of the gen-
ome. Differences between patched versions can cause nucleo-
tides in the patched regions to become different. For instance, in
GRCh37.p10 there is an updated sequence (ch17_ctg5_hap1),
which changed 532 bases in a 330 kb region. If data were aligned
to GRCh37.p10 and combined with hg19 (which is effectively
patch 0), then a conflict would exist as to what the reference nu-
cleotide should be. Such conflicts often cause conflicting results
with downstream annotation tools until such errors are resolved.
Even simple inconsistencies such as a reference genome prefixed
with/without ‘chr’ can cause problems. The latest version
GRCh38, for example, offers completed annotation for ABO gene.
A detailed overview is available at the Genome Reference
Consortium (http://www.ncbi.nlm.nih.gov/projects/genome/as-
sembly/grc/), and additional resources are available at Genome in
a Bottle Consortium (https://sites.stanford.edu/abms/giab).

The second element in creating the BAM file is to decide up-
front which aligner to use and the specific parameters to be used
when performing the alignment. The Burrows-Wheeler Aligner
(BWA) [13] and Novoalign [14] were the two aligners that were
used in SIMPLEXO. Extensive comparisons between these align-
ers have been done previously [15, 16], and their comparison is
outside the scope of this article. Differential sensitivities for de-
tecting indels may lead to substantial downstream effects in data
interpretation, perhaps owing to the different algorithms used in
these programs. While BWA and Novoalign are some of the most
accurate aligners, there are slight differences in their accuracy for
insertions and deletions of different sizes [17]. Variants observed
in data from one center may not be present in other centers be-
cause the aligner used had an advantage in that particular se-
quence context. For example, say a frameshift deletion was
observed in a case population aligned with Novoalign, and it was
not observed in a large control population that was aligned with
BWA. Without considering the differences in aligner, the investi-
gator may trigger a large-scale validation study only to find out
that the frequency of the deletion is in equal proportion in cases
and controls. Such validation experiments involving large num-
bers of samples increase the overall cost in time, effort and re-
sources available to the project. If an indel is observed by
multiple aligners, or if it validates using the variant calling
approaches we detail below, then it is likely real.
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Step 2: Variant calling

Despite using similar tools, variants may be identified separ-
ately in single samples (i.e. single-sample calling) or in all sam-
ples simultaneously (i.e. multi-sample calling), which leverages
information across samples. A number of tools are available for
these purposes, and each can result in somewhat different
results [18, 19]. However, the current consensus is that multi-
sample calling is almost always preferred [20] and is often
referred to as best practices [21].

To gauge the impact of single- versus multi-sample calling
in the SIMPLEXO data, we ran the Genome Analysis Toolkit
(GATK) UnifiedGenotyper (2.4-3-g2a7af43) [22] in a single-sam-
ple and in multi-sample modes on a kindred of seven related in-
dividuals. Reassuringly, 335 049 variants were called between
both groups; however, multi-sample calling provided many
more variants. After removing variants that were intronic, inter-
genic and multi-allelic, single-sample analysis contained 244
variants not observed in the multi-sample analysis. The com-
bined analysis called an additional 12 755 variants not found in
the single analysis (Figure 1). Multi-sample calling integrates
per sample likelihoods to jointly estimate allele frequency of

variation, which helps to call rarer variants in a population, in
addition to better error modeling using the joint estimation.
Importantly, the combined analysis was not enriched for false
positives, as all but �200 variants were observed in more than
one of these related individuals (Figure 1). Only 399 from the
combined analysis and 62 from the individual analyses were
predicted to affect the protein (e.g. stop codon, frameshift, non-
synonymous or canonical splice site). Therefore, we concluded
that multi-sample variant calling in exome sequencing data
calls more off-target (e.g. outside the coding exon) variants with
less supporting reads. This can, however, be remedied by using
a genomic interval file for variant calling, which is more effi-
cient computationally. From the single-sample analyses, 93% of
the variants that were unique to single-sample calling were
found in either one or two individuals. Because our samples are
related and nearly all the heterozygous variants were shared
with at least one other individual, it is reasonable to assume
that the majority of the variant calls were real. It is unknown
whether (1) the single-sample analysis overcalls mutations; (2)
the multi-sample analysis penalizes private or rare alleles; or (3)
some combination of both.

