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Abstract

To assess gene signatures related to humoral response among healthy older

subjects following seasonal influenza vaccination, we studied 94 healthy adults

(50–74 years old) who received one documented dose of licensed trivalent

influenza vaccine containing the A/California/7/2009 (H1N1)-like virus strain.

Influenza-specific antibody (HAI) titer in serum samples and next-generation

sequencing on PBMCs were performed using blood samples collected prior to

(Day 0) and at two timepoints after (Days 3 and 28) vaccination. We identified a

number of uncharacterized genes (ZNF300, NUP1333, KLK1 and others) and

confirmed previous studies demonstrating specific genes/genesets that are

important mediators of host immune responses and that displayed associations

with antibody response to influenza A/H1N1 vaccine. These included interferon-

regulatory transcription factors (IRF1/IRF2/IRF6/IRF7/IRF9), chemokine/chemo-

kine receptors (CCR5/CCR9/CCL5), cytokine/cytokine receptors (IFNG/IL10RA/

TNFRSF1A), protein kinases (MAP2K4/MAPK3), growth factor receptor

(TGFBR1). The identification of gene signatures associated with antibody response
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represents an early stage in the science for which further research is needed. Such

research may assist in the design of better vaccines to facilitate improved defenses

against new influenza virus strains, as well as better understanding the genetic

drivers of immune responses.

Keywords: Genetics, Immunology

1. Introduction

Influenza viruses infect, sicken, and kill humans across the world and across all age

groups, but this is especially true among older adults [1]. Influenza A viruses

(category C bioagents [2]) are single-stranded RNA Orthomyxoviridae viruses,

characterized by specific hemagglutinin and neuraminidase transmembrane

glycoproteins that generate subtype specific immune responses. Influenza A/

H1N1 gained prominence during the pandemic of 1918 when a highly pathogenic

novel H1N1 virus spread across the world, killing an estimated 50 million people

[3]. Since its re-emergence in 1977, A/H1N1 has been included in the seasonal

trivalent inactivated influenza (TIV) and in the inactivated quadrivalent influenza

vaccines.

Greater than 70–90% of healthy adults seroconvert to influenza vaccine [4].

When the vaccine is well matched, TIV is 70–90% protective against laboratory-

confirmed influenza infection and up to 90% protective against hospitalization in

healthy adults age <65 years [5, 6]. Unfortunately, protection against infection

and complications due to influenza by influenza vaccines is incomplete (with

failure rates up to 50–70% in the very young, elderly, and immunocompromised

individuals).

To date, few biological markers (or models) exist that explain the development of

immune responses to influenza vaccine, and/or predict vaccine failure. There is

evidence that host genetic factors impact the response to influenza A/H1N1 virus

infections and immune responses to influenza vaccination [7, 8, 9, 10, 11].

However, a more comprehensive understanding of the cellular and molecular

mechanisms of vaccine immunity is needed [12, 13, 14, 15, 16]. Several studies

have applied systems biology approaches to find molecular signatures of vaccine-

induced immune responses in humans [8, 9, 15, 17, 18, 19]. Utilizing gene-to-

biology and biology-to-gene approaches [20], which we define herein, together

with gene expression from next generation sequencing, we sought to identify

biological markers (genes/genesets) that could explain humoral antibody response

variations following seasonal influenza A/H1N1 vaccine in older adults.
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2. Materials and methods

2.1. Participants

Recruitment of subjects described herein is similar or identical to those published

by us elsewhere [21, 22]. As previously reported, healthy adults who received

2010–2011 seasonal trivalent inactivated influenza vaccine (Fluarix), containing

the A/California/7/2009 (H1N1)-like, A/Perth/16/2009 (H3N2)-like, and B/

Brisbane/60/2008-like viral strains, were enrolled in the study [22, 23].

Specifically, between August 2010 and October 2010, we enrolled 106 healthy

adults (ages 50 to 74 years), recruitment was designed to obtain a uniform

distribution across the age range. All participants underwent detailed review of

their vaccination history and were in good health during the length of this study.

Study participants were excluded from enrollment if they showed symptoms

consistent with influenza prior to or throughout the study. Blood samples were

collected prior to (Day 0, the baseline level of immune status) and after vaccination

(Days 3, the innate immune response; and 28, the peak of serum antibody

response). The Mayo Clinic Institutional Review Board granted approval for the

study. Written, informed consent from all subjects was obtained at the time of

enrollment.

2.2. HAI assay

Our description of the hemagglutination inhibition (HAI) assay is similar to those

we published elsewhere [22, 23]. Serum samples from each subject on Days 0, 3

and 28 visits were used for antibody titer determination. HAI assay was performed

with the influenza A/California/07/2009 (H1N1)-like virus strain, and developed

with 0.6% solution of turkey red blood cells (RBC) [24]. The HAI titer was defined

as the highest dilution of serum that inhibits RBC hemagglutination. Seroconver-

sion to the influenza virus vaccine, as described elsewhere [25], was defined by

either a four-fold increase in the antibody titers between the pre-vaccination and

the serum samples at Day 28, or an increase of antibody titers from <10 to ≥40 for

pre-vaccination and the Day 28 serum samples.

