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and iPSCs into renal cells and in the generation of tissue- and 
patient-specific iPSCs, offering a powerful tool to investigate 
DN mechanisms and to identify the ideal candidate cell for 
future clinical application.  Key Message:  This review pro-
vides updated information on recent progress and limita-
tions of stem cell-based therapy for DN. 
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 Introduction 

 Diabetes mellitus (DM) is one of the main threats to 
public health in developed countries. In 2013, more than 
382 million people worldwide had DM  [1] , among which 
90% were of type 2 DM  [2] . It has been predicted that the 
number of people with DM will reach 439 million by 
2030, affecting 7.7% of the world adult population aged 
20–79 years  [2] . In mainland China and Hong Kong, the 
estimated comparative prevalence of DM is 9.02 and 
7.48%, respectively. Diabetic nephropathy (DN) is one of 
the most common detrimental complications of diabetes 
and represents the leading cause of end-stage renal dis-
ease  [3] . About 25–40% of patients with diabetes will de-
velop DN. To date, clinical interventions in the treatment 
of DN are very limited, and none of them can eliminate 
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 Abstract 

  Background:  Diabetic nephropathy (DN) represents the 
leading cause of end-stage renal disease. Current therapeu-
tic strategies for DN are very limited, and none of them can 
stop end-stage renal disease progression. Stem cell-based 
therapy showed encouraging outcomes in kidney disease, 
including experimental DN.  Summary:  Both podocytes and 
proximal tubular epithelial cells play key roles in the patho-
genesis of DN and, accordingly, could be regarded as treat-
ment targets. Multiple kinds of stem cells contribute to the 
regeneration of the injured kidney, including embryonic 
stem cells (ESCs), mesenchymal stem cells, and induced plu-
ripotent stem cells (iPSCs). Stem cells exert reparatory effects 
mainly by homing to injured sites, directing differentiation, 
paracrine action, and immunoregulation. However, poor 
survival after transplantation under diabetic conditions and 
unsatisfactory animal models of advanced DN are major ob-
stacles for achieving an efficacious therapeutic effect from 
stem cell transplantation. Recently, remarkable progress has 
been made both in the direct differentiation of human ESCs 
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the development of DN. The current treatment for DN 
includes full renin-angiotensin system blockade as well as 
stringent glycemic, lipid, and blood pressure control. 
However, the number of DN patients progressing to end-
stage renal disease and requiring renal replacement ther-
apy has continued to increase, and this imposes enor-
mous medical and socioeconomic burdens  [4] . There-
fore, there is an urgent need for a regenerative strategy.

  Stem cells have shown potential as a therapeutic strat-
egy for DN. Stem cells are an undifferentiated population 
of cells, capable of self-renewal and differentiation to-
wards one or more lineages to produce specialized cell 
types. Depending on their origin, stem cells are divided 
into embryonic stem cells (ESCs), adult stem cells, and 
induced pluripotent stem cells (iPSCs). In the past years, 
multiple types of cells have been used in preclinical ani-
mal models to repair or regenerate the diabetic kidney. 
This review summarizes recent progress in stem cell ther-
apy for DN.

  Role of Podocytes and Tubular Cells in the 

Pathogenesis and Regeneration of DN 

 Role of Podocytes 
 It is now widely recognized that podocytes play a cen-

tral role in the pathogenesis of DN, which is clinically 
characterized by progressive proteinuria. Podocytes hold 
a strategic position and serve as key regulators of solute 
trafficking between the glomerular and tubulointerstitial 
compartments of the nephron. Injury to podocytes results 
in proteinuria and often leads to progression of fibrosis 
and irreversible renal dysfunction. In DN, podocytes are 
involved in the development of glomerular hypertrophy, 
podocytopenia, glomerulosclerosis, and foot process ef-
facement  [5] . Loss of podocytes is a hallmark of DN. The 
number of podocytes is decreased in the glomeruli of pa-
tients with type 1 or 2 diabetes, even in diabetics with a 
short duration of disease  [6, 7] . High extracellular glucose 
can induce apoptosis in cultured podocytes via reactive 
oxygen species production and activation of proapoptotic 
p38 MAPK. In murine type 1 and type 2 diabetic models, 
apoptosis preceded podocyte depletion, urinary albumin 
excretion, and mesangial matrix expansion.

  Unlike other fast renewing epithelial cells, podocytes 
have a slow turnover rate and a limited regeneration ca-
pacity. Once the podocyte is injured, the glomerular fil-
tration barrier will become leaky, leading to proteinuria 
which further aggravates podocyte injury. Thus, podo-
cyte injury is a major prognostic determinant in DN. 

