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ABSTRACT: The synthesis of a-amino carbonyl/carbox-
yl compounds is a contemporary challenge in organic
synthesis. Herein, we present a stereoselective a-amination
of amides employing simple azides that proceeds under
mild conditions with release of nitrogen gas. The amide is
used as the limiting reagent, and through simple variation
of the azide pattern, various differently substituted
aminated products can be obtained. The reaction is fully
chemoselective for amides even in the presence of esters or
ketones and lends itself to preparation of optically
enriched products.

As one of nature’s key building blocks, @-amino acids form a
recurrent motif in bioactive natural products. In particular,
a-amino acids and peptides are becoming an increasing subset
of commercialized drugs.l In this context, non-natural @-amino
acids are especially interesting as their incorporation in peptides
can modify properties to a large extent,” and thus the synthesis
of a-amino carbonyl/carboxyl compounds has attracted
considerable attention from synthetic chemists.’

Direct ar-amination is perhaps the most logical and flexible
strategy to access @-amino carbonyl derivatives. Classical
approaches are summarized in Scheme 1, and electrophilic
amination features prominently among them.”” Due to the
need for an electrophilic source of nitrogen, most of these
methods actually lead to @-hydrazinyl or @-oxy-amino products
that need to be further modified to get to the biologically
relevant a-amino compounds. For instance, Ohshima et al.
recently presented an elegant copper-catalyzed amination of
carboxylic acid derivatives with a preformed iminoiodinane
which requires drybox manipulation and delivers tosyl-
protected amines that are not simple to deprotect.’ Another
approach allows to simply couple an amine with a carbonyl
under oxidative conditions, though only disubstituted amines
can be employed (Scheme 1b).”

Our group has recently exploited metal-free amide activation
as a powerful chemoselective strategy for the functionalization
of amides.”” Herein we report a chemo- and stereoselective a-
amination of amides employing simple azides, known as good
nucleophiles,'’ that proceeds under mild conditions (Scheme
1c) with release of nitrogen gas.

At the outset, we decided to study the reaction of the amide
la with the azide 2a using amide activation conditions
previously developed by our group.® Pleasingly, these
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Scheme 1. Strategies for the a-Amination of Carbonyl
Compounds
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conditions led to the smooth formation of 3aa in 52% isolated
yield. Importantly, single-crystal X-ray analysis confirmed the
anticipated connectivity of 3aa (Scheme 2)."'

With this encouraging preliminary result, we screened
different reaction conditions (employing substrate 1b), and
key observations are compiled in Table 1. The use of 2-
fluoropyridine was found to give a slightly increased yield
(Table 1, entry 2), while simple pyridine did not afford the

Scheme 2. Preliminary Study
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Table 1. Optimization of the Reaction Conditions™"”

o
\
o
X Th,0 N
/\)J\NQ LI : Ar!j\o
X DCM j
1b 2a 4 Ph
3ba
equiv equiv equiv yield
entry  of 2a of 4 of T,O X quench (%)
1 2.0 3.0 2.0 I 56
2 2.0 3.0 1.0 F 61
NaOH-NaCl
3 1.0 3.0 1.0 H 0
4 2.0 3.0 1.0 OMe 30
S 2.0 3.0 1.0 EF 74
6 2.0 2.0 1.0 F NaHCO, 80
7 2.0 2.0 2.0 F 79
8¢ 2.0 2.0 1.0 F NaHCO, 85
(1h)

“Reaction conditions: A mixture of amide 1b (0.3 mmol, 1 equiv) and
base in DCM (1 mL) was treated with Tf,0 at 0 °C. The mixture was
stirred at 0 °C for 15 min, then the azide 2a was added, and the
reaction was allowed to warm to room temperature for 1 h prior to
quenching. ®Yield determined by NMR analysis with mesitylene as the
internal standard. “Reaction time of 30 min prior to quenching.

desired product (entry 3). Significantly, the quenching method
had a noteworthy impact on the process. Quenching the
reaction mixture with a saturated solution of NaHCO;,
significantly improved the yield (entries S—7), while reducing
the1 1reaction time to 30 min finally gave the best results (entry
8).

With these optimized conditions, we decided to evaluate the
scope of the reaction with particular emphasis on functional
group tolerance. As shown in Scheme 3, various aliphatic
substituents were allowed on the amide component, giving
moderate to excellent yields of products (Scheme 3, 3ba—3ga).
Unsaturations were also tolerated (3ha) as well as aromatic
rings on both partners (3ia—3ja). Remarkably, this metal-free
reaction was chemoselective for the amide moiety in the
presence of an ester group (3ma), an alkyl nitrile (3la), or even
a naked methyl ketone (3ka). Similarly, the presence of halides
(3bd—3be), esters (3bg), or cyano groups (3bf) on the azide
did not significantly affect the yield. Of added interest is also
the formation of benzyl-protected amines using benzyl azide
(3bb).

