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Abstract

At the 67th Gerontological Society of America Annual Meeting, a preconference workshop was convened to discuss the challenges of 
accurately assessing physical activity in older populations. The advent of wearable technology (eg, accelerometers) to monitor physical activity 
has created unprecedented opportunities to observe, quantify, and define physical activity in the real-world setting. These devices enable 
researchers to better understand the associations of physical activity with aging, and subsequent health outcomes. However, a consensus on 
proper methodological use of these devices in older populations has not been established. To date, much of the validation research regarding 
device type, placement, and data interpretation has been performed in younger, healthier populations, and translation of these methods to older 
populations remains problematic. A better understanding of these devices, their measurement properties, and the data generated is imperative 
to furthering our understanding of daily physical activity, its effects on the aging process, and vice versa. The purpose of this article is to provide 
an overview of the highlights of the preconference workshop, including properties of the different types of accelerometers, the methodological 
challenges of employing accelerometers in older study populations, a brief summary of ongoing aging-related research projects that utilize 
different types of accelerometers, and recommendations for future research directions.
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Physical Activity in Older Adults

Physical activity (PA) is an important modifiable risk factor for a 
wide range of diseases, chronic conditions, and functional outcomes 
(1–3), yet the simple question, “How active are you?” is difficult for 
participants to answer. PA questionnaires have been used for decades 
to increase our understanding of the individual, social, and environ-
mental factors that facilitate—or impede—PA in daily life and guide 
public health recommendations. Although there are advantages to 

self-reported measures of PA, there are also many well-recognized 
challenges to accurately employing and interpreting PA question-
naires, some of which are particularly relevant for aging research.

PA questionnaires may be subject to a high level of recall bias, 
specifically light activities such as casual walking, stair climbing, 
and household tasks, which may be difficult to conceptualize and 
quantify as “physical activity” (4–6). High intensity activities are 
more easily recalled, yet very few older adults actually perform high 
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intensity, or moderate-to-vigorous PA (MVPA), on a regular basis 
(7–9). Estimates from the general population indicate that light 
activities account for 20%–31% of daily activity, and likely more in 
older populations (6,10); thus, much of the daily PA in which older 
adults engage may go unrecognized by self-reported methods (11).

Although questionnaires facilitate comparison of measured func-
tional ability to daily functional engagement, for example, what par-
ticipants are able to do (in the lab) versus what they actually do (in 
daily life), interpretation of questionnaire results can be problematic 
if results are classified into broad categories (eg, light, moderate, vig-
orous) or into metabolic equivalents (METs) to standardize results 
to a given intensity threshold (12). Given that most daily activities 
in which older adults engage are light intensity (ie, ≤3 METs), a tre-
mendous amount of discriminatory power may be lost in this trans-
lation (12,13). Moreover, assignment of MET values to PAs fails to 
recognize age-related changes in speed of movement and metabolic 
function (14–16), or that METs of energy expenditure at age 40 may 
not be equivalent to METs of energy expenditure at age 80.

New Technology, New Challenges

Recent advances in PA monitoring (eg, accelerometers) provide 
researchers with unprecedented opportunities to increase and refine our 
understanding of the health benefits of PA by assessing daily quantities 
of activity, as well as circadian patterns and trends. Accelerometers use 
sensors to detect accelerations in one-to-three orthogonal planes; ante-
rior–posterior, mediolateral, and vertical (17). They are relatively small 
in size, wireless, and noninvasive. Most models have a long battery life 
(30–45 days or more depending on sampling frequency), generating an 
objective comprehensive assessment of daily free-living PA across mul-
tiple levels of exertion (18). These features provide a wealth of oppor-
tunity to assess low levels of activity across the full range of intensity 
not captured by questionnaires and have the potential to greatly 
increase our knowledge base of PA in older populations beyond time 
spent in MVPA. Yet with this new technology come methodological 
challenges, including choosing a device best suited for an older study 
population, determining the ideal body placement, and learning how 
to handle, process, and analyze the massive volumes of data generated 
by this detailed level of monitoring (11,19–21).

Evolution of Wearable Activity Monitors 
(Accelerometers)

In the last decade, the popularity of PA monitors has exploded in 
both research and consumer settings. Recent estimates indicate the 
market for performance monitors—both consumer and research 
grade—is expected to exceed 60 million units by 2018 (22). Research 
publications on Scopus of studies using data from PA monitors/
accelerometers have also shown tremendous growth from <50 pub-
lications in 1990 to >600 publications in 2013 (23). This has been 
accompanied by confusion surrounding which types of devices are 
best suited for addressing specific research questions, whether data 
from different research-grade devices are in any way comparable, 
and whether consumer monitors and smart phone applications are 
suitable surrogates for research-grade monitors (19).