Therefore, therapies aimed at preventing or limiting 
podocyte injury and/or at promoting podocyte repair or 
regeneration have major potential clinical and economic 
implications  [8] .

  Role of Proximal Tubular Epithelial Cells 
 Emerging evidence suggests that proximal tubular ep-

ithelial cells (PTECs) play a pivotal role in the pathogen-
esis of DN  [4] . Proteinuria, another hallmark of DN, is 
already known to activate PTECs to induce tubulointer-
stitial inflammation and fibrosis via a succession of intra-
cellular events. In DN, tubulointerstitial injury appears 
early and closely correlates with renal function decline 
 [9] . Infiltrating monocytes, macrophages, and T cells 
have been featured predominantly in the interstitium of 
diabetic kidney disease. We have previously defined tu-
buloglomerular and glomerulotubular crosstalk path-
ways  [10]  and interaction between protein-overloaded 
PTECs and infiltrating monocytes/T cells  [11] , support-
ing the important role of PTECs. In the diabetic milieu, 
exposure to high glucose, glycated albumin, and advanced 
glycosylated end product intermediates stimulates a pro-
inflammatory and profibrotic phenotype in PTECs. Be-
sides, targeted proximal tubule injury triggers interstitial 
fibrosis and glomerulosclerosis  [12] .

  Chronic diabetic kidney disease is characterized by a 
reduced renal regenerative capacity  [13] , which is modu-
lated by inflammation  [14] . The link between inflamma-
tion and regeneration is the sharing of signaling path-
ways that regulate cell death cell cycle control. With the 
involvement of Bcl-2, transforming growth factor-β 
(TGF-β), tumor necrosis factor (TNF), Fas ligand, and 
interferon-α signal pathways, excessive apoptosis of nor-
mal glomerular and tubular epithelial cells disrupts the 
balance between cell proliferation and apoptosis in the 
early stage of DN, which eventually contributes to the 
progression of DN. Compared to podocytes, PTECs are 
believed to have a tremendous capacity for self-renewal. 
As the key determinant of the development of interstitial 
inflammation and fibrosis, PTECs might possess a higher 
potential to serve as an alternative key target in striving 
for a regenerative approach to DN treatment.

  Cell Sources for the Treatment of DN 

 Embryonic Stem Cells 
 ESCs are pluripotent cells originating from the inner 

cell mass of the blastocyst  [15] , which can give rise to the 
three embryonic germ cell layers. Apart from the highest 
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differentiation potential into insulin secreting cells  [16, 
17] , both mouse and human ESCs can be induced to dif-
ferentiate toward a renal lineage by a panel of defined 
growth factors or inducers  [18, 19] . By exposure to renal 
epithelial cell medium supplemented with Matrigel and a 
combination of defined low concentrations of bone mor-
phogenetic protein-2 (BMP-2) and BMP-7, human ESCs 
were induced to differentiate into proximal tubular-like 
cells with expression of aquaporin-1 confirmed by immu-
nofluorescence and fluorescence-activated cell sorting 
 [19] . Under fully chemically defined monolayer culture 
conditions composed of BMP-4, activin A, FGF-7, and 
BMP-7, human ESCs differentiate through posterior 
primitive streak and intermediate mesoderm as normal 
nephrogenesis, and, subsequently, the ESC-derived kid-
ney progenitors generate a self-organizing kidney after 
3D culture  [20] . Nevertheless, the concern of teratoma 
formation and ethical issues hamper the further clinical 
application potential of ESCs.

  Mesenchymal Stem Cells 
 Mesenchymal stem cells (MSCs), also known as mes-

enchymal stromal cells, are a kind of adult stem cells  [21] . 
Among stem cells, MSCs have several advantages for 
therapeutic use, such as ease of harvesting, multilineage 
differentiation potential, potent immunosuppressive ef-
fects, safety after infusion of allogeneic cells, and the lack 
of ethical issues that occur with the application of human 
ESCs. In the past decades, the therapeutic value of MSCs 
has been extensively assessed in a broad range of disease 
models and clinical trials.