2.3. Next generation sequencing

The mRNA next generation sequencing methods are similar or identical to those

published for our previous transcriptomics studies [26, 27]. In brief, total RNA was

extracted from each sample of cryopreserved mixed PBMCs using RNeasy Plus

mini Kit (Qiagen) and RNAprotect reagent (Qiagen; Valencia, CA). RNA quantity

and quality were assessed by Nanodrop (Thermo Fisher Scientific, Wilmington,

DE) and Agilent 2010 Bioanalyzer (Agilent; Palo Alto, CA), respectively. Full-

length cDNA libraries were created in the Mayo Clinic’s Advanced Genomics

Technology Center, Gene Sequencing Facility using the mRNA-Seq 8 Sample
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Prep Kit (Illumina; San Diego, CA) according to the manufacturer’s protocols.

Poly-A RNA was isolated using magnetic purification with olido-dT coated beads,

fragmented, reverse transcribed into cDNA, and combined with Illumina adaptor

sequences. Library validation and quantification was carried out using DNA 1000

Nano Chip kits on an Agilent 2100 Bioanalyzer (Agilent). cDNA libraries (5–7pM)

were loaded onto individual flow cell lanes and single-end read sequencing was

performed using the Illumin HiSeq 2000 (Illumina) with Illumina’s Single Read

Cluster Generation kit (v2) and 50 Cycle Illumina Sequncing Kit (v3). The

sequencing reads were aligned to the human genome build 37.1 using TopHat

(1.3.3) and Bowtie (0.12.7). HTSeq (0.5.3p3) was used to perform gene counting

while BEDTools (2.7.1) was used to count the reads mapping to individual exons

[28, 29, 30].

2.4. Statistical methods

Total number of counts per gene were obtained from the mRNA expression and

used in all analyses. Quality control was assessed pre- and post-normalization

graphically with minus- vs-average and box-and-whisker plots. The GC content

and gene length adjustments were also evaluated graphically. Normalization of the

gene counts was done with Conditional Quantile Normalization, which accounts

for differences in library size and also adjusts for GC content and gene length [31].

These normalized values were used for subsequent analyses.

Our gene-to-biology analyses utilize per-gene analyses to understand the

relationship of gene expression with vaccine response. Due to the overall goal

of developing multivariable models of dichotomized vaccine response, the logistic

modeling framework was utilized. Specifically, per-gene logistic regression

models were fit with HAI response relative to non-response as the dependent

variable, and the normalized gene count as the independent variable on the log2
scale. These models were fit for each timepoint (Days 0, 3 and 28) and for the

differences in log2 normalized gene counts between timepoints (e.g., Day 3-Day 0,

Day 28-Day 0, and Day 28-Day 3). Evaluation of these timepoints allows us to

address baseline, innate and adaptive humoral gene expression associated with

response, as well as potentially identifying changes in gene expression as they

relate to HAI response (or non-response). Results are presented as odds ratios (OR)

for the 75th percentile relative to the 25th percentile of the gene expression value.

Genes that are described as upregulated are those genes that have a higher

expression level on average in the subjects who responded relative to those who

did not respond to vaccine (as measured by a four-fold increase in the HAI titers

from Day 0 to 28). Likewise, genes that are downregulated are those genes that

have lower expression levels in subjects who responded relative to those who did

not respond.
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Our biology-to-gene analyses utilize a priori known biological information in the

form of genesets in order to maximize power and minimize false discovery.

Specifically, we utilized defined genesets to group genes into putative functional

groups for analyses. Genesets utilized for the biology-to-gene analyses are the

genesets (MSigDB) with significant changes over time (Day 0, Day 3, Day 28)

[32]. Negative binomial generalized estimating equation models were used to

assess changes in gene expression over time, utilizing moderated over-dispersion

parameter estimates from edgeR [33, 34, 35, 36]. These p-values were then

combined for all genes within a geneset utilizing the gamma method of combining

p-values, a self-contained geneset testing method shown to have greater power than

Fisher’s method of combining p-values [20, 37]. Redundancy analysis [38] was

used to reduce the number of genes considered within each geneset model; genes

were excluded from further considerations if the R2 for the gene was greater than

0.75 when modeled as a function of the other genes from the geneset. The

remaining genes from each of these genesets were then included in elastic net

penalized logistic regression models (α = 0.5 and 0.8) of HAI response relative to

non-response as the dependent variable [39]. Models were fit using the “glmnet”
function in R [39], and the optimal model selected according to the minimum

misclassification error based on 10-fold cross validation. Results are presented

with misclassification error rates and coefficients from the models.

2.5. Gene regulatory interactions

We consulted databases of known regulatory interactions to further understand the

biologic relationships linking the genesets that are individually informative for

HAI response. The result is a regulatory network within which differential

expression patterns inform HAI response. To link genesets together and generate

this network, we combined NCI-Nature pathways [40], the Transcription Factor

Encyclopedia [41], and a directed protein interaction network [42], where edge

direction indicates passage of a signal (e.g., protein interaction leading to

phosphorylation). This focuses the analysis on regulatory interactions that should

be robust to subject-specific details.

