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Construction of feasible and 
accurate kinetic models of 
metabolism: A Bayesian approach
Pedro A. Saa & Lars K. Nielsen

Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic 
networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently 
difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear 
and have complex interactions. Many powerful fitting strategies are ruled out by the intractability 
of the likelihood function. Here, we have developed a computational framework capable of fitting 
feasible and accurate kinetic models using Approximate Bayesian Computation. This framework readily 
supports advanced modelling features such as model selection and model-based experimental design. 
We illustrate this approach on the tightly-regulated mammalian methionine cycle. Sampling from the 
posterior distribution, the proposed framework generated thermodynamically feasible parameter 
samples that converged on the true values, and displayed remarkable prediction accuracy in several 
validation tests. Furthermore, a posteriori analysis of the parameter distributions enabled appraisal of 
the systems properties of the network (e.g., control structure) and key metabolic regulations. Finally, 
the framework was used to predict missing allosteric interactions.

Mathematical models are essential to unravel the complexity of metabolic networks. Within the vast range of 
models capable of describing different metabolic processes, kinetic models are the most suitable for predicting 
the behaviour of enzymatic reactions upon genetic and environmental perturbations1. Despite their obvious vir-
tues, fitting of detailed kinetic models is challenging. Although there has been progress in the construction of 
mechanistic kinetic models describing particular metabolic pathways such as glycolysis in yeast2,3 and the central 
carbon metabolism of red blood cells4,5 and E. coli6,7, all efforts suffer from common problems and limitations, 
namely8: 1) difficult identification of highly-parameterized models, 2) use of in vitro kinetic data to fit and approx-
imate enzyme kinetics in vivo, and 3) inherently complex nonlinear nature of mechanistic rate laws. Ideally, one 
would like to globally fit detailed mechanistic models of metabolic pathways using in vivo data directly (e.g., 
following time-course metabolite data9), however strong parameter coupling and homeostatic control render this 
task impossible with the exception of small observable pathways (e.g., glycolysis10). The use of simplified kinetics 
has been explored extensively to circumvent this limitation. Depending on the scope, application and particular 
model features, formalisms such Generalized Mass Action11, Log-Lin kinetics12, among others13–15, have been 
employed to study the dynamic behaviour of metabolic networks (for a detailed description refer to8). Although 
integration of these formalisms with various kinetic modelling frameworks has yielded valuable insights into 
the operation of metabolic networks16–18, they offer limited predictive power due to their lack of kinetic detail. 
Complex kinetic features such as allosteric regulation are recognized as fundamental to explain complex meta-
bolic behaviours in vivo such as rapid microbial metabolic adaptations19,20. As such, the challenge of constructing 
detailed kinetic models from in vivo data remains a central problem in the field1,8.

Detailed and thermodynamically feasible kinetic models of metabolism have a large number of heterogene-
ous parameters, are non-linear and have complex relations. Many powerful fitting strategies are ruled out by the 
intractability of the likelihood function. However, Approximate Bayesian Computation (ABC) can overcome 
this limitation by sampling from an approximation of the posterior distribution without explicitly evaluating 
the likelihood function21. In this study, we use an ABC-based sampling framework that formalizes and substan-
tially extends the heuristic ‘Ensemble Modelling’ (EM) approach for kinetic model construction and param-
eter fitting22–26. While EM is more similar to a stochastic optimization approach aimed at finding one22,24 or 
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several23,25,27 accurate parameter sets, our approach is based on Bayesian statistics and seeks to determine the joint 
parameter distribution (i.e., posterior distribution) capable of explaining the data. We have greatly expanded the 
range of kinetics covered from non-allosteric compulsory-order kinetics in EM, to both general non-allosteric 
– i.e., sequential and random-order–and allosteric kinetics using our General Reaction Assembly and Sampling 
Platform (GRASP)28. We note the latter platform constitutes a convenient prior for Bayesian inference in kinetic 
modelling, as it incorporates prior knowledge in the form of thermodynamic relationships, thereby ensuring the 
feasibility of the sampled kinetic parameters. To the best of our knowledge, this work constitutes the first attempt 
to construct feasible and detailed kinetic models of metabolism using Bayesian inference. Importantly, it provides 
a statistically sound framework for parameter inference, prediction intervals and model selection. Using the most 
experimentally supported model of the tightly-regulated mammalian methionine cycle as a surrogate biological 
system29, we demonstrate that the proposed framework: 1) converges to the ‘true’ parameter values, 2) accu-
rately predicts metabolic states upon genetic perturbations, 3) reveals emergent properties of the system, and 4)  
suggests missing metabolic interactions. This work illustrates the core capabilities of this framework for the con-
struction of detailed kinetic models, however it holds a number of possible further applications. In particular, 
experimental design and integration of information from enzyme databases or previous kinetic reconstructions 
into the prior, emerge as important applications that can be properly addressed using this Bayesian approach.

Results
ABC for constructing feasible and accurate kinetic models of metabolism.  Bayesian inference 
derives the a posteriori or posterior distribution p(θ|y) from an a priori or prior probability distribution p(θ) for 
the parameters θ by updating with experimental observations y through the likelihood p(y|θ) using Bayes rule30

θ θ θ∝ ⋅p p py y( ) ( ) ( ) (1)

Detailed kinetic models have non-universal rate laws with complex parameter support and there is no simple 
parameterization of the likelihood that is computationally tractable. Approximate Bayesian Computation is a 
class of likelihood-free computational methods for Bayesian Inference. ABC requires an efficient strategy for 
sampling the prior distribution and we used our recently published framework GRASP to sample the range of 
thermodynamically allowable enzymatic behaviours (Fig. 1a,b). Briefly, GRASP relies on the mechanistic 
Monod-Wyman-Changeux (MWC) framework31 to generate feasible kinetic parameterizations consistent with 
biochemical, structural and thermodynamic reference data. Exhaustive exploration of the feasible parameter 
space is achieved by re-parameterizing the kinetic parameters (rate constants k, allosteric constant L, effector 
constants Keff), as function of readily sampled auxiliary variables (e enzyme intermediate abundances, R micro-
scopic reversibilities and relem branching vector). The reader is referred to Methods for further details. ABC meth-
ods avoid likelihood evaluation by proposing parameters from the prior, simulating data from the model 
conditional on those parameters, and accepting those parameters that simulate data close to the observed values 
(Fig. 1c, refer to Methods for details). As a proof-of-principle, the simplest ABC-based sampler – the rejection 
sampler32–was implemented. Once enough parameter samples have been accepted, the posterior distribution is 
assembled. A wide array of a posteriori analyses can be performed employing this distribution (Fig. 1d). The 
application of this approach is next illustrated in the study of the mammalian methionine cycle.

Assessing convergence of sampled parameters: the methionine cycle as a case study.  The 
methionine cycle links essential trans-methylation and trans-sulphuration reactions responsible of maintaining 
cellular methylation and antioxidant homeostasis33. Proper functioning of this cycle is essential for growth and 
development, and its abnormal operation is associated with complex diseases, such as cardiovascular34 and liver 
diseases, neural tube defects35 and cancer33,36,37. Due to its central role in normal growth and metabolism, several 
mathematical models have been developed describing some of the particular regulatory features underpinning 
its operation29,38–42. A realistic representation of the mammalian methionine cycle thus constitutes a suitable 
benchmark to exemplify our approach (Fig. 2a). Previous studies have shown that metabolic perturbations in 
some of its constituents generate non-intuitive complex responses, such as switching between parallel reactions 
upon methionine intake variations29, and bistability in S-adenosylmethionine as a consequence of the metabolic 
regulation of MATI and MATIII and the cooperative kinetics of GNMT38.

