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Abstract

Patterns of DNA methylation (DNAm) that track with aging have been identified. However, the relevance of these patterns for aging outcomes 
remains unclear. Longitudinal epigenome-wide DNAm information was obtained from the InCHIANTI study, a large representative European 
population. DNAm was evaluated using the Illumina HumanMethylation450 array on blood samples collected at baseline and 9-year follow-
up: observations from 499 participants with paired longitudinal blood sample and information on differential blood count were included in 
analyses. A total of 56,579 markers were significantly associated with age in cross-sectional analysis of DNAm at year 9, 31,252 markers were 
changed significantly over the 9-year follow-up, and 16,987 markers were both cross-sectionally associated with age and significantly changed 
over time. Rates of change at 76 markers and year 9 level of DNAm at 88 markers were identified as strongly associated with mortality in Cox 
proportional hazard models adjusted for age and relevant covariates (mean follow-up time 4.4 years). Less than 0.05% of markers associated 
with age or that changed over time were also associated with mortality after adjusting for chronological age. Although the influence of DNAm 
on health and longevity remains unclear, these findings confirm that aging is associated cross-sectionally and longitudinally with robust and 
consistent patterns of methylation change.
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Age is the strongest risk factor for many chronic diseases, as well as 
physical and cognitive impairment in adults. Understanding the mecha-
nisms that underlie the aging process could improve health in later life 
beyond the capacity of disease-specific treatments. A recent landmark 
paper outlined 9 biological mechanisms that, hypothetically, control 
aging and its consequences, including age-associated epigenetic modi-
fications (1). Yet, whether these mechanisms play a role in the aging of 
complex organisms or contribute to the heterogeneity in the pheno-
typic manifestation of chronological aging is still not known.

The success of genetic studies that have addressed aging from the 
perspective of longevity has been limited: with APOE and FOXO3 

as the only genes consistently associated with longer life (2). Studies 
of the epigenome may be more fruitful. In theory, epigenetic modi-
fications as transcriptional regulators and points of integration for 
multiple biological signals (3) represent a tangible juncture where 
genetics and life course exposures contribute to the variability in the 
physical manifestation of aging.

DNA methylation (DNAm), the addition of a methyl group to 
cytosine at CpG dinucleotides, is the most commonly studied epi-
genetic marker. Family and twin studies have indicated that changes 
in DNAm with age may be influenced by both genetic and envi-
ronmental factors (4–6). Characteristic methylation patterns have 
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been observed in cancer, autoimmune diseases, as well as in other 
common chronic diseases (7–9). These observations suggest that dif-
ferences in methylation could explain part of the wide variability of 
health and longevity experience by aging individuals.

Cross-sectional analyses of genome-wide DNAm have shown 
age-associated methylation differences in multiple cohorts and tis-
sues (10–12), and these associations are robust enough for the devel-
opment of methylation scores that closely predict chronological 
aging (11,13). However, the cross-sectional nature of these studies 
makes it impossible to differentiate changes in methylation with 
aging from those induced by secular trends in exposures across age 
cohorts.

Here, we use data from a large representative population dis-
persed over a wide age range to describe rate of change in genome-
wide methylation over a 9-year follow-up. We contrast markers that 
change longitudinally in the same individuals with markers that are 
associated with age in cross-sectional analyses. Our primary aim 
is to identify sites where variability in DNAm may be relevant to 
aging processes. Subsequently, we verify whether independent of age, 
the level of DNAm, or change in DNAm predicts longevity over a 
4.5-year follow-up period.

Methods

Study Population
DNAm was evaluated in samples from participants of the 
InCHIANTI study at two time points 9  years apart. InCHIANTI 
is a population-based prospective cohort study of residents from 
two areas in the Chianti region of Tuscany, Italy. Study participants 
were enrolled between 1998 and 2000 and were followed at 3-year 
intervals for 9 years. Selection of study participants and data col-
lection procedures have been previously described (14); a brief 
summary and criteria specific to the present analyses are described 
later. Overall, 1,326 participants donated a blood sample at baseline 
(1998–2000) and, of these, 784 also donated a blood sample at the 
9-year follow-up (2007–2009). Genome-wide DNAm was assayed 
on DNA samples corresponding to participants with sufficient DNA 
at both visits. The study population for the present analysis includes 
individuals with DNAm data meeting quality control criteria and 
complete covariate information at both baseline and 9-year follow-
up (n = 499). InCHIANTI protocols were approved by the Instituto 
Nazionale Riposo e Cura Anziani institutional review board in Italy 
and study participants provided informed consent.