Using this network, we computed a geneset interaction metric, quantifying the extent

to which two genesets can be directly regulated by each other. For genesets s1 ¼
fg11; g12; : : : ; g1ng and s2 ¼ fg21; g22; : : : ; g2mg that contain ∥s1∥ ¼ n and ∥s2∥ ¼
m genes, let the neighbors of a gene, those adjacent to the gene in a pathway, be

A ðgÞ . Further, let the neighbors of set s1 that are also members of s2 be denoted

A s1
� �2 and U the unique set union. Finally, let the unique overlap between the

two sets then be: O s1; s2
� � ¼ U A s1

� �2
;A s2

� �1� �
. Then the interconnectivity is

formally defined as: G ¼ ∥O s1; s2
� �

∥=∥U s1; s2
� �

∥ .
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3. Results

3.1. Subject demographics

During the HAI testing, 106 subjects were assayed for HAI titer, and 12 subjects were

excluded: 11 individuals based on influenza virus vaccine serology (i.e., due to a

ceiling titer of 1:640 for which no subject augmented their titer fromDay 0 to Day 28)

[43]; and one subject based on cDNA library preparation failure. Thus, 94 of 106

participants were used in the study. Thirty-six of the 94 vaccine recipients (38.3%)

had at least a four-fold increase in HAI titer to influenza A/H1N1. Demographic data

and other characteristics of these subjects are shown in Table 1. Baseline (Day 0)

influenza-specific HAI titer (median titer of 1:80; IQR 1:40; 1:160) demonstrated the

presence of pre-existing HAI antibodies. Median HAI titer for the entire cohort

increased by Day 28 (median titer of 1:320; IQR 1:80; 1:320, p< 0.001). Comparing

the median HAI titer values between responders (n = 36) and non-responders (n =

58), responders had a lower baseline titer compared to non-responders (p = 0.003)

(Table 1). Pre-existing immunity, as measured by HAI titers at baseline, had a strong

positive correlation with Day 28 titers for subjects classified as responders (r = 0.758,

p = 8.62 × 10−8) and for those classified as non-responders (r = 0.900, p = 7.72 ×

10−22). The change in HAI titer from baseline to Day 28 is illustrated in Fig. 1.

Table 1. Demographic and immunological variables of the study subjects.

Variable Non-responders
(N = 58)

Respondersa

(N = 36)
Overall
(N = 94)

Age, years, median (IQRb) 59.7 (55.9; 69.0) 59.7 (55.0; 63.8) 59.7 (55.4; 67.0)

Gender
(n, %)

Female 37 (63.8) 20 (55.6) 57 (60.6)

Male 21 (36.2) 16 (44.4) 37 (39.4)

Race
(n, %)

Caucasians 57 (98.3) 36 (100.0) 93 (98.9)

Others 1 (1.7) 0 (0.0) 1 (1.1)

HAI titer, median
(IQRb)

Day 0 1:160 (1:80, 1:160) 1:80 (1:40, 1:80) 1:80 (1:40, 1:160)

Day 3 1:160 (1:80, 1:160) 1:80 (1:40, 1:160) 1:80 (1:50, 1:160)

Day 28 1:160 (1:80, 1:320) 1:320 (1:280, 1:1280) 1:320 (1:80, 1:320)

a At least four-fold increase in the antibody titers between the pre-vaccination and the Day 28 sample.
bIQR, interquartile range.
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3.2. Gene expression associated with HAI response (gene-to-
biology approach)

Overall transcriptomic expression (14,917 genes with a median count ≥ 32 reads at

least one timepoint were used for all analyses) related to HAI response (defined as

a positive four-fold change in HAI titer between Day 0 and Day 28) was analyzed

at Days 0 (n = 688 genes had p < 0.05), 3 (n = 163 genes, p < 0.05) and 28 (n =

232 genes, p < 0.05). The false discovery rate (FDR) values for these genes were

>0.9; we report herein a brief summary of these findings. A comparison between

responders and non-responders failed to identify differentially expressed genes at

Days 0, 3, and 28 when multiple-testing correlation was applied to the direct

comparison analysis (FDR <0.05). At Day 0, 49 unique genes had a p-value <0.01.

At Days 3 and 28, eight and seventeen genes, respectively, had a p-value <0.01

(Supplemental Table 1). The top genes with a p-value of<0.002 encode for proteins

that play a central role in numerous cellular processes (such as ARHGEF10, MLST8,

SPATA24, and C17orf97), which are likely to be important in immune response.

Changes in gene expression at Day 28 relative to baseline identified 328 genes (p

< 0.05) significantly associated with HAI response. The top 30 genes with

[(Fig._1)TD$FIG]

Fig. 1. Comparison of baseline HAI titer values to Day 28 HAI titer values. Scatterplot of the HAI titer

at Day 28 versus the HAI titer at baseline. The points on the graph are proportional to the number of

individuals with the corresponding titers. The line through the plot is the divide between the responders

and the non-responders and is based on a four-fold change from baseline to Day 28. Subjects above the

line have a 4-fold or greater change and are responders, while the subjects below the line are classified

as non-responders.
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significant (p < 0.01) transcriptional changes encode for numerous proteins that

comprise signal transduction pathways and transcriptional regulators (TGFBR1,

ZNF300, GLIS2), heat shock proteins and activators of dendritic and T cells

(HSPA14), transmembrane and nucleoporin complex glycoproteins (TM9SF3,

NUP133, CD200), members of RAS oncogene and kallikrein families (RAP2A,

KLK1), along with a number of proteins participating in a various physiological

functions (GPRIN1, GPR153, EGLN1) (Fig. 2A). The majority of these

differentially expressed genes were upregulated. In addition, changes in gene

expression related to HAI response from Day 28 minus Day 3 and from Day 3

minus Day 0 identified 118 (p < 0.05) and 188 (p < 0.05) genes, respectively.