Our workflow starts by assembling the reference data necessary to sample the kinetic parameters of this cycle, 
namely biochemical data, structural information, reference flux distribution (vref) and Gibbs free energies of 
reaction ∆G( )r

ref  (Fig. 2a,b and Supplementary Table S2). Knowledge of the latter quantities is essential as the 
parameterization is built around this operation point. Although the exact value of ∆Gr

ref  typically cannot be 
exactly determined, feasible ranges can be estimated (see Methods). Here, the mean Gibbs free energy of each 
reaction was considered as a representative measure of the thermodynamic reference state of the system, although 
it is equally possible to sample this quantity. The same consideration applies for vref. Even when it is not possible 
to exactly determine its values, a representative flux distribution can always be defined based on exchange rates 
and 13C-labelling data24. Preliminary thermodynamic examination of the cycle showed that 4 out of the 9 reac-
tions (vMATI, vMATIII, vGNMT and vMTHFR) are strictly irreversible at the reference point, and as expected, the highest 
thermodynamic driving force is displayed by the initial steps of the cycle (vMATI and vMATIII). Regarding the revers-
ible reactions, only vCBS and vMS could potentially change their direction as they operate close to equilibrium and 
the network topology allows it. However, the high thermodynamic driven force of the first steps of this pathway 
means that this cycle in practice operates in the canonical direction depicted in Fig. 2a.

Once the reference information has been gathered, computation of the posterior is achieved by adding exper-
imental information into the sampling. To evaluate the performance and convergence of our approach, 12 meta-
bolic perturbations were simulated (Fig. 2c, details in Supplementary Table S1) using a reference model based on 
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the most detailed and experimentally supported description of this cycle (see Methods). Henceforth, this model 
will be considered the ‘true model’. It is important to highlight though that this model was built using approximate 
formulae mostly fitted to in vitro data (Supplementary Text S1), and hence, differences between our detailed 
parameterization and the ‘true model’ responses are to be expected. Notably, the proposed parameterization con-
tains 72 parameters (29 more parameters than the true model) describing the kinetic behaviour of this pathway. 
The main differences between the two descriptions relate to the application of common assumptions and simpli-
fications in the parameterization, namely: reaction irreversibility (vPROT, vMATI, vMETH, vBHMT and vMS), i.e., no 
backward catalysis ( =−k 0cat ), fast equilibrium kinetics (vAHC), and simplified formulae for enzymes undergoing 
allosteric regulation (vMATIII, vGNMT, vCBS and vMTHFR).

A good estimator should converge on the true parameter as more experimental data are included. 
Convergence was here tested by including the 12 simulated experimental datasets one-at-a-time. In complex 
non-linear systems, the information contribution by individual experiments varies considerably. In the current 
simulated experimental series, the second perturbation included (50% increase in vINFLUX) contributes by far the 
most information (Fig. 3). This result was also observed when adding the first three datasets in different orders 
(Supplementary Fig. S1). Introducing the second dataset shifted the solution significantly from the prior and 
dramatically reduced parameter variability (Fig. 3a). The high information content in the vINFLUX experiment is 
consistent with a previous study demonstrating that fluctuations in the methionine influx result in non-trivial 
switching between parallel reactions leading to substantial flux rearrangements in this cycle29. Informative per-
turbations are those where only a minor portion of prior samples are consistent with the observed behaviour. 
Computationally, this was reflected in a steep drop in the acceptance rate, and consequently, a significant rise 

Figure 1.  General workflow for building feasible and detailed kinetic models employing a Bayesian 
approach. (a) Collection of available biochemical, thermodynamic and structural data for all the components  
of the system. Reference metabolite concentrations ranges and metabolic fluxes are also needed to define the 
reference point. (b) Generation of a feasible prior distribution of kinetic parameters (k,L,Keff) using GRASP. 
This distribution is implicitly described by the auxiliary parameters e (enzyme intermediate abundances),  
R (microscopic reversibilities) and relem (branching vector), and spans the full kinetic space allowable by the  
reaction mechanism, thermodynamics, structural and flux data at the reference state. (c) Computation of the 
posterior parameter sample is achieved by employing a rejection sampling scheme based on Approximate 
Bayesian Computation. (d) A posteriori analysis of the posterior distribution enables assessment of parameter 
convergence, control structure prediction, prediction of metabolic states upon genetic and environmental 
perturbations, and exploration of possibly missing metabolic interactions.
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in the sampling time per model (Fig. 3b). Subsequent additions of datasets change these parameters far less 
dramatically.

The fitted parameters were compared with parameters in the true model. Only the canonical parameters  
(i.e., KS and kcat) from reactions vPROT, vMATI, vMETH, vBHMT, vMS and vAHC (12 in total) could be contrasted, as the 
parameterization differs greatly for the remaining allosteric reactions (Fig. 3c). The expected value of the final 
estimates were close to the true value and always within the 95%-credible interval. Progression of the posterior 
after two and twelve datasets is illustrated here for the kcat+ and KAdoMet parameters of vMETH (Fig. 3d), while 
full progressions of the marginal distributions of each parameter is shown elsewhere (Supplementary Fig. S2). 
Notably, the most uncertain parameter is kcat+ of the AHC reaction, which was originally assumed to reach fast 
equilibrium (Supplementary Text S1). As the latter parameterization disagrees with our parametric form, higher 
uncertainty is expected for this particular parameter. More importantly, inspection of the posterior distribution 
enables detection of such situations which could be addressed in subsequent refinement experiments.

Posterior samples accurately capture the underlying control structure of the network.  We have 
demonstrated convergence of the approach. However, the credible intervals for the parameters remain large and it 
is important to evaluate the predictive powers given this level of uncertainty. In the following, we employ the pos-
terior distribution to predict the control structure of the methionine cycle. The control exerted by each enzyme on 
every reaction of the network can be quantified through flux control coefficients derived from Metabolic Control 
Analysis (MCA)43,44.