DNA Collection and Genome-Wide 
Methylation Scan
Genomic DNA was extracted from buffy coat samples using an 
AutoGen Flex and quantified on a Nanodrop1000 spectrophotom-
eter prior to bisulfite conversion. Genomic DNA was bisulfite con-
verted using Zymo EZ-96 DNA Methylation Kit (Zymo Research 
Corp., Irvine, CA) as per the manufacturer’s protocol. CpG meth-
ylation status of 485,577 CpG sites was determined using the 
Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., 
San Diego, CA) as per the manufacturer’s protocol and as previ-
ously described (15). Initial data analysis was performed using 
GenomeStudio 2011.1 (Model M Version 1.9.0, Illumina Inc.). 
Threshold call rate for inclusion of samples was 95%. Quality con-
trol of sample handling included comparison of clinically reported 
sex versus sex of the same samples determined by analysis of meth-
ylation levels of CpG sites on the X chromosome (16).

Quality filtering and normalization was performed on the pooled 
set of 1,022 samples (baseline and 9-year follow-up) using the DASEN 
method in the R package “wateRmelon” (17). Markers were removed 
if the bead count was less than 3 in ≥5% of samples (nCpG = 251). 
Samples and markers were also excluded if ≥5% of detection p values 
were greater than .01 (nsample = 3, nCpG = 1,893). A background adjust-
ment and quantile normalization were applied to the filtered data set; 
the selected method normalizes both methylated and unmethylated 
probes as well as type I and II assays (the 450k array includes both 
paired probe and single probe assay designs) separately. Locations 
were annotated using the FDb.InfiniumMethylation.hg19 database. 
Methylation markers on the X and Y chromosome, as well as mark-
ers with potentially cross-reactive probes and probes that may be 
polymorphic in European populations (allele frequency ≥  .01) (18) 
were excluded from analyses. After filtering, 429,527 markers in 
1,019 participant samples remained. Nine hundred and ninety-eight 
paired samples, representing 499 participants, with complete white 
blood cell differential count were included in analyses.

Other Independent Variables
Demographic and health behavior information were obtained 
through a structured interview and anthropometric measurements 
and fasting blood samples were collected using standardized pro-
tocols during InCHIANTI study visits. White blood cell differential 
count was assessed on ethylenediaminetetraacetic acid anticoagu-
lated whole blood using a Coulter Counter (LH 750 Hematology 
Autoanalyzer, Beckman Coulter Inc., Brea, CA) and expressed as 
percentages of neutrophils, lymphocytes, monocytes, eosinophils, 
and basophils. DNA samples were processed in 13 experimental 
batches, and variability by batch was represented by covariates 
as described later. Vital status and dates of death were confirmed 
through a systematic search of municipality records through June 
2013. IL6, gp130, sIL6R, IL18, TNFαR1, and TNFαR2 were 
measured using ELISA with commercial assays (R&D Systems, 
Inc., Minneapolis, MN); TNFα was measured using a multiplex 
panel (Millipore, Billerica, MA). C-reactive protein (CRP) was 
measured using enzyme-linked immunosorbent assay and a col-
orimetric competitive immunoassay that uses purified protein and 
polyclonal antibodies.

Statistical Analysis
Analyses were conducted on residuals after adjustment for experi-
mental batch and white blood cell differential count in linear regres-
sion models including all samples (n = 998).
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The associations between age and methylation marker residuals at 
9-year follow-up were estimated in single linear regression models. 
The direction and magnitude of age coefficients from these models 
and the cross-sectional estimates of difference in methylation with a 
1-year difference in age were qualitatively compared with mean rates 
of change in DNAm estimated from DNAm measured at baseline 
and year 9. Rates of change were calculated as: (residual9-year follow-up 
− residualbaseline)/years. Markers with statistically significant longitu-
dinal change in methylation were identified based upon one-sample 
t tests indicating nonzero mean rates of change. We identified the set 
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of markers that were both significantly correlated with cross-sec-
tional age and significantly changed between baseline and the 9-year 
follow-up (Bonferroni corrected p value ~ 1.16 × 10−7).