Figure 1. Distribution of variant alleles unique to single-sample or multi-sample genotyping. From seven members of a kindred, we genotyped them individually or as

a whole as described in the text. For any variant, there are 14 alleles that could harbor the variant. More variants found heterozygous in a single individual (allele

count¼1) were found only when single-sample genotyping was performed. When joint calling was performed, alleles shared among the kindred were detected at a

higher rate. Note: The y-axis is truncated at 2000 variants to show the disparity between single- and multi-sample calling, because in the combined analysis, 7926 vari-

ants had an allele count of 4.
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Step 3: Combining data from different
institutions

For a number of reasons, it is not always possible to run multi-
sample variant calling for every sample in a consortium.
Sequence data processing and bioinformatic analyses require
sufficient computational power and adequate allocation to
store and retrieve large volumes of data. Assuming that data
use agreements are in place, an average of 15 GB per exome,
one would need 1.5 TB just for data from 100 exomes. The BAM
files must be stored and fast-writing hard drives directly tied to
a large compute cluster, which are expensive and sometimes a
precious limited resource. Even if there is space and enough
computational power available for such an analysis, full access
and participation of other centers is limited by the host institu-
tion’s firewall blocking access of the data to collaborators.
Common data set and resources-based analysis on ‘big-data’ is
becoming common among large academic centers and is
encouraged by funding agencies such as NIH; however, cloud-
based computing is yet to be mainstream in human disease
research.

There are alternative ways to bring together disparate BAM
files, which may achieve similar outcomes as single-institution
multi-sample variant calling. Rather than merging BAM files to-
gether and running multi-sample variant calling, we exploited
another feature of GATK, namely, Genotype Given Alleles
(GGA). In this strategy, all participating centers run multi-
sample variant calling on the BAM files stored at each institu-
tion. Then, the resulting VCF files are centrally merged and sent
back to collaborators to run the GGA feature on their BAM files.
This allows counts of the number of reference and alternate al-
leles, regardless of whether one of those alternate alleles were
output in that center’s original discovery run. Once all centers
complete the GGA step, the genotyped VCF are re-centralized
and merged to create a single VCF that contains information
about the number of reference and alternate reads from each
sample. This is helpful in dealing the issues of costs related to
data transfer, data security and space limitations. It should,
however, be emphasized that several of the quality control par-
ameters delivered by the initial variant calling run should be
identical across centers to have parity in treatment of the data
during postprocessing quality control. A drawback of this
method is its inability to cope with newer data produced at cen-
ters because it will require all of the processing to be repeated.

A newer approach is now possible through an upgraded re-
lease of GATK, which contains several new tools including
HaplotypeCaller. The HaplotypeCaller solves the N þ 1 problem
for re-genotyping variants across an entire data set without need-
ing access to all of the BAM files simultaneously. Instead, the
HaplotypeCaller emits a genomic VCF (gVCF) that contains data
on variant and non-variant positions. gVCF files are comparably
much smaller in size than native BAM files, hence easier to share.
Once created, gVCF files from multiple samples can undergo the
GenotypeGVCF step (also part of the GATK), which genotypes
variants and produces the final VCF output. For consortia, each
member institution could send gVCFs instead of BAM files to a
central location to be jointly genotyped. At any time, more sam-
ples can be added to the consortium pool, with subsequent re-
peating of the re-genotyping step. At this time, this approach also
suffers from incomplete annotations without the primary BAMs.
When GVCFs are made from BAMs by GATK, it extracts some an-
notations from the BAMs such as GT, DP, GQ, PL. However, re-an-
notation using the VariantAnnotator, a GATK walker may be
required to populate and harmonize all the fields required to test

QC/QA processes downstream. It is important to mention that
these methods are limited to use of GATK, as this was the plat-
form of choice for our consortium. There are a plethora of other
genotyping methods from exome data—each having different
metrics of sensitivity and specificity [23]. As of now,
HaplotypeCaller is the only method we are aware of that can use
gVCF files as input, while the rest require direct access to BAM
files. Regardless of the method or methods used to call variants,
it is necessary that the same approaches to variant calling are
applied universally to all samples so as not to bias the results
coming from one center’s different genotyping algorithm.

Step 4: Technical filtering

Variant quality score recalibration (VQSR) is a popular way to
annotate variants as to their likelihood of being real or artifac-
tual. It categorizes variants as either ‘PASS’ or lower quality bins
(truth-tranches) using certain attributes present in the VCF file’s
INFO field. VQSR is a representation of the data set from which
the variant was called, meaning that the same variant can be in
a lower quality tranche in one investigator’s data set but PASS
in another. When using the GGA method described above, or
when combining VCF files generated through other means, a
simple solution is to specify the ‘-mergeInfoWithMaxAC’ option
in the GATK’s CombineVariants walker. This option gives prior-
ity to the VCF file that has the largest number of alternate al-
leles, and consequently the best joint probability. Without
specifying this option, tranches can become mixed within the
Filter field of the VCF, causing unexpected errors when using
downstream tools. Importantly, those variants not marked as
PASS are not necessarily false positives, rather the GATK algo-
rithm cannot assign a 100% probability that they are not. By
centralizing the VCF and running VQSR on only one VCF, these
types of conflicts are mitigated.