Figure 2.  Modelling the mammalian methionine cycle. (a) Schematic representation of the methionine 
cycle and its main regulatory interactions. The modelled metabolites are shown in bold, whereas the red and 
green dashed lines represent known inhibitory (red) and excitatory (green) interactions within this cycle. 
The enzyme names are displayed in italics. Abbreviations: Met, methionine; AdoMet, S-adenosylmethionine; 
AdoHcy, S-adenosylhomocysteine; Hcy, homocysteine; 5-CH3-THF, 5-methyltetrahydrofolate; 5,10-CH2-THF, 
5,10-methylenetetrahydrofolate; THF, tetrahydrofolate; MGA, methyl group acceptor; MGA-CH3 methyl bound 
to the methyl group acceptor; MATI, methionine adenosyltransferase I; MATIII, methionine adenosyltransferase 
III; GNMT, glycine-N-methyltransferase; METH, S-adenosylmethionine-dependent methyltransferase; AHC, 
adenosylhomocysteinase; BHMT, betaine homocysteine S-methyltransferase; MS, methionine synthase; 
MTHFR, methylenetetrahydrofolate reductase; CBS, cystathionine β​-synthase. Bold numbers denote the 
reference flux distribution of this cycle as calculated by the true model (see Methods). (b) Estimated Gibbs free 
energy of reactions ranges for each reaction in the cycle. The red lines represent the mean Gibbs free energy of 
reactions which were used to define the reference thermodynamic point. (c) Heat map of the log-fold change in 
the flux responses of 12 simulated perturbations relative to the reference flux distribution (a). These experiments 
represent one-at-a-time genetic and/or environmental perturbations in the reaction fluxes of this cycle. The 
details of these perturbations are shown in Supplementary Table S1.
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The control structures estimated from the prior, posterior with 2 observations (dataset #2) and posterior 
with 12 observations (dataset #12) were computed and compared with the true control structure of the network 
(Fig. 4a). Although the prior captures elements of the control structure, predictions improve significantly as more 
data is included. Qualitatively, the prior by itself exhibits surprisingly good predictions of the signs of flux con-
trol coefficients (Matthew’s correlation coefficient of 0.638; Supplementary Fig. S3). Quantitatively, however, the 
expected root-mean-squared error dropped from 0.94 in the prior prediction to 0.59 and 0.58 for the posterior 
#2 and #12, respectively (Fig. 4b). We have further assessed the stability of the posterior distribution by checking 
the stability of the Jacobian matrix under three different conditions, namely: the reference state condition, condi-
tion #2 and condition #12. The totality of the parameter sets yielded stable models under the different conditions 
tested (Supplementary Fig. S4). Overall, these results show that reasonably and increasingly accurate predictions 
of the underpinning control structure of metabolic networks can be attained without sacrificing complexity or 
compromising thermodynamic feasibility.

Predicting metabolic states upon genetic and environmental perturbations.  The key feature of 
kinetic models is their capacity to predict the dynamic behaviour of metabolic networks as a function of protein 
(enzyme) and metabolite concentrations. In order to evaluate the predictive performance and robustness against 
experimental noise of the current approach, a validation dataset was generated comprising 12 metabolic pertur-
bations of the same magnitude but in the opposite direction to the training set (Supplementary Table S5) (Fig. 5a). 
Notably, opposing perturbations of similar magnitude provoked significantly different outcomes owing to the 
inherently nonlinear nature of the system (compare Figs 2c and 5a). Figure 5b depicts the predictions obtained 
from the full training dataset for each perturbation. Slightly worse results are obtained if the training set #2 is 
chosen (Supplementary Fig. S5 and Table S6). There is overall very good agreement between our predictions and 
the true responses. The 50% down-regulations of CBS and AHC and the 50% decrease of vINFLUX display relatively 
larger deviations from the true mean (0.070, 0.114 and 0.092 mmol/L-cells/h, respectively) than the remaining 
9 cases (average deviation between 5·10−3–5·10−2 mmol/L-cells/h). Critically, large deviation is in all cases asso-
ciated with broader credible intervals, i.e., the greater deviation can be inferred from the actual fit. Interestingly, 
the higher observed disagreement does not correlate with a higher response in the true system. While the 50% 
down-regulation of CBS exerts important flux changes relative to the reference state, the 50% down-regulation of 

Figure 3.  Assessment of parameter convergence in the methionine cycle. (a) Convergence of main posterior 
statistics as a function of dataset size. The blue line represents the Euclidian distance between the prior and 
the posterior parameter expectancy for different experimental sets. As the dataset increases, the relative 
distance between the expectancies increases. On the other hand, the red line represents the Euclidean distance 
between the posterior and prior standard deviation ratio. As more information is known, the overall variability 
decreases. (b) Sampling performance of the ABC algorithm for different datasets sizes. The red and blue lines 
denote the average acceptance rate and time per accepted parameter set as data increases, respectively. In each 
simulation, 103 parameter sets were generated in parallel using 10 computing cores. The error bars represent 
two standard deviations for each in silico experiment. (c) Comparison of the true and expected parameter 
values for all comparable kinetic parameters in the methionine model. Each symbol represents the expected 
parameter value, whereas the error bars describe the 95%-credible intervals for the respective parameter. There 
is high agreement between the predicted parameter values and the parameters from the true model (R2 =​ 0.95, 
slope =​ 1.03). (d) Illustration of the progression of the marginal posterior distribution of the METH kinetic 
parameters (kcat+ and KAdoMet) for different experimental sets. In both cases, the distributions converge rapidly to 
the true parameter value as more data becomes available.



www.nature.com/scientificreports/

6Scientific Reports | 6:29635 | DOI: 10.1038/srep29635

AHC shows almost no apparent flux redistribution (Fig. 5a). Instead, the greater variability correlates with param-
eter uncertainty, i.e., more complex enzymes display more variable behaviours in the worst prediction cases.

The simulations illustrate the classical MCA observation that regulatory enzymes are not generally 
flux-controlling enzymes44, and thus their manipulation does not commonly yield much information45. 
Perturbation of regulatory enzymes (i.e., vMATI/III, vGNMT, vCBS and vMTHFR) had limited effect on the flux responses. 
In contrast, flux controlling-reactions like vINFLUX provides more interesting insights (refer to Fig. 4a). We 
note that inspection of the predictive posterior behaviour reveals useful information for experimental design. 
Perturbations displaying more variability–and hence higher uncertainty–yield the highest information gain about 
the system’s behaviour. In this particular case, manipulations targeting vCBS, vINFLUX and/or vAHC will be more 
informative than perturbations targeting the response of vBHMT, vMATI/III, vPROT, vMS, vGNMT, vMETH or vMTHFR.

We further tested the predictive power of our model by performing random perturbations in different direc-
tions (δ​E) on the enzyme levels (Fig. 5c). Perturbation directions from the δ​-norm hypersphere were randomly 
sampled using the Marsaglia method, i.e., generate independent Gaussian random perturbations for each reaction 
with zero mean and unit variance, and then normalizing the perturbation vector to a δ​-length. Once the direction 
of the perturbation is generated, the enzyme level of reaction i is computed as δ= ⋅E E Eexp( )i i i

new ref , where Ei
ref  

denotes the reference enzyme level (equal to 1) and δEi denotes the enzymatic perturbation of the corresponding 
enzyme. Figure 5c shows the root-mean-square flux error (RMSFE) of our model for 50 random perturbations at 
different perturbation magnitudes. As expected, as the magnitude of the perturbation increases, the expected 
RMFSE increases. Notably, the median of the RMSFE remains rather stable around 0.5 mmol/L-cells/h, suggest-
ing a robust predictive performance of our model even for large perturbations.

Finally, we assessed the robustness of our approach against experimental noise. To this end, new reference and 
experimental fluxes were simulated with 10% and 20% deviation from the true values (Supplementary Table S7)  
and the sampling step was repeated using dataset #2 as training set. The addition of experimental noise did not 
catastrophically impact the predictive power of the posterior distribution (Fig. 5d). For example, the RMSFE 
95%-percentile increased from 0.203 to 0.226 mmol/L-cells/h (~11.3% deviation from the base case) when 10% 
experimental noise was considered, and to 0.244 mmol/L-cells/h (~20.2% deviation from the base case) when 
20% was included. This proportional increase is however variable in the error distributions, displaying higher 
discrepancies at lower percentiles, i.e., lower confidence (Supplementary Table S8). More importantly, at higher 
confidence, e.g., 99%-percentile, the deviations change to approx. 5.5% and 14.8% for the 10% and 20% noise 
additions, respectively.