In addition to evaluation of the rate of change in methylation, 
the associations of year 9 DNAm residual and of rate of change of 
DNAm over 9 years with subsequent mortality were estimated in Cox 
proportional hazard models for all markers passing filtering criteria. 
Subsequent to the 9-year follow-up visit, study participants were fol-
lowed for an average of 4.4 years, during this period 79 deaths were 
observed. In these analyses, DNAm residuals and rates of change 
were z-score transformed and models were adjusted for age, sex, and 
study site. Because some methylation markers changed across both 
time and age in the primary analyses and age is the strongest known 
predictor of mortality age was treated as a potential confounder of 
the relationship between DNAm and mortality. Both the magnitude 
of the hazard ratio (HR) and the statistical significance of the p value 
were considered in evaluating survival analyses.

Because genes in close proximity to the selected sites appeared 
to relate to inflammatory pathways, correlations between rates of 
change in methylation at these sites and markers of inflammation at 
9-year follow-up were also evaluated. Associations with markers of 
inflammation were estimated in multivariate linear regression mod-
els adjusted for age, sex, and study site. Rates of change were z-score 
transformed and inflammatory markers were log transformed as 
necessary. All analyses were performed using R 3.0 (R Foundation 
for Statistical Computing, Vienna, Austria).

Results

The study population included 499 InCHIANTI participants, 
45% men, mean age at 9-year follow-up was 71.9 (range: 30–100; 
Table  1). The mean time between baseline sample collection and 
9-year follow-up was 9.1  years. The mean body mass index was 
26.9 kg/m2 (SD: 4.2) and 56.7% had no history of smoking.

Age coefficients in single linear regression models at baseline 
and the 9-year follow-up visit were highly correlated (r  =  .957; 
Figure  1A). After adjustment for confounding factors and mul-
tiple testing, as per methods, methylation in 56,579 markers was 
significantly associated with age at the year 9 visit. The mean rate 
of change was negative at 50.6% of evaluated DNAm markers, the 
average across all mean rates of change was −9.12 × 10−6 propor-
tion methylated per year. Overall, statistically significant changes 
in methylation were observed at 31,252 CpG. Rates of change of 
greatest positive and negative magnitude were observed for mark-
ers cg27526665 [THRB] (mean rate: 0.0035, SD: 0.0081) and 
cg18036763 [PHF21B] (mean rate: −0.0043, SD: 0.0132). The 
correlation between estimated rate of change and cross-sectional 
age coefficient was moderate (r =  .576; Figure 1B). Thirty percent 
(16,987) of CpG sites where DNAm was significantly associated 
with age in cross-sectional analyses also demonstrated significant 
mean rates of change over the follow-up. However, the direction of 
change over time was consistent with the direction of association 
with cross-sectional age for 69.2% of markers.

Adjusting for age at year 9, sex, and study site, rate of change 
of five markers, cg03735531 [PSMB9] (HR = 0.74; p = 8.33 × 10−8), 
cg16197272 [FAM120B] (HR = 0.75; p = 3.25 × 10−8), cg19409060 
[SRCIN1] (HR  =  0.70; p  =  7.78 × 10−9), cg24437429 [ABR] 
(HR = 0.76; p = 6.92 × 10−8), and cg26833395 [HM13] (HR = 0.74; 
p  =  4.02 × 10−8), was associated with survival in Cox propor-
tional hazard models at a Bonferroni corrected p value threshold 
(p ~ 1.16 × 10−7). The most extreme HR was observed for marker 

cg01646019 (HR = 2.29; p = .002). There were 76 markers with p 
value less than .001 and moderately high HRs in survival analyses 
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of DNAm, at 88 markers predicted mortality with p values less than 
.001 and moderate HRs (Supplementary Table  1). Four DNAm 
markers, namely cg06281205 [FANCL], cg12379145 [PRDM2], 
cg18741439 [CSGALNACT1], and cg23015983 [OSTM1] pre-
dicted mortality when measured at year 9 and also their 9-year 
change predicted mortality.

Among the set of 76 markers whose rate of change predicted 
mortality, 4 also had rates of change consistent with statistically 
significant longitudinal change and 8 were significantly associated 
with age in cross-sectional analyses (Figure 2). Ninety-one gene 
identifiers correspond to transcripts within 10 kb of this group 
of methylation markers (Table  2). Two markers with relatively 
strong effect estimates and more extreme p values are also of 
interest based upon transcripts of genes related to inflammatory 
pathways in close proximity: cg18120323 is approximately 3 kb 
upstream of a transcript variant of PRKCZ on chromosome 1 

Figure 1.  (A) Age coefficients from linear regression models estimating the 
association of methylation at each marker with age at baseline vs coefficients 
estimated in samples corresponding to 9-year follow-up. (B) Estimated mean 
rate of change in methylation between baseline and 9-year follow-up for each 
marker vs age coefficient from single linear regression models estimating 
the association of methylation at each marker with age at 9-year follow-up.