Further, Fig. 2B and C show the results for the genes differentially expressed from

Day 28 minus Day 3, p < 0.01; and the six genes differentially expressed from Day

3 minus Day 0, p < 0.01, respectively. These genes included calcium binding

protein A5 (S100A5), putative RNA helicase (DDX28), zinc finger protein 565

(ZNF565), a regulator of NF-kappa-B-mediated transcription (TONSL), nucleo-

porin protein (NUP133), and other genes with unknown function.

3.3. Geneset signatures associated with HAI response (biology-
to-gene approach)

Our goal was to build multivariable regression models that explain variation in HAI

response. When all genes were used to build multivariable models of HAI response,

no genes entered the model, regardless of whether the Day 0, Day 28, or Day 28–Day
0 delta were used.We reasoned that pathways having statistically significant changes

over time would most likely contain those genes changing in response to vaccine.

Thus, genesets that were previously identified as having significant changes over time

in our mRNA expression data (p < 0.001, FDR < 0.05) were used in models to

predict HAI response (unpublished data). There were a total of 339 genesets for which

models were generated. Thirteen genesets exhibited the ability to explain the odds of

HAI response with models containing genes achieving a cross-validated error rate

<35%. Many of the genes encompassing these 13 genesets have various and/or

unidentified functions (Table 2); however, several genesets were related to immune

functions (TGFBR1, CCR5, CCR9, ADAR, IRFs, CCL5, BAX, MAP2K4, MAPK3,

NSMAF), including production of antibodies (IFNG, IL10RA, TNFRSF1A) (Fig. 3

and Fig. 4). For example, interferon regulatory factor 1 (IRF) and IRF7 genes

function as transcriptional activators of type I IFN genes (α and β) and were found to
be significantly upregulated in relation to theHAI response, and IRF2, IRF6 and IRF9

genes were found to be downregulated (Fig. 4). Interestingly, when the models were

used to classify the glass ceiling subjects (i.e., due to a ceiling titer of 1:640), nine of

the 11 subjects were classified as non-responders.
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[(Fig._2)TD$FIG]

Fig. 2. Univariate HAI response. Forest plots displaying the odds ratios and confidence intervals for the genes with p < 0.01 from univariate logistic regression models with positive HAI response

as the dependent variable. Odds ratios represent the change in odds of a positive HAI response as a result of moving from the 25th percentile to the 75th percentile of the gene expression. The

vertical dashed line corresponds to an odds ratio of 1.0. In panel A, the change in gene expression between days 0 and 28 (Day 28 minus Day 0 delta) is the independent variable. Similarly, panel B

shows results for (Day 28 minus Day 3) delta models, and panel C shows results for (Day 3 minus Day 0) delta models.
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Table 2. Top 13 genesets with minimum cross validated error rate <0.35 in penalized regression models of

HAI response.

Geneset Name [32] Delta α Genes Standardized
Coefficients

Minimum
CV Error

NOL7: Genes down-regulated in SiHa cells by stable expression of
NOL7
(HASINA_NOL7_TARGETS_DN [62])

Day 28 vs
Day 0

0.8 ANGPT1 -0.023 0.29

TGFBR1 0.628

Purine: Genes involved in Purine salvage
(REACTOME_PURINE_SALVAGE)

Day 28 vs
Day 0

0.5 ADA 0.008 0.32

ADAL -0.08

ADK -0.363

AMPD3 -0.08

HPRT1 0.633

PNP 0.15

Ceramide: Ceramide Signaling Pathway
(BIOCARTA_CERAMIDE_PATHWAY)

Day 28 vs
Day 0

0.8 BAX 0.197 0.33

MAP2K4 -0.538

MAPK3 0.006

NSMAF 0.043

TNFRSF1A 0.443

Kurozumi: Inflammatory cytokines and their receptors modulated in
brain tumors
(KUROZUMI_RESPONSE_TO_ONCOCYTIC_
VIRUS_AND_CYCLIC_RGD [63])

Day 28 vs
Day 0

0.8 CCR5 0.065 0.33

CCR9 -0.198

IFNG 0.317

IL10RA 0.063

SHH: Sonic Hedgehog Pathway
(BIOCARTA_SHH_PATHWAY)

Day 28 vs
Day 0

0.8 DYRK1A 1.108 0.34

DYRK1B -0.098

GLI1 0.102

GLI3 0.099

GSK3B 0.684

PRKACB -0.393

PRKAR1A 0.973

PRKAR2B -0.12

PTCH1 0.41

SMO 0.378

SUFU -0.238

(Continued)
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Table 2. (Continued)

Geneset Name [32] Delta α Genes Standardized
Coefficients

Minimum
CV Error

CM: Genes annotated by the GO term GO:0048475.
(COATED_MEMBRANE)