Unveiling missing regulatory interactions.  Robust metabolic control is mainly achieved through 
allosteric regulation46. The activity of allosteric enzymes can be greatly modified by the binding of an effector to 
an allosteric site different from the active site. These interactions are essential for metabolic adaption upon sud-
den environmental changes20 and for maintaining metabolic homeostasis46. The methionine cycle represents a 

Figure 4.  Revealing the control structure of the methionine cycle. (a) Comparison of the true and predicted 
control structure of the methionine cycle at the reference state employing the prior and the posteriors derived 
from dataset #2 and #12 (full dataset). The heat maps represent the flux control coefficient magnitudes for each 
enzyme in the network. The progressive addition of data improves prediction of the dynamic behaviour of the 
network encoded in the control structure. (b) Quantitative assessment of the flux control coefficient predictions 
for the prior and the above posteriors. This plot depicts the root-mean-square error distributions for the prior 
and posterior predictions of the flux control coefficients magnitudes. Addition of new experimental data 
substantially increases the accuracy of the posterior predictions compared to the prior prediction.
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good example of this type of metabolic control. The activity of the regulatory enzymes MATIII and GNMT varies 
greatly upon perturbations on the methionine uptake (Fig. 2c).

While reactions of enzymes are known, the identification of particular allosteric sites from protein structure 
remains a great challenge47,48. An alternative strategy is to use metabolic network models to unravel possibly 
missing allosteric interactions. Given a possibly incomplete model, the objective is to determine which interac-
tions may be missing. Implementation of this task is straightforward within the Bayesian setting and it is com-
monly known as (Bayesian) model selection (see Methods). Briefly, a set of possible model structures are defined 

Figure 5.  Posterior prediction of metabolic states. (a) Heat map of the log-fold change in the flux responses 
of 12 validation perturbations relative to the reference flux distribution. These perturbations are orthogonal 
to the perturbations shown in Fig. 2c and describe one-at-a-time genetic and/or environmental perturbations 
in the reactions of this cycle. Numerical values of each perturbation are found in Supplementary Table S5. 
(b) Posterior predictions for the 12 validation perturbations. Boxplots represent the posterior predictive 
distributions whereas the red circles describe the true model responses. There is overall good agreement 
between predicted and true model responses. (c) Posterior predictions for 50 random enzyme level 
perturbations of magnitudes (δ​E). Boxplots represent the root-mean-square flux error (RMSFE) distribution 
for perturbations of different magnitudes. The trained model exhibits an overall robust predictive performance 
across the tested conditions. (d) Assessment of the impact of experimental noise on the predictive power of 
the posterior distribution. The probability distributions of the RMSFE simulating three conditions are shown 
and compared. The addition of experimental noise does not substantially affect the prediction of the sampled 
models.
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describing different allosteric interactions and each structure is given equal probability of being selected by the 
ABC algorithm. The frequency of each structure in the posterior is proportional to its likelihood to be chosen. To 
illustrate an application of this framework, we deleted the feedback activation of vMATIII by AdoMet and the feed-
back inhibition of vGNMT by AdoHyc from the original model (Fig. 6). In this case, the full dataset (dataset #12, 
Fig. 2c) was employed to perform model selection given the increased size of the parameter space (41 additional 
parameters describing all possible structures).

Starting from the incomplete model structure as the reference structure, we explored the most likely interac-
tion to be added. The model selection algorithm yielded the positive activation of MATIII by AdoMet as the most 
likely interaction to be included in the model (Bayes factor >​3, p-value =​ 3.2·10−4; Supplementary Table S9).  
After including this interaction, the above procedure was repeated but now using the augmented structure as ref-
erence. No further interaction was significantly enriched in the posterior (Bayes factors <​3; Supplementary Table 
S10). Specifically, the mild inhibition of vGNMT by AdoHyc incorporated in the true model based on experimental 
data49 was missed.

Interactions may be missed due to redundancy, i.e., the existence of alternative mechanisms to achieve 
similar regulation. Regulation of GNMT is essential, particularly under high methionine concentrations29 
(Supplementary Text S1). In addition to AdoHyc inhibition, GNMT is also under non-competitive inhibition by 
5-CH3-THF50 (Fig. 6). Moreover, the enzyme is under strong positive homotropic regulation (positive coopera-
tivity) by the substrate, AdoMet (nHill =​ 2.3)51. With the current simulated experiments, there was no preference 
for models containing either 5-CH3-THF or AdoHyc inhibition over a model containing neither (i.e., relying on 
homotropic regulation only) (Supplementary Fig. S6 and Table S11). In this particular case, a more straightfor-
ward approach for unravelling the correct model structure would be to individually test the candidate interactions 
in vitro. The present framework then offers a rational method for proposing testable hypothesis about the regu-
lation of metabolic networks.

Discussion
Kinetic models convey detailed information about the mechanisms underpinning the modulation of enzymatic 
fluxes to the cell needs. Continuous advances in omics technologies have enabled the collection of high-quality 
datasets for building these models. However, the construction and fitting of detailed kinetic models remains a 
major ongoing challenge in the field1,8.

In this study, we successfully cast the fitting problem as an ABC-sampling problem using the GRASP as start-
ing prior to construct detailed, feasible kinetic models for each enzyme (Fig. 1). We exemplified the application 
of this approach to the mammalian methionine cycle (Fig. 2), demonstrating its capabilities for fitting predictive 
models. Detailed kinetic models are difficult to fit as they contain many, highly correlated parameters. For exam-
ple, our detailed parameterization required 72 parameters to mechanistically describe the methionine cycle, as 

Figure 6.  Unveiling possibly mossing regulatory interactions. Exploration of likely missing allosteric 
interactions in the methionine cycle. Positive and negative interactions are represented by green and red 
arrows respectively, whereas missing interactions are represent by grey arrows. Two sequential additions were 
performed but only the positive activation of MATIII by AdoMet was recovered from the incomplete model 
(p-value =​ 3.2·10−4 <​ 10−3). Addition of the negative inhibition of GNMT by AdoHcy was not found to be a 
significant interaction despite its presence in the original model (Bayes factors <​3.0). This could point to the 
presence of compensatory mechanisms in the network (see Supplementary Fig. S6).
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opposed to the 43 parameters from the original model. Despite the high number of parameters, analysis of the 
posterior distribution demonstrated that expected parameter values converged to the true values, albeit their 
marginal distributions remained fairly broad (Fig. 3c,d). It is well recognized that parameters from quantita-
tive non-linear models are difficult to fit collectively from in vivo data, often yielding large parameter uncer-
tainties. Indeed, a previous model survey showed that most biological models display a “sloppy” spectrum of 
parameter sensitivities52. However, as noted by the above authors, even when parameters are not tightly fitted, 
tight quantitative predictions can be obtained and later verified experimentally. For instance, a globally fitted 
growth-factor-signalling network model of PC12 cells yielded fairly accurate and testable predictions of the sys-
tem’s behaviour using a modest training set53. This is also the case of our parameterization for predicting the 
behaviour of the system upon new perturbations (Fig. 5a,b) as well as for revealing the control structure of the 
network (Fig. 4). Furthermore, simulation of experimental noise did not substantially deteriorate the predictive 
power of our strategy (Fig. 5c). These results demonstrate the robustness of our approach and also encourage the 
use of detailed kinetic parameterizations grounded on thermodynamic and kinetic fundamentals. Using global 
sampling of thermodynamically feasible parameter sets, valuable insights about the properties of the system can 
be gained even in the absence of data (Fig. 4a). These insights would be most likely lost if using simplified param-
eterizations to ease global fitting, as they miss important thermodynamic relationships and are often only locally 
valid. Rather than focusing on the precise identification of parameters from simplified “sloppy” models–which 
will commonly remain poorly constrained even when extensive data is available54–more attention should be 
placed on the actual model predictions. For the construction of such predictive models, our approach offers an 
attractive alternative.