Table 1.  Characteristics of InCHIANTI Study Participants Included 
in the Study Sample (n = 499) at Year 9 

Characteristic Mean (SD) or n (%)

Male 225 (45.1)
Age, y* 71.9 (30,100)
BMI, kg/m2† 26.9 (4.2)
Smoking status
  Former 166 (33.3)
  Current 50 (10.0)
Cancer‡ 50 (10.0)
Neutrophil, % 57.1 (8.8)
Lymphocyte, % 31.3 (8.5)
Monocyte, % 8.0 (2.1)
Eosinophil, % 3.1 (1.9)
Basophil, % 0.5 (0.2)
Time between visits, y 9.1 (0.2)
Follow-up time, y 4.4 (1.0)

Notes: *Mean (range).
†n = 491.
‡Self-report of cancer at any study visit.
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Table 2.  Cox Proportional Hazard Models Estimating the Association Between the Estimated Rate of Change in DNAm Markers of Interest 
and Mortality After 9-Year Follow-Up (n = 499, events = 79) Ordered by the Magnitude of the Hazard Ratio (HR)

Marker Chr Position Rate of Change (SD) HR (95% CI) Gene*

cg14575484 2 217557616 0.0002 (0.0017) 0.60 (0.45, 0.78) IGFBP5
cg18120323 1 1978732 0.0008 (0.0053) 1.67(1.34, 2.10) PRKCZ
cg03402235 15 42749336 −0.0004 (0.0030) 1.66 (1.29, 2.15) ZNF106
cg16197857 18 75402282 −0.00003 (0.0017) 0.60 (0.47, 0.77)
cg27635330 20 57020935 0.0001 (0.0019) 0.61 (0.49, 0.77) VAPB
cg16781880 16 58329007 −0.0003 (0.0019) 0.61 (0.48, 0.79) PRSS54
cg00292432 12 3393872 −0.0001 (0.0028) 1.62 (1.27, 2.06) TSPAN9
cg03623394 4 1005876 0.0002 (0.0023) 0.62 (0.50, 0.77) IDUA, FGFRL1
cg03576411 14 99172002 −0.0001 (0.0032) 1.61 (1.25, 2.05) C14orf177
cg21158502 5 74348187 0.0004 (0.0033) 1.60 (1.28, 2.01)
cg24319508 6 394966 −0.0006 (0.0030) 1.60 (1.28, 2.00) IRF4
cg01723148 12 58021295 0.0002 (0.0018) 1.60 (1.27, 2.00) BC073932, SLC26A10, B4GALNT1
cg17835356 8 41387960 −0.0006 (0.0033) 1.59 (1.26, 2.01) GINS4
cg07922411 16 34429609 0.00003 (0.0030) 1.59 (1.25, 2.01)
cg14403741 12 126465336 −0.0001 (0.0020) 0.63 (0.51, 0.79) LINC00939
cg19733534 5 1841548 0.0003 (0.0035) 1.58 (1.26, 1.98)
cg18533397 1 110186005 −0.0001 (0.0013) 1.58 (1.24, 2.01)
cg20220255 12 95228096 −0.0004 (0.0025) 0.63 (0.51, 0.78) KRT19P2
cg26106417 4 3425381 0.00003 (0.0027) 0.63 (0.49, 0.81) RGS12
cg11808581 1 1950725 0.0003 (0.0023) 0.63 (0.50, 0.80) AK054708, GABRD
cg01093854 10 70362422 0.0001 (0.0015) 0.63 (0.50, 0.81) TET1
cg27601809 11 72091020 0.0001 (0.0023) 1.57 (1.24, 1.99) CLPB
cg22927043 1 11919699 −0.0008 (0.0038) 1.57 (1.27, 1.94) NPPB
cg26160180 1 1822883 −0.00004 (0.0015) 0.64 (0.51, 0.81) GNB1
cg01514859 1 6557734 −0.00003 (0.0011) 1.57 (1.23, 2.00) PLEKHG5
cg12844117 7 155275418 −0.0002 (0.0032) 1.57 (1.25, 1.96)
cg16054184 10 78944582 0.0002 (0.0024) 1.56 (1.24, 1.98) KCNMA1
cg15505642 1 77836400 0.0001 (0.0019) 0.64 (0.51, 0.80) AK5
cg26989202 8 99076837 0.0001 (0.0015) 1.56 (1.31, 1.86) C8orf47
cg01065605 7 27702796 0.00004 (0.0016) 0.64 (0.52, 0.79) HIBADH
cg23608075 10 112272213 0.0001 (0.0015) 0.64 (0.52, 0.80) DUSP5
cg24197330 19 47551642 −0.0001 (0.0014) 0.64 (0.51, 0.81) NPAS1,TMEM160
cg18741439 8 19310134 0.0003 (0.0026) 1.55 (1.25, 1.92) CSGALNACT1
cg26318321 19 15446617 0.0000002 (0.0033) 1.55 (1.24, 1.93) BRD4
cg23015983 6 108396139 0.00003 (0.0014) 0.65 (0.51, 0.82) OSTM1
cg03967329 6 26030329 0.0001 (0.0030) 1.55 (1.23, 1.95) HIST1H3A, HIST1H4A, HIST1H4B, 