Day 28 vs
Day 0

0.8 AFTPH 0.035 0.34

AP3S1 0.445

MC: Genes annotated by the GO term GO:0030117
(MEMBRANE_COAT)

Day 28 vs
Day 0

0.8 AFTPH 0.035 0.34

AP3S1 0.445

ERG: Genes down-regulated in prostate cancer samples bearing the
fusion of TMPRSS2 with ERG
(SETLUR_PROSTATE_CANCER_TMPRSS2_
ERG_FUSION_DN [64])

Day 28 vs
Day 0

0.8 ITGAD 0.28 0.34

KLHL21 0.254

MPPED2 -0.102

RAB27A 0.088

AMI: Acute Myocardial Infarction
(BIOCARTA_AMI_PATHWAY)

Day 28 vs
Day 3

0.5 COL4A3 0.124 0.34

F2R 0.444

PLAT -0.044

PROC -0.634

PROS1 0.07

TFPI 0.478

EIF: Eukaryotic protein translation
(BIOCARTA_EIF_PATHWAY)

Day 28 vs
Day 3

0.8 EEF2 0.168 0.34

EEF2K 0.351

EIF1AX -0.557

EIF2S1 -0.104

EIF2S2 0.027

EIF2S3 -0.303

EIF3A -0.57

EIF4A1 -0.191

EIF4A2 0.056

EIF4E 0.485

EIF4G3 0.35

EPA: Extrinsic Prothrombin Activation Pathway
(BIOCARTA_EXTRINSIC_PATHWAY)

Day 28 vs
Day 3

0.5 F2R 0.417 0.34

F3 0.24

F5 0.006

PROC -0.673

(Continued)
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3.4. Interactions between genesets

In order to better understand the biological processes, we then identified

interrelationships in these 13 genesets (Day 28 minus Day 0 and Day 28 minus

Day 3). We found four genesets (NOL7, CERAMIDE, KUROZUMI, and STING)

Table 2. (Continued)

Geneset Name [32] Delta α Genes Standardized
Coefficients

Minimum
CV Error

PROS1 0.095

TFPI 0.413

STING: Primary innate immune response genes induced in 293T cells
by overexpression of STING (TMEM173)
(ISHIKAWA_STING_SIGNALING [65])

Day 28 vs
Day 3

0.8 ADAR 0.791 0.34

CCL5 0.519

IRF1 0.552

IRF2 -0.609

IRF6 -0.328

IRF7 0.365

IRF9 -0.498

GOLGI: Genes involved in Transport to the Golgi and subsequent
modification
(REACTOME_TRANSPORT_TO_THE_
GOLGI_AND_SUBSEQUENT_MODIFICATION)

Day 28 vs
Day 3

0.8 B4GALT1 0.25 0.34

B4GALT2 0.439

B4GALT4 -0.019

MAN1C1 -0.079

MCFD2 -0.282

MGAT2 -0.699

MGAT3 0.465

MGAT4A -0.698

MGAT4B 0.111

SAR1B 0.087

SEC13 -0.949

SEC23A 0.319

SEC24B -0.504

ST8SIA6 0.286

Results from the top 13 genesets with minimum cross validation error rate <0.35 in the elastic net penalized logistic regression models

of HAI response. The geneset name provides the abbreviation that is used for simplicity in the text, a brief description and geneset

name from the MSigDB [32] and the actual gene. Delta is the time period that geneset was found to significantly change over time; α is

the elastic net penalty for the model; symbol is the gene symbol of genes that remained in each model; coefficients are from the model

at the minimum misclassification error rate and the minimum CV error rate is the observed error rate after 10-fold cross validation.

Article No~e00098

12 http://dx.doi.org/10.1016/j.heliyon.2016.e00098

2405-8440/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00098


that capture the bulk of identified genes and their interactions (Fig. 5). The

interconnectivity (see Methods) within these genesets is unusually high. Randomly

generating 100,000 genesets of the same size and computing their interconnectivi-

ty, we generated a distribution with mean 0.24 and standard deviation 0.06, while

the observed interconnectivity is 0.90, revealing the observed network density to be

highly non-random. These genesets include members of the protein kinase

receptors, MAPK signal cascade, regulators of NFκB, cytokines/cytokine receptors,

chemokines/chemokine receptors, and interferon regulatory transcription factors.

NFκB interacts with IRF1 and IRF2, which regulate expression of CCL5 (C-C

motif ligand 5). CCL5 links the system to multiple C-C motif chemokine receptors,

which in turn interact with more C-C motif ligands. This integrated paradigm

places these diverse signaling processes into a common regulatory model.