ABC lends itself to more advanced modelling tasks such as model selection and experimental design55. Unlike 
frequentist hypothesis testing, Bayes factors enable: 1) comparison of models with entirely different structures 
rather than only nested models, and 2) weighting the evidence against and in favour of a hypothetical model56. 
Application of this measure for topological discovery of metabolic signals has lately yielded valuable insights into 
the regulation of different signalling pathways57–59. Here, we have demonstrated the use of this simple measure 
for testing the inclusion (or exclusion) of speculative allosteric interactions (Fig. 6). In the context of experi-
mental design, our results showed that a single experiment (dataset #2) contributed the majority of informa-
tion to the fit (Fig. 3a,b). This highlights the challenge of designing informative experiments for networks with 
highly non-linear kinetics and often unknown interactions. We note that our approach can be readily adapted for 
rational experimental design. For instance, analysis of posterior predictions suggests that targeting reactions vAHC, 
vINFLUX, or vCBS in future experiments will be more informative of the behaviour of system, as they display relative 
larger uncertainty in their responses (Figs 5b and 6). Another useful capability of this Bayesian framework is the 
possibility to refine the prior with partial information from enzyme databases or previous kinetic reconstruction 
efforts. We have recently reported an efficient approach for including known enzymatic data (i.e., kcat and/or KS) 
within GRASP, greatly improving kinetic descriptions of single-enzymes under different conditions60. Refinement 
of the prior with kinetic information may prove particularly beneficial for improving parameter identification in 
larger models.

Scale is the major challenge and potential limitation of sampling-based strategies. There are more efficient 
ABC implementations displaying accelerated convergence61–63. However, application of such algorithms is not 
exempt of difficulties, particularly in multi-dimensional models. Posterior estimates inevitably deteriorate with 
increasing dimensionality64. Implementation of ‘divide and conquer’-type strategies, i.e., breaking the model into 
smaller models or modules, could be an effective strategy to fit larger models65. Considering the universally 
sloppy sensitivities of most biological models52, application of such strategies could not be only suitable, but crit-
ical for the development of large-scale kinetic models.

Materials and Methods
Methionine cycle model.  This model describes the mass-balances for the main intracellular intermediates 
involved in the cycle, namely: methionine (Met), S-adenosylmethionine (AdoMet), S-adenosylhomocysteine 
(AdoHcy), homocysteine (Hcy), methyl-tetrahydrofolate (MTHF) and 5,10-methylenetetrahydrofolate (THF), 
and it also includes a moiety conservation equation (folate pool conservation). The model is primarily based on 
the most detailed description29. While most of the original structure was conserved, two changes were introduced 
to further improve its consistency with recent experimental data: 1) the adenosyl-homocysteinase reaction (vAHC) 
was not considered at equilibrium, but instead the rapid equilibrium expression proposed by Reed et al.40 was 
used, and 2) the methionine uptake flux (vINFLUX) was set to 0.76 mmol/L-cells/h in agreement with recent experi-
mental findings66. A detailed description of the model is provided in Supplementary Text S1. The reference model 
of the methionine cycle has been deposited in the BioModels database67 identifier MODEL1603150000.

Assembly of a feasible prior using GRASP.  We have previously developed a systematic framework (GRASP)28 
capable of parameterizing and sampling complex kinetics consistent with thermodynamics and using minimal ref-
erence data. The employed parameterization rests on the fundamentals of the Monod-Wyman-Changeux model31, 
which enables description of the majority of kinetic behaviors found in oligomeric enzymes (both allosteric and 
non-allosteric). Formally, GRASP relies on the decomposition of the velocity of reaction as the product of two inde-
pendent functions68,

= Φ ⋅ Ψv (2)catalytic regulatory

where Φcatalytic represents the rate law function for the enzyme subunits in the relaxed state (which only depends 
on the reaction mechanism), and Ψregulatory denotes a regulatory function describing the conformational transi-
tions from the tense (T) to the relaxed state (R). Equation 2 recast the problem of parameterizing the kinetics of 



www.nature.com/scientificreports/

1 0Scientific Reports | 6:29635 | DOI: 10.1038/srep29635

an enzyme into finding suitable parameterizations for the catalytic mechanism and – independently – the mech-
anism of allosteric transitions.

Firstly, the rate of reaction describing the catalytic mechanism of an enzyme can be derived using the 
Quasi-Steady-State Assumption (QSSA)69 for the enzyme intermediates. The resulting rate law describes the 
velocity rate of the enzyme as a function of the total enzyme concentration (Etotal), reactant concentrations (X) 
and rate constants (k). The latter will be ultimately responsible for the kinetic features of the enzyme. The space of 
allowable kinetics is then explored by GRASP using a sampling strategy that is consistent with thermodynamic 
constraints by employing a convenient normalization at the elementary reaction level22. This procedure scales the 
rate constants (denoted by k) with respect to a reference point characterized by a reaction flux (vref), thermody-
namic driving force ∆G( )r

ref  and enzyme concentration E( )total
ref . This normalization enables re-parameterization 

of k as a function of auxiliary parameters e (enzyme intermediate abundances), R (microscopic reversibilities) 
and relem (branching vector), all three of which are bounded and hence readily sampled. A similar strategy is 
adopted to describe the mechanism of allosteric transitions. Within the MWC model, allosteric transitions are 
primarily described by the allosteric (L) and effectors dissociation (Keff) constants. These parameters can be cal-
culated once the enzyme state abundances for the R and T states have been sampled28. As such, the distribution of 
(k, L, Keff) generated by uniformly sampling the auxiliary parameters (e, R, relem) for each enzyme spans the full 
kinetic space consistent with the reaction mechanism, thermodynamics, measured rate and structural informa-
tion. Importantly, this distribution constitutes a feasible prior to perform Bayesian Inference.

Approximate Bayesian Computation: Rejection sampler.  Bayesian inference employs Bayes theorem 
(Equation 1) to update the posterior distribution p(θ|y) using the prior distribution p(θ) and likelihood function 
p(y|θ). Despite the simplicity of this expression, it is rarely possible to compute posterior without the help of 
Monte Carlo simulation. In fact, formulation of the likelihood function might not be even possible considering 
the potentially high coupling between kinetic parameters. ABC copes with this limitation by “rejection sampling”, 
i.e., sampling parameter sets (particles), simulate outcomes given these parameters sets, and keeping only those 
parameter sets that simulate data within a certain tolerance εT

21. The discrepancy between the model and the 
experimental data can be measured using suitable distance functions, e.g., Euclidean distance, taxicab norm, 
infinite norm, etc. We have chosen a weighted infinite-norm distance to compare the simulated (vsim) and exper-
imental (vexp) fluxes (Equation 3). The weighting term captures the appreciable differences in the order of magni-
tude between fluxes (up to approx. 22-fold for vref), ensuring reasonable fit for all reactions. The overall tolerance 
εT was set to 0.2 showing a good compromise between accuracy and convergence time. Finally, we ran the rejec-
tion algorithm until N =​ 103 particles were accepted. Preliminary results using higher sample sizes (e.g., 2 · 103 and 
5 · 103) showed no significant changes in the summary statistics of the kinetic parameters (Supplementary Fig. S7), 
and 103 particles were deemed adequate for parameter inference.