HIST1H3B, HIST1H2AB
cg24259629 3 45883796 0.0002 (0.0016) 1.55 (1.23, 1.95) LZTFL1
cg11950982 21 46269126 0.0003 (0.0024) 1.54 (1.20, 1.99) PTTG1IP
cg19662895 14 69074455 0.0013 (0.0049) 1.54 (1.25, 1.91) RAD51B
cg25468681 1 9428106 −0.0002 (0.0021) 0.65 (0.51, 0.82) SPSB1
cg01310875 8 27938995 −0.0002 (0.0030) 1.54 (1.20, 1.98) NUGGC, ELP3
cg07161062 8 142204334 −0.0004 (0.0028) 1.54 (1.21, 1.96) DENND3
cg12379145 1 14030611 0.0001 (0.0017) 1.54 (1.21, 1.95) PRDM2
cg06765172 22 36714496 −0.0003 (0.0023) 1.54 (1.24, 1.90) MYH9
cg02330352 16 20975912 −0.0003 (0.0023) 0.65 (0.52, 0.81) DNAH3
cg06281205 2 58462331 0.0003 (0.0019) 1.53 (1.24, 1.90) FANCL
cg11308319 2 240291426 −0.0006 (0.0036) 1.53 (1.23, 1.91) HDAC4
cg13665021 7 1717324 −0.0003 (0.0031) 0.65 (0.53, 0.81)
cg08529529 13 31309799 0.0002 (0.0033) 1.53 (1.23, 1.90) ALOX5AP
cg23515619 17 61623700 0.00001 (0.0017) 0.66 (0.52, 0.83) KCNH6, DCAF7
cg13009365 22 24093455 −0.0001 (0.0014) 0.66 (0.52, 0.82) ZNF70, VPREB3
cg27224642 2 39665105 −0.0001 (0.0021) 1.52 (1.24, 1.88) MAP4K3, LOC728730
cg02898994 20 2361440 −0.0001 (0.0015) 1.52 (1.19, 1.94) TGM6
cg25649038 6 6546777 0.0001 (0.0014) 1.52 (1.25, 1.85) LY86-AS1
cg27257822 3 184292880 −0.0012 (0.0033) 1.52 (1.21, 1.91) EPHB3
cg09693464 7 41744949 −0.0002 (0.0021) 1.52 (1.20, 1.93) INHBA, INHBA-AS1
cg23524537 14 95036219 −0.0001 (0.0027) 1.52 (1.20, 1.92) SERPINA4
cg23324787 11 36619694 −0.0004 (0.0037) 1.51 (1.22, 1.89) RAG1, RAG2, C11orf74
cg03490711 3 187459194 −0.0001 (0.0014) 1.51 (1.22, 1.88) LOC100131635, BCL6
cg12484411 8 110099683 0.0001 (0.0025) 1.51 (1.26, 1.81) TRHR
cg10916429 15 64799784 0.0008 (0.0033) 1.51 (1.22, 1.87) ZNF609
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and cg24319508 is within an exon of IRF4 on chromosome 6 
(Figure 3). Because proximity to these genes does not imply a role 
in inflammation, the association of rate of change at these mark-
ers with indicators of inflammation at 9-year follow-up was eval-
uated. In multivariate linear regression models, cg18120323 was 
associated with serum levels of gp130, TNFαR1, and TNFαR2 (p 
< .05; Table 3).