Consumer or Research Grade?

Consumer grade devices are generally smaller, sleeker, and less expen-
sive than research grade monitors. The better known brands include 
Apple iWatch, Microsoft Band, Nike Fuel Band, Fitbit, Samsung 

Gear Fit, Jawbone, and Garmin. They provide consumers with the 
ability to track data over time and usually provide an estimate of 
total daily step counts, caloric expenditure, and/or distance traveled. 
These devices are often released to the consumer market with little 
scientific evidence of validity, and the algorithms used to calculate 
steps, energy expenditure, and distance from measured accelera-
tion are proprietary, with no access to the raw acceleration data. 
Recent attempts to validate consumer grade devices against energy 
expenditure or step counts are somewhat problematic because each 
device has its own method of calculating the desired output metrics 
(24–26). Moreover, without access to the raw acceleration data, it 
is very difficult to determine the accuracy and sensitivity of these 
devices, and whether they are suitable for use in research specific to 
older, more sedentary populations (19).

Research grade devices are generally bulkier and more expensive 
than consumer grade devices, and involve significant software costs. 
The better known brands include Actiheart, Actigraph, Actiwatch, 
GENEActiv, and ActivPal. These devices are well validated in the 
literature, although generally in small, tightly controlled laboratory 
settings with younger individuals (27–34). They provide research-
ers with detailed access to the data, usually in terms of individual 
activity counts or gravitational acceleration (“g”) units for a given 
unit of time. Although the software packages that accompany these 
devices have the ability to derive estimates of energy expenditure 
and/or step counts, the algorithms used to generate these estimates 
are generally developed in young, healthy populations, with few 
populations including adults older than 60 years of age (27,29,35). 
Given the vast changes that occur in mobility and body composition 
with aging, general population level algorithms may not be suitable 
for older populations, and use of these estimates may thus lead to 
significant error and biased results (19,36).

Accelerometer Placement

Common placements for devices include the hip, wrist, thigh, chest, 
and ankle. However, there is great confusion about the “best” place-
ment to accurately capture the many different types of activity that 
together contribute to total daily PA. The hip has traditionally been 
the most widely used placement site, because it is generally believed 
to capture the most movement associated with the larger muscles 
of the body, and thus correlate most strongly with energy expendi-
ture (5,13,17). However, in some studies, the hip location has led to 
problems with compliance, as many participants remove the device 
to sleep or to shower and forget to replace it (23). Moreover, it is 
usually worn on an elasticized belt at the waist, which can shift 
greatly throughout the day, thus moving the device and contributing 
to greater measurement error.

The nondominant wrist is emerging as a popular alternative to 
the hip as it generally increases compliance and total wear time (23). 
Participants are generally asked to wear wrist worn devices at all 
times, thus enabling measurement of PA, sedentary time, and sleep. 
In older, more sedentary populations, this placement may also cap-
ture activities that are more consistent with the most commonly per-
formed tasks of daily living (eg, cooking, dressing, light housework) 
and thus provide a more comprehensive picture of total daily activity 
(20,37). However, caution should be used when utilizing the wrist 
placement in populations using assistive devices such as walkers; the 
wrist often remains stationary when walking with assistive devices, 
particularly rolling walkers, and it is unknown how much movement 
the device registers under this scenario. Moreover, scoring methods 
to identify sleep and wake windows have not been defined; thus, use 
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of a sleep log may be required although programs to identify seden-
tary time and other functions are in development (38).

Methodological Challenges

Although wearable devices capture a wider range of different inten-
sities of activity than self-reported methods they have limited ability 
to detect specific types of nonimpact activities, including bicycling, 
swimming, yoga, and strength training. They also provide little 
information on the context of the activity when not accompanied by 
a daily log. Although they give an idea of the magnitude of the activ-
ity, in counts per minute (CPM) or g-units, without in-lab calibration 
there is little to no context of the relative intensity of activity for a 
given individual. Moreover, use of cutpoints and MET thresholds to 
define activity intensities created in younger populations may prove 
problematic in older populations who demonstrate slower speed of 
movement and greater energy expenditure during specific tasks (39).