ε





−

−





≤

∀

v v
v v

max
max( ) min( ) (3)i

i i
sim exp

ref ref T

Predictive posterior expectancy.  The posterior distribution can be used to predict the likely state of the 
system upon perturbations taking into account the parameter uncertainty. Particularly, we are interested in pre-
dicting the expected value of a function Π​, which might depend on both the model parameters θ and data y. The 
latter expectation can be calculated as follows30,

∫θ θ θ θΠ = Π
θ

E p dy y y[ ( , )] ( , ) ( ) (4)

For the special case of predicting the outcome of genetic perturbations, we want to predict the expected out-
come of perturbations y* given the data at hand, i.e., p(y*|y). The latter is achieved by replacing Π​(θ, y) for p(y*|y) 
in Eq. (4) and sampling from the resulting expression. Monte Carlo simulation can be employed to numerically 
sample the latter. Briefly, θ* can be sampled from p(θ|y) and then used to simulate y* from S · v*(y*) =​ 0. The pairs 
(θ*|y*) are drawn from the joint distribution p(θ, y*|y), and thus y* is a draw from p(y*|y). Similarly, other useful 
statistics and quantities (e.g., control coefficients) can be computed following this procedure.

Parameter convergence.  Assessment of parameter convergence was achieved by computing the relative 
distance (Euclidian measure) between the posterior expected parameter values for each training set i θ̂( )iposterior,  

with the corresponding prior expectancy θ̂( )prior , i.e., δ = − θ θ^ ^( )1 /i j i j j, posterior, , prior,

2
, δ δ= ∑

∈
i i j

j
,

params

. Expected 

parameter values were computed using Eq. (4) by setting θ θΠ =y( , ) . Additionally, in order to assess the global 
variability evolution of the posterior under different conditions, we computed the ratio of global variances 
between the prior and i posterior training sets as ϖ σ σ= θ θˆ ˆ‖ ‖ ‖ ‖( / )i posterior i prior, , ,

2.

Control structure of the network.  Flux control coefficients CE
v

j
i  quantify the amount of control exerted by 

each reaction on the network. Mathematically, these coefficients represent the percentage change in the observa-
ble flux i per unit percent change in the enzyme j concentration level.
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E
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i

j
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i

The flux control coefficient of an enzyme is a system property and their validity is restricted to the chosen 
reference state. Numerical computation of the above coefficients was achieved using a central finite difference 
scheme with a step size equal to 0.01% perturbation on the nominal Ej value of 1, which ensured low truncation 
error and avoided sensitivity to simulation error. The validity of this approximation was tested by imposing a 
maximum 1% deviation from the summation theorem70. The predictive posterior expectancy of the flux control 
coefficients was computed then using Eq. (4) by setting θΠ = Cy( , ) E

v
j
i .

Model selection: identifying missing allosteric interactions.  For two competing models mA and mB, 
we want to choose the most likely model explaining the data y using Bayesian model selection. If the competing 
models are considered equally probable (i.e., uniform prior), the evidence in favour of mA over mB is computed 
as follows30,

=B
P m
P m

y
y

( )
( ) (6)

AB
A

B

where P(mA|y) and P(mB|y) represent respectively the posterior marginal probability for model A and B, and BAB 
represents the corresponding Bayes factor. Higher BAB suggests greater support for mA over mB. Model selection 
within the ABC rejection sampler was performed as described by Grelaud et al.71. Briefly, model selection is per-
formed by accepting particles from different model structures that explain the data. To provide a fair evaluation, 
the index of the model to be tested is randomly sampled before the conventional rejection step takes place. Once 
enough particles have been accepted, the relative number of accepted instances for each structure represents the 
respective marginal posterior probability, and BAB can be computed directly as the ratio of the number of accepted 
particles. Notably, Bayesian model selection implicitly penalizes structure complexity, as higher dimensional 
structures have lower probabilities of acceptance unless they significantly improve the fit. In our particular case, 
we employed model selection to determine the most likely allosteric interactions to be added to an incomplete 
metabolic model. Exploration of this space was performed by adding one interaction at a time. Significant inter-
actions were selected based on the evidence in favour over the incomplete model. Interactions with a Bayes factor 
greater than three were chosen as significant interactions (refer to Supplementary Table S12 for interpretation).

Gibbs free energy of reaction ranges.  Feasible ranges for the Gibbs free energy of reaction (Δ​Gr) were 
calculated employing a modified version of Thermodynamic Variability Analysis (TVA)72. In standard TVA, the 
activity of each metabolite ln(x) and the Δ​Gr of each reaction are minimized and maximized subject to ther-
modynamic and mass balance constraints, rendering a Mixed-Integer Linear Programming problem (MILP). 
However, in our case the flux directions are fixed as the reference flux distribution vref is known. Thus, an equiva-
lent simpler LP formulation was used instead with continuous variables Δ​Gr and ln(x),

∆
. .

⋅ ∆ <

∆ + ⋅ = ∆
− ≤ ∆ ≤

≤ ≤



G

RT

v G 0

G S x G
K G K

x x x

min/max
s t
diag(sgn( ))

ln( )

ln( ) ln( ) ln( ) (7)

ir,

ref
r

r
T

r

r

min max

Here, K represents a vector with sufficiently large equal components (for example 103), xmin and xmax denote 
the minimum and maximum concentrations bounds, S represents the stoichiometric matrix, RT  is the product of 
the universal gas constant and the absolute temperature and ∆ Gr  is the standard Gibbs free energy of reaction 
(Supplementary Table S3). The latter quantities were estimated at 37 °C, pH 7 and 0.15 ionic strength using eQuil-
ibrator73. The minimum and maximum concentrations used in these calculations can be found in the 
Supplementary Table S4.

Computation and implementation.  The presented computational framework was implemented in the 
MATLAB 2015a environment (The MathWorks, Natick, MA). Given the convenient structure of the proposed 
workflow, accelerated convergence was achieved by dividing and distributing jobs using the MATLAB Parallel 
Computing Toolbox. On average, convergence of the ABC algorithm was obtained after 13–22 h for 103 accepted 
parameter sets. Parameterization and sampling of the metabolic reactions was performed using GRASP28. For the 
estimation of the feasible Gibbs free energy ranges, we employed the LP solver linprog contained in the MATLAB 
Optimization Toolbox. Execution of the ABC sampler was performed on a 16-CPU 64-GB ram Virtual Machine 
hosted in the QRIScloud Polaris cell. A posteriori analyses of the sampling results were executed on a Dell 
OptiPlex 760 Desktop (Intel Core 2 Duo processor, 4 GB ram, Microsoft Windows 7, x86-based architecture).

References
1.	 Chowdhury, A., Khodayari, A. & Maranas, C. D. Improving prediction fidelity of cellular metabolism with kinetic descriptions. Curr 

Opin Biotech 36, 57–64 (2015).
2.	 Teusink, B. et al. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. 