We then turned our attention to the scope on differently
substituted, N-functionalized amides (Scheme 4). To our
delight, both cyclic and acyclic amides gave good results, even
when the nitrogen center carried hindered isopropyl- or benzyl
moieties (3pa—3qa). This showcases the general applicability
of this chemistry to various amide backbones, a synthetically
useful trait. Interestingly, Weinreb amides proved to be
unreactive under the reaction conditions, as well as lactams,
offering opportunities for chemoselectivity even among differ-
ent amide moieties.

Importantly, the method can be tuned to generate tertiary
amine products in at least two different manners (Scheme S).
For instance, use of an amide substrate 1w carrying a remote
bromine substituent triggers a domino amination/cyclization to
form a six-membered ring (Scheme S). Alternatively, the use of
a halogenated azide 2h delivers a-pyrrolidine 3oh in very good
yield. The flexibility of these two approaches is yet another
feature of this simple amination procedure. Indeed, few
amination procedures available in the literature lend themselves
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Scheme 3. Substrate Scope of the Amination of Amides with
Azides
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to preparation of both classes of compounds depicted in
Scheme 5.

At this stage, we wished to interrogate the system with regard
to stereoselectivity. Submitting racemic compound 1x, bearing
a stereocenter - to the amide carbonyl, to amination with azide
2a smoothly led to the desired product 3xa in 71% yield with
6:1 diastereoselectivity (anti:syn) (Scheme 6a).

On the other hand (Scheme 6b), the use of a chiral amide 1y
led to an excellent 15:1 diastereoselectivity upon amination
with azide 2a. The experiments in Scheme 6 delineate a highly
stereoselective amination procedure.

During our study of the functional group tolerance, one
specific experiment led to an unexpected result with
mechanistic implications. In the event, subjecting mixed adipic
acid ester/amide 4 to amination with azide 2a led to the
complex bicyclic product § (Scheme 7a), as elucidated by X-ray
analysis.'' Our interest piqued, we decided to quench the
reaction with NaBH, instead of the usual aqueous workup
(Scheme 7b). This afforded the diamine 7, suggesting that the
intermediate prior to quench might be an azirinium species 6."*
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Scheme 4. Direct Amination of Different Amide Backbones
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Scheme 5. Tertiary Amine Formation
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Scheme 6. Studies on Diastereoselectivity and Asymmetric
Induction
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Intrigued by these observations, we undertook density
functional theory (DFT) calculations to investigate the
mechanism (Scheme 8)."° In agreement with our prior
studies,8b we commenced our DFT analysis with N,N-ketene
aminal A (Scheme 8), formation of which experimentally
precedes addition of azide 2b.

As reflected by the experiments above (in particular Scheme
7b), the reaction pathway involves two distinct parts:
generation of amidinium D and hydrolytic liberation of
aminated amide E (Scheme 8).'' In particular, DFT
computations evidence the involvement of a discrete
keteniminium species B in the process (Scheme 8) which
undergoes nucleophilic addition from the azide component,
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Scheme 7. Mechanistically Relevant Observations
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“Free energies AGpcy and enthalpies AHp ¢y are given with respect
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forming N,N-ketene aminal C’. While the formation of C’ is
endergonic (A’ = B = C’: AGYcy = +54 kcal mol™"), the
reaction is ultimately driven by the subsequent highly exergonic
extrusion of dinitrogen (TS¢'.p, C' = D: AGpcy = —63.2 keal
mol™!).'"* The extrusion of N, is supported by a pivotal
n—0%*_, orbital overlap,'® and the formation of amidinium D

is a direct consequence of the stereoelectronic implications
thereof. Iminium D also represents the final, resting
intermediate prior to aqueous workup. The latter is a facile
two-step hydrolytic opening (D — E).'" These computational
results neatly rationalize the observations of Scheme 7.

In summary, we developed a metal-free, direct a-amination
of amides with simple azides that proceeds under mild
conditions through electrophilic amide activation. This trans-
formation is highly chemoselective for amides even in the
presence of other carbonyl derivatives. Furthermore, it displays
high stereoselectivity in multiple contexts, including asymmetric
induction. Key mechanistic experiments and DFT analysis
pinpoint the intermediacy of a pivotal azirinium/amidinium
intermediate with remarkable synthetic versatility.
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