Investigators should have a research plan in place for the large 
volumes of data generated by wearable devices, particularly at 
higher-frequency sampling. Sampling at 80 Hz (the commonly used 
sampling frequency for wrist accelerometry) provides 80 observa-
tions per second, generating a massive raw data file. Even if the data 
are smoothed into larger time intervals, large studies may be over-
whelmed by the amount of data to be stored, processed, cleaned, 
and analyzed. For example, 7 days of data smoothed into 1-minute 
intervals transforms to 10,080 data points per person (60 minutes * 
24 hours * 7 days).

Interpreting these data into clinically meaningful results is also 
challenging. Although steps and energy expenditure provide con-
textual relevance, it is imperative to remember that neither steps 
nor energy expenditure is directly measured by the accelerometer. 
Cumulative activity count methodology is useful for determining 
total daily PA, and calculating mean activity CPM highlights circa-
dian patterns, but both methods are based on proprietary manufac-
turer count algorithms (40). Some researchers have begun using the 
raw acceleration data for analyses to minimize the challenges associ-
ated with transforming acceleration data into interpretable metrics 
(23), yet the size and intensity of these data files make this option 
challenging, particularly in large-scale studies, and for those with 
limited data analysis resources.

Determining Wear Time

Determining the amount of time the accelerometer is actually worn 
is imperative for proper data interpretation and analysis. Automated 
wear time algorithms (13,41–43), participant wear logs (44), and 
visual inspection (43,45) have all been used to identify periods of 
nonwear. However, among older adults, different algorithms have 
been shown to predict varying amounts of wear time; resulting in 
differing estimates of PA, and particularly of sedentary time (44). 
Using a combination of wear-time logs and algorithms may improve 
reliability of estimates; however, participant logs are burdensome 
and may have large amounts of missing data. Visual inspection has 
been proposed as a replacement for wear-time logs when used in 
combination with wear algorithms (45); however, this method is also 
resource heavy and may be replaced by using a second algorithm for 
wear time (43).

Continuous or 24-hour wear protocols not only require detect-
ing periods of nonwear but also ensure that nonwear is distinct 
from sleep time. Several studies have identified sleep periods using a 
participant-reported sleep/wake log, and studies among children and 

young adults have begun to examine fully automated algorithms to 
detect sleep (46). Other sensors such as heart rate and/or tempera-
ture sensors may help differentiate wear time from nonwear time, 
but these features are not universally available on all monitors. More 
research is needed to compare different sleep and wear time algo-
rithms across body locations and particularly among older adults, 
who may have different activity and sleep patterns compared with 
younger populations.

Defining Thresholds of Intensity

Due to considerable heterogeneity in physical ability among older 
adults, efforts to define thresholds of activity have been challeng-
ing (47). Standardly defined moderate and vigorous intensity activi-
ties are difficult for many older adults to achieve and maintain 
for longer than a few minutes. Moreover, with increasing age and 
comorbidity burden, even simple tasks such as climbing stairs may 
become “vigorous activity” for the functionally challenged who have 
greatly reduced aerobic capacity. Recent analyses from the Lifestyle 
Interventions and Independence for Elders (LIFE) study showed that 
individually tailored cutpoints could be estimated using age and fast 
gait speed assessed during a 400-m walk test to avoid considerable 
underestimation or overestimation of actual minutes of PA achieved 
at the individual unit of analysis (47). Accordingly, this also raises 
concerns about conclusions related to the effects of MVPA on health 
outcomes from large epidemiological studies that apply fixed cut-
points to diverse populations, and suggests that researchers inter-
ested in defining MVPA in older populations should do so on an 
individualized basis (47).

Assessing sedentary behavior (SB), generally defined as activity 
between 1 and 1.5 METs while either sitting or lying down (48), is a 
growing area of interest in older populations. Because self-report of 
SB is unreliable, accelerometry is a particularly important methodo-
logical development for tracking SB (33). A common practice in the 
literature for hip-worn accelerometers has been to define activities 
below 100 CPM as SB; however, there is no solid empirical evidence 
to support this decision (33). Although recent work in sedentary 
adults suggests that a more appropriate cutpoint may be 150 CPM, 
it is unclear whether this cutpoint is appropriate for older adults 
(33), or whether using a single, vertical axis to define SB may be 
more informative (49). Other limitations in using cutpoints to define 
SB are that researchers are unable to identify different types of SB 
or the frequency of postural shifts, with recent evidence suggesting 
that this level of detail may be important in understanding health 
outcomes (50).

Accelerometer Use in Aging Studies

Although the challenges of using accelerometers in research are 
numerous, the benefits of measuring PA through movement hold the 
potential to substantially advance PA research. The following section 
provides a brief overview of several large studies of older popula-
tions that have employed accelerometers in their research efforts, a 
general overview of the data collected, and the pros and cons of the 
devices used (summarized in Tables 1 and 2).