Eur J Biochem 267, 5313–5329 (2000).



www.nature.com/scientificreports/

1 2Scientific Reports | 6:29635 | DOI: 10.1038/srep29635

3.	 Smallbone, K. et al. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. Febs Lett 587, 
2832–2841 (2013).

4.	 Joshi, A. & Palsson, B. O. Metabolic Dynamics in the Human Red-Cell. 3. Metabolic Reaction-Rates. J Theor Biol 142, 41–68 (1990).
5.	 Joshi, A. & Palsson, B. O. Metabolic Dynamics in the Human Red-Cell. 1. A Comprehensive Kinetic-Model. J Theor Biol 141, 

515–528 (1989).
6.	 Peskov, K., Mogilevskaya, E. & Demin, O. Kinetic modelling of central carbon metabolism in Escherichia coli. Febs J 279, 3374–3385 

(2012).
7.	 Chassagnole, C., Noisommit-Rizzi, N., Schmid, J. W., Mauch, K. & Reuss, M. Dynamic modeling of the central carbon metabolism 

of Escherichia coli. Biotechnol Bioeng 79, 53–73 (2002).
8.	 Srinivasan, S., Cluett, W. R. & Mahadevan, R. Constructing kinetic models of metabolism at genome-scales: A review. Biotechnol J 

10, 1345–1359 (2015).
9.	 Visser, D. et al. Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. 

Biotechnol Bioeng 79, 674–681 (2002).
10.	 Kresnowati, M., van Winden, W. & Heijnen, J. Determination of elasticities, concentration and flux control coefficients from 

transient metabolite data using linlog kinetics. Metab Eng 7, 142–153 (2005).
11.	 Savageau, M. Biochemical systems analysis. J Theor Biol 25, 365–369 (1969).
12.	 Hatzimanikatis, V. & Bailey, J. E. Effects of spatiotemporal variations on metabolic control: approximate analysis using (log) linear 

kinetic models. Biotechnol Bioeng 54, 91–104 (1997).
13.	 Visser, D. & Heijnen, J. J. Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5, 

164–176 (2003).
14.	 Ederer, M. & Gilles, E. D. Thermodynamically feasible kinetic models of reaction networks. Biophys J 92, 1846–1857 (2007).
15.	 Liebermeister, W., Uhlendorf, J. & Klipp, E. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and 

implementation. Bioinformatics 26, 1528–1534 (2010).
16.	 Wang, L., Birol, I. & Hatzimanikatis, V. Metabolic control analysis under uncertainty: framework development and case studies. 

Biophys J 87, 3750–3763 (2004).
17.	 Steuer, R., Gross, T., Selbig, J. & Blasius, B. Structural kinetic modeling of metabolic networks. P Natl Acad Sci USA 103, 

11868–11873 (2006).
18.	 Jamshidi, N. & Palsson, B. O. Mass Action Stoichiometric Simulation Models: Incorporating Kinetics and Regulation into 

Stoichiometric Models. Biophys J 98, 175–185 (2010).
19.	 Xu, Y.-F., Amador-Noguez, D., Reaves, M., Feng, X.-J. & Rabinowitz, J. Ultrasensitive regulation of anapleurosis via allosteric 

activation of PEP carboxylase. Nat Chem Biol 8, 562–568 (2012).
20.	 Link, H., Kochanowski, K. & Sauer, U. Systematic identification of allosteric protein-metabolite interactions that control enzyme 

activity in vivo. Nat Biotechnol 31, 357–361 (2013).
21.	 Sunnåker, M. et al. Approximate Bayesian Computation. Plos Comput Biol 9, e1002803 (2013).
22.	 Tran, L. M., Rizk, M. L. & Liao, J. C. Ensemble modeling of metabolic networks. Biophys J 95, 5606–5617 (2008).
23.	 Khazaei, T., Mcguigan, A. & Mahadevan, R. Ensemble modeling of cancer metabolism. Frontiers in physiology 3, 135 (2012).
24.	 Khodayari, A., Zomorrodi, A. R., Liao, J. C. & Maranas, C. D. A kinetic model of Escherichia coli core metabolism satisfying multiple 

sets of mutant flux data. Metab Eng 25, 50–62 (2014).
25.	 Dean, J. T., Rizk, M. L., Tan, Y., Dipple, K. M. & Liao, J. C. Ensemble modeling of hepatic fatty acid metabolism with a synthetic 

glyoxylate shunt. Biophys J 98, 1385–1395 (2010).
26.	 Rizk, M. L. & Liao, J. C. Ensemble modeling for aromatic production in Escherichia coli. Plos One 4, e6903 (2009).
27.	 Tan, Y., Rivera, J. G. L., Contador, C. A., Asenjo, J. A. & Liao, J. C. Reducing the allowable kinetic space by constructing ensemble of 

dynamic models with the same steady-state flux. Metab Eng 13, 60–75 (2011).
28.	 Saa, P. A. & Nielsen, L. K. A general framework for thermodynamically consistent parameterization and efficient sampling of 

enzymatic reactions. Plos Comput Biol 11, e1004195 (2015).
29.	 Korendyaseva, T. K. et al. An allosteric mechanism for switching between parallel tracks in mammalian sulfur metabolism. Plos 

Comput Biol 4, e1000076 (2008).
30.	 Congdon, P. Bayesian Statistical Modelling. (John Wiley & Sons, Ltd. 2006).
31.	 Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J Mol Biol 12, 88–118 (1965).
32.	 Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, a. & Feldman, M. W. Population growth of human Y chromosomes: a study of Y 

chromosome microsatellites. Molecular biology and evolution 16, 1791–1798 (1999).
33.	 Mato, J. M., Martínez-Chantar, M. L. & Lu, S. C. Methionine metabolism and liver disease. Annual review of nutrition 28, 273–293 

(2008).
34.	 Wierzbicki, A. S. Homocysteine and cardiovascular disease: a review of the evidence. Diabetes & vascular disease research: official 

journal of the International Society of Diabetes and Vascular Disease 4, 143–150 (2007).
35.	 Forges, T. et al. Impact of folate and homocysteine metabolism on human reproductive health. Human reproduction update 13, 

225–238 (2007).
36.	 Crider, K. S., Yang, T. P., Berry, R. J. & Bailey, L. B. Folate and DNA Methylation: a Review of Molecular Mechanisms and the 

Evidence. Advances in nutrition 3, 21–38 (2012).
37.	 Duthie, S. J. Folic acid deficiency and cancer: mechanisms of DNA instability. British medical bulletin 55, 578–592 (1999).
38.	 Martinov, M. V., Vitvitsky, V. M., Mosharov, E. V., Banerjee, R. & Ataullakhanov, F. I. A substrate switch: a new mode of regulation 

in the methionine metabolic pathway. J Theor Biol 204, 521–532 (2000).
39.	 Martinov, M. V., Vitvitsky, V. M., Banerjee, R. & Ataullakhanov, F. I. The logic of the hepatic methionine metabolic cycle. Biochimica 

et biophysica acta 1804, 89–96 (2010).
40.	 Reed, M. C., Nijhout, H. F., Sparks, R. & Ulrich, C. M. A mathematical model of the methionine cycle. J Theor Biol 226, 33–43 

(2004).
41.	 Nijhout, H. F. et al. Long-Range Allosteric Interactions between the Folate and Methionine Cycles Stabilize DNA Methylation 