  MSCs can be isolated from numerous tissues, includ-
ing bone marrow, adipose tissue  [22] , umbilical cord 
blood  [23] , peripheral blood  [24] , and amniotic fluid  [25] . 
The richest source for MSCs is bone marrow. MSCs have 
been shown to differentiate into insulin-secreting cells 
 [26] , mesangial cells  [27, 28] , tubular epithelial cells  [29] , 
endothelial cells, and podocytes  [30] . The safety and ef-
ficacy of allogeneic MSCs in treating acute kidney injury 
has been assessed in clinical trials and also in open-heart 
surgery patients who are at high risk of postoperative 
acute kidney injury  [31, 32] . In preclinical studies, admin-
istration of MSCs has also shown potential to treat DN in 
several animal models. Injection of MSCs into strepto-
zotocin (STZ)-induced type 1 diabetic mice improved re-
nal and pancreatic function  [33, 34] . In NOD/SCID mice, 
human MSCs decreased mesangial thickening and re-
duced macrophage infiltration  [35] . In a type 1 DN rat 
model, administration of MSCs ameliorated proteinuria 
and podocyte injury  [36] . Rats treated with MSCs showed 

a suppressed increase in kidney weight, kidney to body 
weight index, urinary albumin to creatinine ratio, and an 
increased creatinine clearance. Furthermore, the MSC 
treatment reduced the loss of podocytes, effacement of 
foot processes, widening of foot processes, thickening of 
the glomerular basal membrane, and loss of glomerular 
nephrin and podocin. Similar results were reported in 
rats which received intracardiac infusion of MSCs and 
cyclosporin  [37] .

  Although MSCs have been widely applied in cell-based 
therapy, they still have some shortcomings. It has been 
reported that the MSC preparations from different labo-
ratories or different donors are highly heterogeneous. 
Cell passage and culture conditions in vitro affect the 
phenotype of bone marrow MSCs. Furthermore, aging 
and aging-related disorders significantly impair the sur-
vival and differentiation potential of bone marrow MSCs 
 [38–41] . Bone marrow MSCs isolated from chronic heart 
disease patients and chronic kidney disease rat models 
displayed a reduced proliferation and differentiation ca-
pacity  [41–43] , limiting their therapeutic efficacy.

  Urine-Derived Stem Cells 
 Recently, researchers identified a subpopulation of 

cells isolated from urine that possesses biological charac-
teristics similar to MSCs, namely urine-derived stem cells 
(USCs)  [44, 45] . A major advantage of using USCs is that 
these cells can be obtained via a noninvasive, simple, safe, 
and low-cost procedure. With a higher telomerase activ-
ity and longer telomere length compared to other types of 
MSCs, USCs showed a high self-renewal and prolifera-
tion capacity. Upon induction with an appropriate cul-
ture condition, USCs can be differentiated into multiple 
cell lineages. Following implantation in vivo, USCs can 
form functional urothelial tissue  [45] . For treatment of 
DN, the application of USCs is still at its infancy. Ouyang 
et al.  [46]  reported that human USCs genetically modified 
with fibroblast growth factor 2 (FGF2) relieved type 2 di-
abetic symptoms in a rat model. However, the role of 
USCs in the diabetic kidney remains unclear. Further 
studies need to be conducted.

  Induced Pluripotent Stem Cells 
 The generation of iPSCs is a milestone in science. By 

the transduction of four defined transcription factors, 
namely Oct4, Sox2, Klf4, and c-Myc, terminally differen-
tiated fibroblasts can be reprogrammed into pluripotent 
stem cells  [47, 48] . The discovery of iPSCs was awarded 
the Nobel Prize in Medicine in 2012 only 6 years after its 
initial publication.
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  Like ESCs, iPSCs possess a great differentiation capac-
ity. Recently, several promising protocols have been de-
veloped to directly differentiate human iPSCs into a renal 
fate  [49–52] . By exposure to serum-free medium supple-
ment with retinoic acid, activin A, and BMP-2 for 4 days, 
human iPSCs and ESCs differentiated towards ureteric 
bud progenitor-like cells  [49] . Lam et al.  [50]  reported a 
highly efficient system to induce human ESCs and iPSCs 
to differentiate into intermediate mesoderm that subse-
quently formed renal tubular cells. At the initial step, hu-
man iPSCs were induced to differentiate into BRACHY-
URY+MIXL1+ mesendoderm with nearly 100% efficien-
cy by treatment with the glycogen synthase kinase-3b 
inhibitor CHIR99021. Then, PAX2+LHX1+ cells were 
generated with 70–80% efficiency followed by FGF2 and 
retinoic acid exposure. Upon growth factor withdrawal, 
these PAX2+LHX1+ cells formed tubular structures that 
coexpressed proximal tubule markers and kidney-specif-
ic protein and partially integrated into embryonic kidney 
explant cultures. Taguchi et al.  [51]  established a multi-
step protocol to differentiate mouse ESCs and human 
iPSCs into a renal lineage by using a developmental strat-
egy and lineage-tracing method. One study reported the 
differentiation of human iPSCs into podocyte-like cells 
 [52] . The iPSC-derived cells shared a morphological phe-
notype analogous with cultured human podocytes fol-
lowing 10 days’ treatment with retinoic acid, activin A, 
and BMP-7 using a combination of embryonic body and 
monolayer culture condition, and emerging cytoplasmic 
projection-like foot processes. These cells expressed 
podocyte markers, including synaptopodin, nephrin, 
and Wilms tumor protein, but also maintained a prolif-
erative capacity suggestive of a more immature pheno-
type.