Actiheart

The Actiheart device, a combined heart rate and uniaxial accelera-
tion monitor (Actiheart, CamNtech Ltd, Papworth, UK), is attached 
in a standard position to the chest with two electrocardiogram 
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electrodes. It has been used by the Baltimore Longitudinal Study of 
Aging (BLSA) and the Medical Research Council National Survey 
of Health and Development (NSHD). It was selected by these stud-
ies based on recommendations made by expert collaborators on 
the potential benefits of capturing data on both movement and 
heart rate.

BLSA
The BLSA is a study of normative human aging, established in 
1958 and conducted by the National Institute on Aging Intramural 
Research Program. Participants are followed for life and undergo 
extensive testing every 1–4 years depending on age. The BLSA began 
using Actiheart in 2007. Participants are fitted with the device at the 
conclusion of their clinic visit and asked to wear the device for the 
following 7 days and return it via express mail. Data (heart rate and 
activity counts) are measured in 1-minute epochs. Detailed results 
from the BLSA Actiheart data have been previously reported (40). 
Briefly, in a sample of 611 participants aged 32–93 (mean age 67, 
50% male), mean wear time was 6.2 days (range 2–8). PA declined 
1.3% per year for each 1-year increase in age, and older partici-
pants engaged in significantly lower levels of afternoon and evening 
PA compared with younger individuals (p < .01). After adjusting for 
age, functional performance, nonworking status, and higher body 
mass index were independently associated with lower levels of PA 
(p < .001).

The device performed well in terms of data collection, but 
interpretation of the data into estimates of energy expenditure 

(kilocalories) using the company software has been problematic 
(36). Restricting analyses to the count per minute data enabled 
characterization of cumulative daily PA as well as daily PA pat-
terns over multiple days (40). Participants complained about skin 
irritation and many are reluctant to wear the device at return visits, 
limiting its longitudinal appeal. Moreover, the device is uniaxial and 
does not provide access to the raw acceleration data, which may 
limit its utility as the field advances toward triaixal devices with 
raw data capabilities.

NSHD
The NSHD is a nationally representative British birth cohort 
that has been followed prospectively since birth in 1946 (51,52). 
The Actiheart was used in the NSHD in 2006–2011 when study 
participants were aged 60–64, as part of a major clinical assess-
ment (N  =  2,229) (52–54). Trained nurses attached the moni-
tor to the participant’s chest during the clinical assessment and 
participants were asked to wear the device for 5  days during 
which time heart rate and accelerometry counts were measured 
in 30-second epochs. At the end of the 5-day monitoring period, 
study participants were asked to return the monitors to the study 
team via mail for data download and processing. Mean wear time 
was 4.8 days, and of 1,829 participants who agreed to wear the 
device, 1,787 had 2 or more days of valid data available for inclu-
sion in analyses (53).

Initial analyses have examined these data in relation to indicators 
of health status, sociodemographic factors, and other health-related 

Table 1. The Devices Highlighted by the Aging Studies That Participated in the Workshop, Their Placements, Data Collection Frequencies, 
and the Pros and Cons of Each Device

Device Study Placement
Sampling  
Frequency (Hz) Pros Cons

Actiheart BLSA, NSHD Chest 32 Measures heart rate and 
movement

Participants complained 
about skin irritation from the 
electrodesSecure placement with electrodes 

prevents device shifting during 
wear time
Heart rate provides validation  
of wear time
Waterproof

ActivPAL The Maastricht Study Thigh 30 Accurate assessment of posture  
and postural changes
Allows access to raw data files
Waterproof wrapping and  
continuous wear are possible

Mild skin irritation may occur 
with continuous wear
Not effective in assessing 
moderate to vigorous levels of 
physical activity

Actigraph WHS, AGES, LIFE Right hip 30–100 Wide comparability to  
other studies
Allows access to raw data files
Long battery life
Large memory capacity

Participants removed belt for 
sleeping, some forgot to replace 
the belt the next day
Some participants complained 
the belt was not “fashionable”
Elastic belt shifted during 
wear time, which may lead to 
inconsistent measurement

Actical Framingham Right hip 32 Long battery life
Delayed start option
Waterproof
Lightweight
Low device failure rate

Participants removed belt for 
sleeping, some forgot to replace 
the belt the next day
Some participants complained 
the belt was uncomfortable
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behaviors (53). Poorer health status and lower socioeconomic posi-
tion were found to be associated with lower levels of activity and 
more time spent sedentary. In addition, those participants who had 
participated in leisure time PA earlier in adulthood were found to 
have higher levels of activity at 60–64 years than those participants 

who had been inactive, highlighting the value of tracking health 
behaviors over time. In further analyses, the activity data have been 
related to dual-energy X-ray absorptiometry measures of body com-
position at 60–64 and associations in the expected directions have 
been identified (55).