Reaction Rate. Epigenetics 1, 81–87 (2006).
42.	 Prudova, A., Martinov, M. V., Vitvitsky, V. M., Ataullakhanov, F. I. & Banerjee, R. Analysis of pathological defects in methionine 

metabolism using a simple mathematical model. Biochimica Et Biophysica Acta-Molecular Basis of Disease 1741, 331–338 (2005).
43.	 Heinrich, R. & Rapoport, T. A Linear Steady-State Treatment of Enzymatic Chains. Eur J Biochem 105, 97–105 (1974).
44.	 Kacser, H. & Burns, J. A. The control of flux. Symp. Soc. Exp. Biol. 27, 65–104 (1973).
45.	 Fell, D. A. Increasing the flux in metabolic pathways: A metabolic control analysis perspective. Biotechnol Bioeng 58, 121–124 (1998).
46.	 Grimbs, S., Selbig, J., Bulik, S., Holzhütter, H.-G. & Steuer, R. The stability and robustness of metabolic states: identifying stabilizing 

sites in metabolic networks. Mol Syst Biol 3, 146 (2007).
47.	 Huang, W. K. et al. Allosite: a method for predicting allosteric sites. Bioinformatics 29, 2357–2359 (2013).
48.	 Panjkovich, A. & Daura, X. PARS: a web server for the prediction of Protein Allosteric and Regulatory Sites. Bioinformatics 30, 

1314–1315 (2014).
49.	 Ogawa, H. & Fujioka, M. Purification and Properties of Glycine N-Methyltransferase from Rat-Liver. J Biol Chem 257, 3447–3452 

(1982).



www.nature.com/scientificreports/

13Scientific Reports | 6:29635 | DOI: 10.1038/srep29635

50.	 Yeo, E. J., Briggs, W. T. & Wagner, C. Inhibition of glycine N-methyltransferase by 5-methyltetrahydrofolate pentaglutamate. J Biol 
Chem 274, 37559–37564 (1999).

51.	 Ogawa, H., Gomi, T. & Fujioka, M. Mammalian Glycine N-Methyltransferases - Comparative Kinetic and Structural-Properties of 
the Enzymes from Human, Rat, Rabbit and Pig Livers. Comp Biochem Phys B 106, 601–611 (1993).

52.	 Gutenkunst, R. N. et al. Universally sloppy parameter sensitivities in systems biology models. Plos Comput Biol 3, 1871–1878 (2007).
53.	 Brown, K. S. et al. The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys Biol 1, 184–195 

(2004).
54.	 Brown, K. S. & Sethna, J. P. Statistical mechanical approaches to models with many poorly known parameters. Phys Rev E 68, 021904 

(2003).
55.	 Drovandi, C. C. & Pettitt, A. N. Bayesian Experimental Design for Models with Intractable Likelihoods. Biometrics 69, 937–948 

(2013).
56.	 Kass, R. E. & Raftery, A. E. Bayes Factors. J Am Stat Assoc 90, 773–795 (1995).
57.	 Oliveira, A. P. et al. Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome. Mol Syst Biol 11, 

4 (2015).
58.	 Xu, T. R. et al. Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species. 

Sci Signal 3, 113 (2010).
59.	 Sunnaker, M. et al. Automatic Generation of Predictive Dynamic Models Reveals Nuclear Phosphorylation as the Key Msn2 Control 

Mechanism. Sci Signal 6, 277 (2013).
60.	 Saa, P. A. & Nielsen, L. K. A probabilistic framework for the exploration of enzymatic capabilities based on feasible kinetics and 

control analysis. Biochimica et Biophysica Acta-General Subjects 1860, 576–587 (2016).
61.	 Drovandi, C. C. & Pettitt, A. N. Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian 

Computation. Biometrics 67, 225–233 (2011).
62.	 Del Moral, P., Doucet, A. & Jasra, A. An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat 

Comput 22, 1009–1020 (2011).
63.	 Marjoram, P., Molitor, J., Plagnol, V. & Tavare, S. Markov chain Monte Carlo without likelihoods. P Natl Acad Sci USA 100, 

15324–15328 (2003).
64.	 Beskos, A., Crisan, D. O., Jasra, A. & Whiteley, N. Error Bounds and Normalising Constants for Sequential Monte Carlo Samplers 

in High Dimensions. Advances in Applied Probability 46, 279–306 (2014).
65.	 Kotte, O. & Heinemann, M.   A divide-and-conquer approach to analyze underdetermined biochemical models. Bioinformatics 25, 

519–525 (2009).
66.	 Shlomi, T., Fan, J., Tang, B., Kruger, W. D. & Rabinowitz, J. D. Quantitation of cellular metabolic fluxes of methionine. Anal Chem 

86, 1583–1591 (2014).
67.	 Chelliah, V. et al. BioModels: ten-year anniversary. Nucleic Acids Res 43, D542–D548 (2015).
68.	 Popova, S. V. & Sel’kov, E. E. Generalization of the Monod-Wyman-Changeux model for the case of multisubstrate reactions. 

Molecular Biology (Moscow) 10, 1116–1126 (1976).
69.	 Briggs, G. E. & Haldane, J. B. S. A note on the kinetics of enzyme action. Biochem J 19, 338–339 (1925).
70.	 Palsson, B. O. & Lee, I. D. Model Complexity Has a Significant Effect on the Numerical Value and Interpretation of Metabolic 

Sensitivity Coefficients. J Theor Biol 161, 299–315 (1993).
71.	 Grelaud, A., Robert, C. P., Marin, J. M., Rodolphe, F. & Taly, J. F. ABC likelihood-free methods for model choice in Gibbs random 

fields. Bayesian Analysis 4, 317–335 (2009).
72.	 Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. Thermodynamics-based metabolic flux analysis. Biophys J 92, 1792–1805 (2007).
73.	 Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. eQuilibrator-the biochemical thermodynamics calculator. Nucleic Acids Res 40, 

770–775 (2012).

Acknowledgements
P.A.S. was supported by Becas-Chile, UQ Centennial and IPRS Scholarship Programs. This research was 
undertaken with the assistance of resources from the Queensland Cyber Infrastructure Foundation (http://www.
qcif.edu.au).

Author Contributions
P.A.S. and L.K.N. conceived and designed the research. P.A.S. built the models and performed the computational 
analysis. P.A.S. and L.K.N. wrote, edited and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Saa, P. A. and Nielsen, L. K. Construction of feasible and accurate kinetic models of 
metabolism: A Bayesian approach. Sci. Rep. 6, 29635; doi: 10.1038/srep29635 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.qcif.edu.au
http://www.qcif.edu.au
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach

	Results

	ABC for constructing feasible and accurate kinetic models of metabolism. 
	Assessing convergence of sampled parameters: the methionine cycle as a case study. 
	Posterior samples accurately capture the underlying control structure of the network. 
	Predicting metabolic states upon genetic and environmental perturbations. 
	Unveiling missing regulatory interactions. 

	Discussion

	Materials and Methods

	Methionine cycle model. 
	Assembly of a feasible prior using GRASP. 
	Approximate Bayesian Computation: Rejection sampler. 
	Predictive posterior expectancy. 
	Parameter convergence. 
	Control structure of the network. 
	Model selection: identifying missing allosteric interactions. 
	Gibbs free energy of reaction ranges. 
	Computation and implementation. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ General workflow for building feasible and detailed kinetic models employing a Bayesian approach.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Modelling the mammalian methionine cycle.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Assessment of parameter convergence in the methionine cycle.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Revealing the control structure of the methionine cycle.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Posterior prediction of metabolic states.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Unveiling possibly mossing regulatory interactions.



 
    
       
          application/pdf
          
             
                Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach
            
         
          
             
                srep ,  (2016). doi:10.1038/srep29635
            
         
          
             
                Pedro A. Saa
                Lars K. Nielsen
            
         
          doi:10.1038/srep29635
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep29635
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep29635
            
         
      
       
          
          
          
             
                doi:10.1038/srep29635
            
         
          
             
                srep ,  (2016). doi:10.1038/srep29635
            
         
          
          
      
       
       
          True
      
   