Discussion

We assessed genome-wide DNAm at two time points in 499 par-
ticipants of the InCHIANTI study. We found that the magnitude 
and direction of coefficients that described cross-sectional relation-
ships between methylation and age were moderately correlated with 
observed rates of change of methylation in the same marker over a 
9-year follow-up. Thirty percent of markers where level of meth-
ylation was significantly associated with age also showed significant 
change over 9-year follow-up. These findings confirm that aging is 
associated with changes in DNAm and that these changes are robust 

and predictable. We also found a meaningful number of markers 
that were cross-sectionally associated with age but did not change 
over time, suggesting that findings from cross-sectional analysis may 
reflect a mixture of the effects of time and cohort-specific exposures, 
transient exposures, or random error.

Previous studies have suggested that composite DNAm meas-
ures may be used as indicators of accelerated aging (11). Accordingly, 
we hypothesized that individuals with larger or smaller than average 
changes in markers that systematically and significantly change over 
time would have shorter life, using survival as a proxy measure of the 
rate of aging. Contrary to this hypothesis, we observed almost no over-
lap between markers where methylation changes with aging and mark-
ers where level or rate of change in methylation appeared consistently 
associated with mortality within our study sample even though lenient 
thresholds were used to select markers of interest in analyses of mortal-
ity. We acknowledge that the survival analyses lacked substantial power 
because of the short follow-up and the limited number of death avail-
able for this analysis. Thus, is quite possible that important methylation 
markers associated with mortality remained undetected. Although this 
possibility should be tested in future large studies with longer follow-up, 
we propose two additional interpretations for this lack of concordance. 
DNAm change over time may indicate a loss of control where random 
drift in DNAm appears directional because the initial state was com-
pletely methylated or unmethylated at these sites. Alternatively, given the 
robustness of variability in methylation across age groups revealed by 
many studies, it is possible that consistent shifts in patterns of DNAm 

Marker Chr Position Rate of Change (SD) HR (95% CI) Gene*

cg04373937 14 30552825 0.0003 (0.0022) 0.66 (0.53, 0.82)
cg16096311 1 151693261 0.0002 (0.0022) 1.51 (1.20, 1.90) CELF3, RIIAD1
cg24737067 17 34432601 −0.0002 (0.0021) 0.66 (0.54, 0.81) CCL4
cg19174658 22 45018513 −0.0006 (0.0021) 0.66 (0.53, 0.83) LINC00229
cg03976645 7 16724981 −0.0003 (0.0036) 1.51 (1.20, 1.88) BZW2
cg02772928 3 18277949 0.0002 (0.0024) 1.50 (1.22, 1.86) LOC339862
cg07457727 8 131451983 0.0005 (0.0026) 1.50 (1.19, 1.90) ASAP1
cg09544380 10 27703486 0.0002 (0.0024) 0.67 (0.55, 0.80) PTCHD3
cg05376185 1 47082869 −0.0001 (0.0035) 1.50 (1.20, 1.88) MKNK1, MOB3C
cg13735018 6 158404121 −0.0008 (0.0027) 1.50 (1.18, 1.91) SYNJ2
cg20585841 8 102729926 0.0006 (0.0034) 1.50 (1.20, 1.88) NCALD
cg26078407 2 240225062 0.0006 (0.0034) 1.50 (1.19, 1.89) HDAC4, MIR4269
cg07735969 16 68418473 −0.0001 (0.0030) 1.50 (1.21, 1.86) SMPD3
cg16989443 1 1849195 0.0003 (0.0019) 0.67 (0.53, 0.84) CALML6, TMEM52, C1orf222
cg16248783 2 38304146 0.0002 (0.0019) 1.50 (1.23, 1.83) RMDN2, CYP1B1

Notes: CI = confidence interval. Markers were identified based upon p value < .001 and a HR > 3/2 or < 2/3.
*Gene symbols corresponding to transcripts within 10K, bold text indicates the closest gene where more than one transcript.

Table 2.  Continued

Figure  2.  Overlap between selected markers from survival analyses and 
markers with statistically significant rates of change or cross-sectional 
associations with age.