Table 2.  A Summary of the Studies Highlighted in This Review

Study
Number With Valid  
Accelerometry Data

Age  
Range (y)

Device  
Type

Instructions  
for Wear

Wear Time  
Methods

% Return  
Rate

Epoch Used  
for Analysis

AGES-Reykjavik 671 total (589 with  
4 or more days of  
requisite hours)

73–98 ActiGraph  
GT3X

Wear at all times.  
Remove only for  
sleeping, bathing,  
or swimming

4 or more days with 
≥10 h

99% Minute level 
counts converted 
to intensity 
thresholds

Mean = 6.4
Nonwear time defined  
as 60 min of zero counts

BLSA 611 (data collection  
ongoing)

32–93 Actiheart Wear at all times.  
Remove only  
for bathing or  
swimming

3 or more days with 
≥22.5 h

96% Minute level 
counts

Mean = 6.2 d
Nonwear time was  
identified using the  
heart rate data

Framingham* 2,684 24–83 Actical Wear at all times.  
Remove only for  
bathing

5 or more days with 
≥10 h

96% 30-s counts 
converted 
to intensity 
thresholds

Mean = 6.6
Nonwear time defined 
as 60 min of consecutive 
zero counts

Framingham* 1,272 46–95 Actical Wear at all times.  
Remove only  
while sleeping 
and bathing

5 or more days with > 
10 h

99% 30-s counts 
converted 
to intensity 
thresholds

Offspring/Omni 
Group 1

Mean = 6.3
Nonwear time defined  
as 60 min of consecutive  
zero counts

LIFE 1,171 (baseline) 70–89 ActiGraph  
GT3X

Wear at all times.  
Remove only for  
sleeping, bathing,  
or swimming

5 or more days with 
≥10 h

NA† Minute level 
counts converted 
to intensity 
thresholds

695 (24-month  
follow-up)

Mean = NA†

Nonwear time was  
defined as 90 min of  
consecutive zero counts

The Maastricht 
Study

2,642 (data  
collection ongoing)

40–75 ActivPAL Wear at  
all times

1 or more days  
with ≥14 h

99% Time spent 
sitting, standing, 
and steppingMean = 6 d

The device was  
worn continuously

NSHD 1,787 60–64 Actiheart Wear at all  
times. Remove  
only for bathing  
or swimming

2 or more days of  
continuous wear

99% 30-s counts

Mean = 4.8 d
Nonwear time  
was identified using  
the heart rate data

WHS 7,247 62–101 ActiGraph  
GT3X

Wear at all times.  
Remove only for  
sleeping, bathing,  
or swimming

4 or more days with 
≥10 h

96% Minute level 
counts converted 
to intensity 
thresholds

Mean = 6.8 d
Nonwear time  
was defined using  
a combination of  
participant logs and  
90 min of consecutive  
zero counts

Notes: NA = not applicable.
*The complete database includes additional participants with at least one valid day of wear time, with a valid day defined as 10 or more hours of wear time 

(n = 247 in the Third generation/Omni Group 2 and n = 573 in the Offspring/Omni Group 1), who were not included in these analyses.
†The LIFE study was a clinical trial, and accelerometers were distributed and returned in person; thus, return rates are irrelevant. In the first 6 months of the 

study, 5 d of data were available on 88.5% of the participants originally randomized to treatment.
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In light of recent findings, which highlight the need for caution 
when estimating energy expenditure using heart rate data (36) and 
when applying cutpoints to identify different intensities of activity, 
methods of modeling the accelerometry count data are now being 
utilized in collaboration with researchers who have already devel-
oped and applied these methods in the BLSA (40).

ActivPAL

The ActivPAL3 PA monitor (PAL Technologies, 60 Glasgow, UK) 
is a triaxial accelerometer that records movement in the vertical, 
anteroposterior, and mediolateral axes, and also determines posture 
(sitting or lying down, standing, and stepping) based on accelera-
tion. The device is adhered to the body location that most accurately 
reflects the desired measurement properties (eg, walking, stand-
ing, arm swing, etc.). The thigh has been the most popular site as 
it allows the user to discriminate among activities such as sitting, 
standing, and lying down, thus providing better discrimination of 
SBs (33,49).