4. Discussion

This study focuses on an examination of the genetics influencing variability in

humoral immunity, with the goal of identifying gene signatures and their influence

on the humoral immune response to influenza vaccine. Our primary focus was to

use two balancing analytical approaches to assess transcriptomic profiling of

[(Fig._3)TD$FIG]

Fig. 3. Multivariable correlates of HAI response: Geneset (Day 28 vs. Day 0). Results from the elastic

net logistic regression model for association of the genes in the “KUROZUMI” geneset with HAI

response. (A) The cross validated misclassification error rate (y-axis) as a function of the tuning

parameter (bottom x-axis) that governs the number of variables entered into the model (top x-axis). The

misclassification error rate indicates the portion of patients incorrectly classified. The error bars indicate

one standard error of the misclassification error rate. The vertical dashed lines indicate either the model

with the minimum cross validated error rate, or the model with cross validated error rate within one

standard error of the minimum rate. (B) The logistic regression coefficients for the genes selected in the

model with the minimum misclassification error. IFNG, IL10RA and CCR5 genes are positively

associated with influenza HAI response, whereas CCR9 gene is negatively associated with influenza

HAI response.
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influenza vaccine-induced humoral (HAI) response in older adults [20]. Both gene-

to-biology and biology-to-gene approaches were used to assess gene expression

and to characterize genesets in relation to influenza vaccine-induced humoral

antibody response. The gene-to-biology approach is an inductive, evidence-based

approach that utilizes individual per-gene variables. In contrast, the biology-to-

gene approach is an empirical approach that relies on known biological knowledge

to create genesets recognized to be involved in the immune response processes

[20]. Unlike our gene-to-biology approach, the latter analyses begin at the variable

set level and drill down to the per-variable level.

Our gene-to-biology per-gene analyses identified differentially expressed novel

and known genes related to influenza-specific HAI response. Since the FDR values

for these findings are large, we discuss them only briefly here. The majority of

transcriptomic changes related to positive HAI response were observed at Day 28

relative to baseline (the peak of adaptive humoral immune response mediated by

memory B cells). Twenty-two of the top 30 (73.3%) genes with significant (p <

0.01) transcriptional changes were found to be upregulated (Fig. 2A). The top two

genes differentially expressed in our study from Day 28 minus Day 0 are TGFBR1

(OR 2.72; p < 0.002) and the X chromosome-linked IFT52 genes (OR 2.78; p <

[(Fig._4)TD$FIG]

Fig. 4. Multivariable correlates of HAI response: Geneset (Day 28 vs. Day 3). Results from the elastic

net logistic regression model for association of the genes in the “STING” geneset with HAI response.

(A) The cross validated misclassification error rate (y-axis) as a function of the tuning parameter

(bottom x-axis) that governs the number of variables entered into the model (top x-axis). The

misclassification error rate indicates the portion of patients incorrectly classified. The error bars indicate

one standard error of the misclassification error rate. The vertical dashed lines indicate either the model

with the minimum cross validated error rate, or the model with cross validated error rate within one

standard error of the minimum rate. (B) The logistic regression coefficients for the genes selected from

the model that were selected from the model at the minimum misclassification error. ADAR, IRF1,

IRF7, and CCL5 genes are positively associated with influenza HAI response, whereas IRF6, IRF2, and

IRF9 genes are negatively associated with influenza HAI response.
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0.003). Notably, in our geneset (NOL7), the TGFBR1 gene also demonstrated a

positive association with HAI response (Table 2). TGFBR1 encodes a serine/

threonine protein kinase protein that transmits TGF-beta signal from the cell

surface into the cell, and is known to affect cell growth and division [44].

Likewise, we found several interesting genes related to HAI response, such as:

ZNF300 (zinc finger protein 300); NUP133 (nucleoporin 133 kDa); KLK1

(kallikrein 1); CD200 (CD200 membrane glycoprotein); and SLC9A3 (solute

carrier family 9, subfamily A) (all downregulated with the exception of HSPA14,

GPRIN1, GPR153). Conversely, the lowest number of significant gene expression

changes associated with influenza HAI response was observed at Day 28 relative to

Day 3 (top six genes) and at Day 3 relative to Day 0 (top six genes). These included

the cellular growth and division (helicase DDX28), cell cycle progression and

differentiation (S100A5), as well as regulation of NF-kappa-B-mediated transcrip-

tion (TONSL) genes and also genes with unknown function. The specific role of

these differentially expressed genes in influenza-induced adaptive immunity is

unclear. Hence, a gene expression replication study and a closer examination of

transcriptional activation induced by influenza vaccine are needed.

As a variety of genes and gene pathways are involved in influenza virus-induced
immune responses, we also used biology-to-gene analysis to identify genesets

associated with potential for explaining the variation in influenza-induced humoral

immunity inmultivariable models.We discuss these in greater depth here, as the FDR

values and cross-validation methods indicate these findings are more likely

reproducible than the gene-to-biology findings. This analysis is based on use of

gene sets, which has been shown to be both more powerful for detecting associations

and less susceptible to false discoveries [32, 45]. This analysis identified 13 genesets

(from existing public databases and the literature) with components (genes) related

both positively and negatively to the HAI response. Most of the specific genes

encompassing these genesets correspond to biological processes, including immune

regulation, inflammation, signal transduction, cell cycle and proliferation, and

biosynthesis (Table 2).We observed significant transcriptomic changes in genesets at

both timepoints: Day 28 vs. Day 0 and Day 28 vs. Day 3. Among eight genesets that

were identified at Day 28 vs. Day 0, are the five-gene (BAX, MAP2K4, MAPK3,

NSMAF, and TNFRSF1A) signatures (CERAMIDE) that contain genes that are

involved in processes such as P53-mediated apoptosis (BAX), proliferation,

differentiation, and transcription regulation (MAP2K4, MAPK3), as well as the

nuclear factor-kappa B signal transduction and tumor necrosis factor receptor

superfamily (TNFRSF)-induced cellular responses such as inflammation (NSMAF,

TNFRSF1A). Proteins encoded by the MAPKs (mitogen-activated protein kinases)

family and TNF genes have been shown to play an important role in directing innate

and adaptive (cytokine) immune responses and thus may influence influenza-specific

antibody response [46, 47]. Notably, one of the important genes in the “predictive
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[(Fig._5)TD$FIG]