Figure 3.  Estimated survival after 9-year follow-up by age adjusted rate of 
change in methylation below (solid lines) or above (dashed lines) the median 
at markers of interest.
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with time reflect expected change: direct preprogrammed modification 
of the genome or modification that is a consequence of other perpetual 
processes that have little or no influence on the development and clinical 
progression of diseases that are major causes of death in older persons. 
The true evolutionary scope of this “biological clock” is unclear but 
would an important objective of future research.

Of note, among the markers identified in survival analyses, we 
observe markers of DNAm in close proximity to factors that modu-
late inflammatory pathways. For example, IRF4 (cg24319508) and 
PRKCZ (cg18120323) were in close proximity to markers where a 
HR of moderate magnitude and statistical significance was linked 
to a shift in the rate of change in methylation. IRF4 is a member 
of the IRF family of transcription factors that play diverse roles in 
innate and adaptive immune responses (19). IRF4 is expressed only 
in cells of the immune system and has been implicated in the differ-
entiation and development of several cell types including dendritic, 
B, plasma, and Th2 cells; a role in Th17 cell differentiation has also 
been indicated (19,20). IRF4 is also implicated in moderation of pro-
inflammatory pathways as a negative regulator of Toll-like recep-
tor signaling, and through a suggested role in suppression of Th2 
responses by regulatory T cells (19,21). PRKCZ may also play a role 
in moderating the immune response, as one of several enzymes that 
phosphorylate RelA it plays a role in the regulation of NF-κB (22). 
PRKCZ is a member of the atypical subgroup of the protein kinase 
C family of serine-threonine kinases (23). It has been proposed that 
the role of PRKCZ in the immune system extends beyond NF-κB to 
IL4-STAT6 and Akt signaling pathways (23,24).

Markers of interest were selected from the results of the survival 
analyses based upon relaxed significance criteria; however, further 
validation of potential pathways was attempted through evaluation 
with available biomarkers. Because of many connections between 
aging and inflammation, we assessed whether these two candidate 
methylation markers were associated with serum levels of inflam-
matory markers. We observed a significant association between the 
rate of change in methylation at cg18120323 and gp130, TNFαR1, 
and TNFαR2 level at 9-year follow-up, further supporting a role in 
dysregulation of inflammation a key contributor to aging syndromes 
and adverse outcomes in older adults (25).

Our study is a first step toward evaluating the role of methyla-
tion in biological aging. Limitations of the current study should be 
addressed in future studies. The study sample was limited and follow-
up time for mortality after year 9 was brief: power to detect association 
with mortality is low in the current study sample. The association of 

markers with small to moderate effect sizes may not have been recog-
nized and markers identified in this study should be confirmed in larger 
populations with extended follow-up and/or through meta-analyses. 
Evaluation of DNA methylation with alternative indicators of biologi-
cal aging may also help to determine the robustness of our observa-
tions. Analyses were limited to a single tissue: the observed changes in 
methylation may be unique to peripheral blood cells and methylation 
changes in other tissues may have stronger relationships with mortality. 
White blood cells also represent a heterogeneous mixture of cells and 
it was not possible to account for all common subtypes, some of which 
are known to change with age (eg, naïve T-lymphocytes): there may be 
residual confounding by cell type. Fuller and more refined measurement 
of methylation within white blood cells and across different tissues 
may help to further clarify the relationships of interest. Also, change in 
DNAm markers was estimated by only two points in time and may be 
affected by “regression to the mean.” Finally, we recognize that while 
the commercial array used to evaluate DNAm interrogates methyla-
tion across the genome it is far from comprehensive and likely does not 
capture a substantial portion of change in DNAm that occurs with age.

In spite of the limitations, our study also has unique char-
acteristics that contribute to the current literature. These data 
confirm longitudinally the existence of a robust pattern of age-
associated changes in DNAm. Our findings also contribute to the 
discussion on whether the pattern of methylation change can be 
considered a proxy measure of biological aging or used to meas-
ure “accelerated aging.” Future studies should continue to inves-
tigate whether “age-methylation signatures” are a biomarker of 
biological aging not only by analyzing their prognostic value for 
mortality in larger populations with longer follow-up but also 
exploring their correlation with other proxy measures, such as 
physical performance, disability, comorbidity, sarcopenia, and 
cognitive impairment.

Supplementary Material

Please visit the article online at http://gerontologist.oxfordjournals.org/ 
to view supplementary material.
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