The Maastricht Study
The rationale and methodology of the Maastricht Study have been 
described previously (56). In brief, the study focuses on the etiol-
ogy, pathophysiology, complications, and comorbidities of type 2 
diabetes mellitus and is characterized by an extensive phenotyping 
of participants residing in the Netherlands. Data from 2,642 partici-
pants, aged 40–75 years, who completed the baseline survey between 
November 2010 and September 2013 and had worn an accelerom-
eter, were available for the present analysis (57). The ActivPAL was 
attached directly to the skin on the front right thigh with transparent 
3M Tegaderm tape, after the device was waterproofed using a nitrile 
sleeve. Participants were asked to wear the accelerometer for eight 
consecutive days, without removing the device at any time. To avoid 
inaccurately identifying nonwear time, participants were asked not 
to replace the device once removed. Data were uploaded using the 
ActivPAL software and processed using customized software written 
in MATLAB R2013b (MathWorks, Natick, MA). Data from the first 
day were excluded from the analysis because participants performed 
physical function tests at the research center after the device was 
attached. In addition, data from the final wear day providing ≤14 
hours of data were excluded from the analysis. Participants were 
included if they provided at least 1 valid day (>14 hours of data).

Based on acceleration data, the total amount of time spent sit-
ting/lying, standing, and/or stepping was assessed during waking 
time using an automated algorithm to identify wake and bed times 
on an individual level on multiple days (ie, different wake and bed 
times for each day for each participant) (58). The algorithm is based 
on the number and duration of sedentary periods to identify bed 
times, and on the number and duration of active periods (standing 
or stepping) to identify wake times.

Participants provided on average more than six valid days of 
data with an average waking time of almost 16 hours. On average, 
participants spent 60.0% of their waking time sedentary, 27.4% 
standing, and 12.6% stepping. Men spent significantly more time 
sedentary than women (63.0% ± 10.1% vs 55.8% ± 9.8%); stand-
ing and stepping time were significantly higher in women than in 
men (30.2% ± 7.8% vs 24.8% ± 7.5%; 13.0% ± 4.0% vs 12.2% 
± 4.6%). With aging, sedentary time was significantly higher and 
standing time was significantly lower; no clear age-gradient in step-
ping time was found.

A major advantage of the ActivPAL PA monitor is that this 
device has been shown to be an accurate and precise monitor 
for measuring sedentary time and posture changes. Furthermore, 
the continuous wear protocol resulted in very good compli-
ance. Removing the device after up to 8 days of continuous wear 
resulted in minor skin irritation for some participants. Another 
limitation included the limited capability of the ActivPAL soft-
ware; in order to analyze the data beyond sitting/standing/step-
ping and changes in posture, more programing is required using 
customized software.

ActiGraph GT3X+

The ActiGraph GT3X+ (ActiGraph, Pensacola, FL) is a triaxial 
accelerometer that can be worn on the hip or wrist. It has been 
widely used in clinical research, including the most recent round of 
the National Health and Nutrition Examination Survey (NHANES), 
the Women’s Health Study (WHS), and the Age, Gene/Environment 
Susceptibility-Reykjavik Study (AGES-Reykjavik) (8,9,23,59). The 
ActiGraph GT3X+ is an updated version of the 7160 and GT1M, 
which were used in earlier waves of NHANES (2003–2004 and 
2005–2006) (13). The device collects and exports raw data as well as 
epoch (count) data using the manufacturer’s software. The WHS and 
AGES-Reykjavik both chose the Actigraph device for its battery life, 
memory capacity, access to raw data, and wide use by other studies. 
Both studies asked participants to wear the device at the right hip 
using an elastic belt for 7 days during waking hours.

WHS
The WHS is a completed randomized control trial (1992–2004), 
which examined vitamin E and aspirin on the risk of cancer and 
cardiovascular disease, among 39,876 healthy women, aged 
≥45 years (mean 71.6 ± 5.7  years) from across the United States 
(60,61). In 2011, data collection began for an ancillary study to 
examine PA using accelerometers and health outcomes among 
18,000 women. The WHS accelerometer study used a direct mail 
study design (11). Women who agreed to participate were mailed 
an accelerometer, detailed instructions, and a wear log through 
first class mail.