Fig. 5. Interactions between genesets. A) Geneset interconnectivity, the fraction of genes between two

genesets that are regulatory partners, is illustrated. B) Geneset interconnectivity is shown for the 13

genesets identified with the lowest cross-validation error rate. While some gene sets are disjoint (share

no genes), many are not. Some share enough genes that we simply place an ‘X’ in the plot to indicate

that the sets are too similar for the metric to be meaningful. C) All genes in the 13 genesets (Table 2) are

shown in their network context. The extent of interconnectivity, quantified in panel B, is evident. The

majority of genes can be unambiguously colored by their inclusion in only 4 genesets. Edge type
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signatures” of neutralizing antibody responses to seasonal influenza vaccine and

yellow fever vaccine (YF-17D) in humans was the TNFRSF17 gene, which encodes

BCMA, a receptor for the B cell growth factor (BLyS-BAFF) [48, 49] and plays a

significant part in B cell differentiation and B cell homeostasis [19, 50]. In fact, the B

cell growth factor TNFRSF17 gene predicted the antibody response to YF-17D

vaccine with up to 100% accuracy [50].

Another interesting result is the identification of the gene signature (Day 28 vs. Day 0)

(KUROZUMI) related to variation in HAI titers. All genes comprising this specific

geneset (CCR5, CCR9, IFNG, and IL10RA) have an important known role in immune

function. Studies have also established that CCR5 expression is necessary for

influenza-specific CD8+ T cell response and for the clinical outcome of respiratory

influenza A virus infection [51, 52, 53]. A study of the trivalent 2004–2005 influenza
vaccine found that an age-related decrease in antibody response is inversely

correlated with high IL-10 secretion (p < 0.0001) [54]. The finding of these gene

signatures, with a possible relation to humoral antibody response following influenza

A/H1N1 vaccine, leads to the high possibility that these gene signatures may be

involved in influenza virus-induced immune activation and antibody response.

Our data comparing Day 28 vs. Day 3 identified multiple differentially expressed

genesets involved in immunity, cell migration and tissue remodeling, mRNA

processing, coagulation pathway, protein transport and glycolipid biosynthesis. An

important geneset signature (STING) was found in association with HAI response

(ADAR, CCL5, IRF1, IRF2, IRF6, IRF7, and IRF9). Specifically, molecules involved

in proliferation and activation of natural killer (NK) cells, such as chemotactic

cytokine CCL5 (RANTES), as well as transcriptional factors that control type I

interferons (IRF1, IRF2, IRF6, IRF7, IRF9), were significantly induced. Consistent

with this finding, a systems biology study of yellow fever vaccine (YF-17D) in

humans also found that expression of specific IRF genes is correlated with innate and

adaptive (antibody) response.

As systems biology approaches have shown promise in other studies, we linked

prioritized genesets together using known regulatory interactions to form a local

vaccine response network. Interestingly, of the 13 genesets highlighted, only four

are required to cover most of the genes involved. These four genesets (i.e., NOL7,

CERAMIDE, KUROZUMI, and STING) form a regulatory core with which

members of the remaining gene sets interact. The high degree of interconnectivity

between these genesets points to their related function, supporting the biology-to-

indicates the type of interaction. For clarity, at most one edge is shown between any two genes, with

transcription factor regulation (Trans Fac) taking the highest precedence, followed by chemical

modification (including phosphorylation), and other protein-protein interactions. Genes that are in a

geneset, but not detected by mRNA-seq in our samples are colored a lighter shade with darker border.
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gene paradigm. The integration of these diverse signaling processes into a common

regulatory model is a first step in identifying the dominant features involved in

determining the strength of response to influenza vaccination.

Our findings are in agreement with a report demonstrating that the 2008–2009
seasonal influenza vaccination upregulated gene expression of interferon-inducible

genes (IRF9, IFIT1, MX1) in the peripheral blood 24 hours after vaccination [55].

Nakaya et al. utilized a systems biology strategy to examine immune responses to

vaccination against TIV and live attenuated influenza vaccine (LAIV) [19]. This

study also identified the increased expression of interferon-associated genes after

vaccination with LAIV, such as IRF3 and IRF7 encoding proteins involved in

interferon signaling pathways [19]. In addition to IRF7 and IRF9, in our study we also

found that IRF1 is positively associated with HAI response, whereas IRF2 and IRF6

are negatively associated with influenza-specific HAI. Consistent with these

observations, Querec et al. examined early gene signatures that predict immune

responses following the attenuated live YF-17D vaccination [50]. Their results

indicated the verification of expression of several genes, including transcription

factors IRF7 and IRF9 induced by YF-17D vaccine [50]. The biological

understanding of these findings to vaccine-induced immune responses must be

further examined.