Step 5: Variant annotation

Once variants are deemed to be of high quality (e.g. high VQSR
score, alternate supporting reads), the next step for downstream
filtering is annotation. There are no ‘one-stop shops’ for anno-
tation, rather it involves cobbling together disparate annotation
tools and sources. There are two levels of annotations that are
of great interest, variant-specific annotations and interval-
based annotations on features such as genes and transcripts.
One of the most informative types of variant annotation is
population allele frequencies. Reference frequencies like those
provided by the 1000 Genomes project [24], Exome Sequencing
Project (ESP) (http://evs.gs.washington.edu/EVS/) and the Exome
Aggregation Consortium (http://exac.broadinstitute.org/) are
powerful tools to remove common variants from studies seek-
ing to find novel or rare alleles. However, we caution that the
absence of evidence is not evidence of absence. It is always a
good practice to also consider the depth of coverage of the re-
gion harboring the variant in public databases. We and collabor-
ators have observed that variants at times present in ESP may
be much common in specific cohorts. These discrepancies may
be owing to population origin (ethnicity) or owing to insufficien-
cies in the data caused by the sequencing platform, insufficient
coverage or differences in bioinformatics analysis.

SnpEFF [25], VEP [26], ANNOVAR [27] and CAVA (formerly
SAVANT [http://www.well.ox.ac.uk/cava]) are a popular tools to
annotate the effect variants on their corresponding transcripts
(e.g. frameshift, missense, stop gain). Recently, McCarthy et al.
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[28] demonstrated that variant annotations from these annota-
tion tools will disagree on what effect to assign to a particular
transcript 14% of the time, even when accounting for the differ-
ences in gene annotation sources like ENSEMBL, RefSeq and
GENCODE, which can also introduce differences [29]. Regardless
of annotation tool used, it is important to note that different
transcripts can also lead to different amino acid changes.
Normalization of transcripts to be reported is the focus of the
Locus Reference Genomic initiative [30], though few genes have
accessions at this time.

An alternative and transparent method is to present the data
at the genomic DNA coordinate level with corresponding refer-
ence and alternate alleles. Surprisingly, there is discrepancy be-
tween reference genomes (e.g. hg19) and transcript annotation
sources (e.g. RefSeq). For instance, the reference genome at
chr13:32, 929, 387 is a ‘T’ in the reference genome suggesting a
valine at cDNA position 2466, but a ‘C’ in RefSeq, causing that
amino acid to appear as alanine instead. This causes confusion
because the T allele of this single nucleotide polymorphism (SNP)
has an associated dbSNP identifier (rs169547) but would not be
identified as a variant because it matches the reference genome.
This type of error is present in 5210 transcripts from 2993 genes.
These types of errors are still present in the newest version of the
human genome (GRCh38) in 4948 transcripts from 2924 genes.
None of the existing annotation tools we are aware of can correct
this problem systematically.

Conclusions

Aggregating genomic sequencing data from multiple centers is
a complex, multifaceted challenge. Hopefully, this viewpoint
will provide other consortia, a frame of reference and dialog to
assist groups in avoiding potential obstacles inherent in multi-
institutional projects involving massively parallel sequencing.
We have not addressed other equally important topics such as
variant prioritization or classification methods, as many of the
underlying hypotheses or methodological approaches may be
substantially different than our interest in identifying new
breast cancer predisposition genes. Rather, we have focused in-
stead on what is sometimes referred to as the ‘data janitor’
work [31], an often oversimplified yet essential component to
collaborative study design. We have highlighted several tech-
nical challenges faced in the simPLEXO consortium and offer
our own solutions in hopes to encourage discussion and
development of a best practices guideline for future multi-insti-
tutional collaborations. Looking forward, we expect more diver-
sity among tools, but also more unification and integration of
pipelines in the cloud from both academic and industries that
cater to groups that may not have specialization in simplifying
and harmonizing next-generation sequencing data.

Key Points

• Integrating sequencing data from large-scale collabor-
ations is fraught with challenges.

• Discrepancies arise throughout the entire process
from alignment to variant annotation.

• We provide the solutions we took to overcome several
of the technical challenges.

• It is imperative to discuss fine-grained detail of bio-
informatics analysis early in the process of organizing
multi-institutional collaborations.
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