Initial analyses focused on the challenges and methods of a direct 
mail study design as well as examining patterns of SB among older 
women (mean age  =  71 at the time of accelerometer assessment) 
(11,44,59). There were considerable logistical challenges, including 
accelerometer return rates (>96% of participants returned acceler-
ometers within 30 days) and observed “lost monitor” rates (~2% of 
all mailings that translates to >400 monitors lost) (8,11). In addition 
to logistical challenges, direct mail designs also require considera-
tions for data reduction and wear time determination. Specifically, 
it is important to distinguish between when the participant is truly 
wearing the monitor and when the monitor is in the mail but may be 
producing a signal that looks like activity. A combination of using 
the data from the logs and the wear algorithms correctly identified 
the wear days. Patterns of SB among older women, such as bout 
frequency, bout length, and breaks in SB, were also examined (59). 
Results concluded that older women spent greater than two-thirds 
of their time in SB, but most of that behavior occurred in bouts of 
less than 30 minutes (59).

In general, participants tolerated the accelerometer well, with 
similar or better adherence to other studies. A few participants noted 
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the belt was not “fashionable” and the device would move through-
out the day.

AGES-Reykjavik Study
The AGES-Reykjavik Study is a population cohort nested in the 
Reykjavik Study, a study of cardiovascular disease that was initiated 
to investigate the basis for the epidemic of cardiovascular disease in 
the 1960s in Iceland. In 2002, the Laboratory of Epidemiology and 
Population Sciences from the Intramural Research Program of the 
NIA, began a multidisciplinary follow-up of this cohort. In 2007, 
a follow-up study was initiated, and during this time, a substudy 
involving collection of objectively measured PA was initiated. The 
sample size included 671 older adults aged 73–98 years without cog-
nitive impairment (Mini Mental State Examination ≥ 20) of whom 
589 had four or more valid days of data (≥10 hours of wear time).

Data were downloaded in raw format (g) and in 1-minute count 
epochs. Results indicated that total PA declined with age, and as in 
the BLSA, older participants had significantly lower activity in the 
afternoon (8,40). In all participants, sedentary time was the largest 
component of total wear time (75%), followed by light PA (21%), 
and moderate to vigorous activity was <1% (40). Men had higher 
average daily PA than women, with more moderate to vigorous 
activity, but women had more light intensity activity and less seden-
tary time than men (8).

A number of substudies were conducted as part of this study. This 
included a 6-minute walk wearing an accelerometer and heart rate 
monitor for about half the participants to allow the development of 
a specific algorithm for relative moderate to vigorous activity. Other 
methods studies included a sleep study and a study of activity in 
summer–winter. Results from these substudies are in process.

Actical

The Actical (Philips Respironics, Bend, OR) is an omnidirectional 
accelerometer that can be worn on the hip, wrist, or ankle. It is 
waterproof, has a 6-month lithium battery, and a delayed start 
option. Data are collected at a sampling rate of 32 Hz and can be 
downloaded in raw data or count format.

Framingham Results
The Framingham Heart Study (FHS), funded by the National Heart 
Lung and Blood Institute, is an ongoing prospective community-
based multigenerational family study initiated in 1948 to study 
cardiovascular disease and its risk factors and includes the Original 
cohort, Offspring cohort, and Third Generation cohort, and two 
multiethnic cohorts Omni groups 1 and 2 (62,63). Over the course 
of the study, investigator initiated grant funding expanded investiga-
tion beyond cardiovascular disease so that participants are deeply 
phenotyped including many age-related diseases, cognitive function, 
and physical performance. Participants undergo extensive research 
examinations every 2–8 years.

The FHS began using accelerometry in 2008. The Actical accel-
erometer (model no. 198-0200-00) was chosen after conferring with 
experts in the field and for the following features: waterproof, light 
weight, long battery life (6  months) delayed start option, and low 
device failure rate. Participants wore the device on a belt at the hip 
for 8 days to ensure seven full days of wear and they were provided 
with postage paid addressed envelopes to return the device to the FHS. 
A valid day was considered to be 10 or more hours of wear time. Data 
were downloaded and collected in 30-second epochs and raw data 

formats. Some participants reported difficulties with the belt or found 
wearing the device uncomfortable, whereas others reported taking the 
device off and forgetting to put it back on for one or more days.

MVPA was positively associated with a more favorable cardiovas-
cular risk factor profile (64), less visceral adipose tissue (65), and was 
inversely related to fatty liver (66). Furthermore, greater PA was asso-
ciated with lower vascular stiffness but greater left ventricular mass 
suggesting complex relations of PA with cardiovascular remodeling 
(67).

Insights From Intervention Studies and 
Clinical Research in Older Adults

One other new and evolving area of interest in aging research is the 
use of accelerometers to track changes in PA in intervention research 
and their potential to track the detection of falls and gait character-
istics. Although data are limited as yet, results support the psycho-
metric properties of accelerometers when used with older adults and 
demonstrate that their use in lifestyle interventions and in clinical 
research is promising. Data have been generated using accelerom-
eters in many chronic diseases including Parkinson’s and other neu-
rological diseases and pulmonary disease, particularly in the areas of 
clinical trials, where objective measurement of change is important.