Li et al. also applied systems biology approaches to examine gene signatures of

antibody responses to five human vaccines [18]. They observed the IRF2 and

DDX58-like signaling genes were strongly correlated with carbohydrate-specific

antibody titers to the meningococcal quadrivalent polysaccharide (MPSV4) and

meningococcal polysaccharide-protein conjugate (MCV4) vaccines [18]. In our

geneset (STING), the IRF2 gene demonstrated a negative association with HAI

response (Fig. 4). IRF2 is known to inhibit IRF1-facilitated transcriptional

activation of IFN-α and IFN-β and other genes that use IRF1 for transcription

activation [56]. This suggests vaccines against influenza and the meningococcus

may use common genes, such as the IRF2, and different innate and adaptive

immune pathways to produce antibody responses [11, 18].

In our study, pre-existing immunity and the relationship of pre-existing HAI

antibodies with postvaccination antibody titers had an effect on the resulting

humoral response following influenza vaccine. It has been shown that the history

of an individual’s influenza vaccination likely influences his/her current response

to vaccine [57]. Our data are consistent with other studies demonstrating that high

baseline antibody titer inversely correlated with the postvaccination response to

influenza A/H1N1 vaccine [15, 57, 58].

Our gene expression results are based on PBMCs, which consist of multiple cell

types. We and others have observed small fold changes in mixed PBMCs [26,

27]. Geneset approaches are known to have higher power to detect changes in
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situations where there are many changes of small magnitude, such that they are

not readily detected by individual per-gene analyses.

The strengths of our study include the use of next generation sequencing, which

allows for whole transcriptome profiling, and the application of comprehensive

statistics and bioinformatics algorithms. Our study focuses on older individuals

(50–74 years of age), as signs of immunosenescence (increased susceptibility to

infection, vaccine failure) are frequently observed in this age group [59, 60, 61]. Our

analytical systems biology (gene-to-biology and biology-to-gene) approach allows us

to study transcriptional associations with HAI titers that are highly likely (based on

the literature and biologic plausibility) to explain variations in influenza A/H1N1-

induced humoral immune responses. We performed transcriptome profiling using a

heterogeneous cell population (PBMCs) without sequential isolation of neutrophils,

monocytes and T cell subsets. As the immune response to influenza A/H1N1 is a

complex interaction of different cells and mediators and is not controlled by a single

cell type, we assessed and found genesets associatedwith influenza HAI response in a

heterogeneous cell population. Our gene expression results are based on PBMCs,

which consist of multiple cell types. We and others have observed small fold changes

in mixed PBMCs [26, 27]. Geneset approaches are known to have higher power to

detect changes in situations where there are many changes of small magnitude, such

that they are not readily detected by individual per-gene analyses. Exploratory studies

of transcriptional profiling of isolated cell types from peripheral blood before and

after influenza vaccine are in progress.

A major strength of this analysis approach is that we utilized a priori information

from existing genesets that group genes based on biological rationale. Our

approach of filtering based on gene expression changes over time, in essence a

sophisticated variance filter we believe most likely to retain genes that are altered

consistently in response to vaccine, helps to control false discoveries since it was

agnostic to the outcome variable. In addition, the elastic net penalized regression

performs internal cross validation and shrinkage, which, in turn, should provide

more reproducible results, help reduce false discovery, and provide a realistic

measure of model performance. This resampling strategy for internal model

validation has several advantages over splitting the data into a discovery cohort

and replication cohort. Data splitting results in a costly reduction in sample size,

may provide different results if split differently, and does not validate the final

model fit to the full dataset. Cross validation avoids these disadvantages, and

therefore is a more efficient use of the data, and the generalizability of our

findings should be evaluated in an external cohort [38].

Despite these strategies that we employed tominimize false discoveries, due to a large

number of tests in our gene analysis, there is always the risk of false discoveries when

looking for potentially novel genes that impact immune response, and the
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generalizability of our findings should be evaluated in an external cohort. The

examination of gene expression in a control group of unvaccinated subjects would be

beneficial to this study. Theremight be a concern that antibody titers to the stalk of the

influenza hemagglutinin and other components of the TIV (influenza A/H3N2 and B

viruses) were not studied, and that possible sex-related differences in both influenza

HAI response and expression of genes (located on the X and Y chromosomes) were

not addressed in our study. We restricted our study to influenza A/H1N1 vaccine

since new influenza A/H1N1 strains represent a potentially devastating worldwide

public health threat, and because influenza A/California/7/2009/H1N1 virus is the A/

H1N1 component of the 2010–2011 trivalent vaccine when subjects were enrolled in
this study.

In summary, we have demonstrated that gene-to-biology and biology-to-gene

approaches can be applied to elucidate host genetic influences on the antibody

response to influenza vaccine. We identified a number of uncharacterized—and

confirmed previously reported—specific genes and genesets that displayed

associations with HAI response to seasonal influenza A/H1N1 vaccine. The

ability to detect gene signatures related to HAI response may assist with the design

of better vaccines and adjuvants to facilitate improved defenses against new strains

of influenza as emerging infectious agents. Future studies will attempt to unravel

the biological mechanisms underlying the involvement of a given gene/geneset, as

well as the function of the protein produced by that gene and its role in generating

immune responses.
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