Using an earlier model of the ActiGraph accelerometer with older 
adults in the context of cardiac rehabilitation (the Computer Science 
and Applications Accelerometer), Focht and colleagues (68) found 
that CPM during an actual bout of exercise correlated positively with 
6-minute walk time (r = 0.62). In addition, randomized controlled 
trials of exercise among older adults have shown that accelerometers 
are sensitive to changes in PA behavior. Using the Lifecorder Plus 
accelerometer, which yields output comparable with the ActiGraph, 
researchers documented anticipated increases in moderate levels of 
PA (MVPA) across intervals of 12–18 months when overweight or 
obese older adults with either knee osteoarthritis (68) or metabolic 
dysfunction (69) participated in exercise and weight management 
programs as compared with health education. Finally, in a recent 
multicenter trial (the Lifestyle Interventions and Independence for 
Elders, “LIFE” trial), Pahor and colleagues using the ActiGraph 
GT3X accelerometer across a period of 36 months found that older 
adults aged 70–89 with compromised physical function randomized 
to a structured physical activity intervention program (PA) had 
increases in activity ≥760 CPM as compared with those randomized 
to a health education comparison group (2). What is also interest-
ing about the accelerometry data collected at 6 months of follow-up 
are that irrespective of the cutpoint used—tailored, 760 CPM, 1,041 
CPM, or 1,952 CPM—the PA group always had higher levels of 
activity than the health education (47).

Finally, researchers are now applying machine-learning algo-
rithms in conjunction with triaxial accelerometers to classify 
activities behaviors of older adults into locomotion, lying, sitting, 
standing, and shuffling, placing the accelerometer on the lower spine 
at the fifth lumbar vertebrae as opposed to the hip (70). These new 
developments may well provide information about gait that could be 
important in understanding health outcomes such as falls and enable 
clinicians to track activity of older adults across time and develop 
algorithms for the assessment of fall risk.

Recommendation for Future Directions

The advent of accelerometers for PA research in older populations 
shows great promise for increasing awareness and understanding 
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of how PA changes with aging and how these changes contribute 
to the subsequent development of aging-related chronic conditions. 
Perhaps most importantly, accelerometers have the potential to cap-
ture the low levels of PA that are commonly performed by older 
adults, which are hard to quantify using questionnaires. These activi-
ties, which have been historically difficult to capture and conceptual-
ize, are representative of tasks related to activities of daily living and 
level of functional independence, two vital criteria for maintaining 
health and quality of life with aging.

Currently, the considerable lack of uniformity across stud-
ies in the areas of device type, placement, and data interpretation 
(counts, steps, calories, raw data) poses significant challenges to 
comparing and synthesizing results. For example, data collected 
at the thigh and hip and interpreted as steps using Actigraph soft-
ware are not directly comparable with data collected at the chest 
and interpreted as caloric expenditure by Actiheart software. 
Moreover, even if data were collected from a uniform placement 
such as the wrist and stored and analyzed in raw data format (g), 
there is no guarantee that data from different device brands would 
be directly comparable (20) and the derived metrics may not be 
clinically meaningful. More methodological research is therefore 
needed to establish proper guidelines for analyzing and interpret-
ing accelerometry data specific to older populations and translat-
ing results into clinically meaningful recommendations, including 
thresholds to define sedentary time versus active time and differ-
ences in measurement properties between younger and older study 
populations. Improved understanding of these factors will increase 
the likelihood of eventual harmonization and synthesis of results 
across studies.

Current public health recommendations for adults aged 65 and 
older in general good health include 150 minutes of moderate inten-
sity aerobic activity per week and muscle strengthening activities 
on two or more days (71). Although there are undoubtedly health 
benefits associated with this recommendation, there are substantial 
challenges for many older persons in achieving and maintaining 
moderate—or vigorous—intensity activity in their 70s, 80s, and 
beyond. The health benefits of light intensity activities, specifically 
in terms of maintaining active longevity in older populations, have 
not been defined. Accelerometry research holds the potential to 
address this gap by providing a more comprehensive assessment 
of the benefit of the overall amount of time spent ambulatory on 
a daily basis, and thus help shape future interventions specifically 
designed for increasing daily PA in older adults and future public 
health recommendations for maintaining mobility and longevity 
with aging.
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