  To date, human iPSCs have been generated from mul-
tiple sources, including skin fibroblasts, keratinocytes, 
extraembryonic tissues, cord blood, and peripheral blood 
cells  [47, 53–55] . Studies suggested that tissue-specific
iPSCs retain the epigenetic pattern of the original parent 
cells. Song et al.  [56]  and Zhou et al.  [57, 58]  generated 
iPSCs from normal human kidney mesangial cells and 
exfoliated renal tubular cells present in urine of healthy 
donors, respectively, leading the way to developing a tis-
sue-specific iPSC therapy for kidney disease  [59] . More-
over, the general reprogramming efficiency from urine 
was higher than for other methods, between 0.1 and 4%. 
Apart from tissue-specific iPSCs, many kinds of disease-
specific iPSCs have been produced, including type 1 dia-
betes  [60, 61] , autosomal-dominant polycystic kidney 
disease, autosomal-recessive polycystic kidney disease, 

Wilms tumor, and Alport syndrome  [62–64] . The ap-
proach can also be applied for DN.

  Most interestingly, combining the advantages of iPSCs 
and MSCs, Lian et al.  [65]  generated iPSC-derived MSCs 
(iPS-MSCs). iPS-MSCs can maintain a normal karyotype 
during culture expansion and constitutively express sur-
face antigens of multipotent MSCs without any obvious 
loss of self-renewal capacity after 40 passages (120 popu-
lation doublings). Moreover, like other cells generated 
from iPSCs  [66] , iPS-MSCs had a lower gene expression 
profile on T-cell activation and showed limited or no im-
mune responses upon transplantation in an animal study, 
which is critical for clinical application. iPS-MSCs have 
shown therapeutic benefits in animal models of limb 
ischemia  [65] , allergic airway inflammation, and peri-
odontitis  [67, 68] . Recently, we established an adriamycin 
nephropathy model in NOD/SCID mice and found that 
treatment with iPS-MSCs significantly ameliorated renal 
dysfunction in adriamycin nephropathy mice. The thera-
peutic potential of iPS-MSCs for DN is worthy of further 
exploration.

  Major Therapeutic Mechanisms of Stem Cells 

 Homing and Direct Differentiation 
 Although ESCs and iPSCs are more potent to differen-

tiate into insulin-producing and renal cells in vitro, data 
on these cells are lacking in animal studies. In STZ-in-
duced type 1 diabetes C57BL/6 mice transplanted with 
MSCs, evidence indicated that the engrafted MSCs homed 
to the pancreas and kidney, differentiated into insulin-
producing cells in vivo, and prevented the newly gener-
ated β cells from being destroyed by the immune system 
 [34] . In human MSC-treated NOD/SCID mice, there was 
an increase in pancreatic islets and β cells producing 
mouse insulin. Human Alu sequences in DNA were de-
tected by PCR assays in the pancreas and kidney on day 
17 or 32 after transplantation, but not in other tissues. A 
few of the human cells appeared to differentiate into glo-
merular endothelial cells in the glomeruli  [35] .

  Paracrine and Immunomodulation 
 It may not be convincing that direct differentiation in 

vivo could be the dominating repair mechanism as, usu-
ally, only a small number of engrafted stem cells were de-
tected in DN animal models. It has been well accepted 
that stem cells, especially MSCs, benefit the injured kid-
ney mostly via paracrine action and immunomodulation 
in existing studies. MSCs have the ability to release a wide 
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range of trophic and immunomodulatory factors   in vitro 
and in vivo, including vascular endothelial growth factor 
(VEGF), basic FGF, platelet-derived growth factor 
(PDGF), insulin-like growth factor-1, hepatocyte growth 
factor, and epidermal growth factor  [69] . Hence, engraft-
ed MSCs might modify the injured kidney by secreting 
these factors to trigger intracellular signaling in target 
cells or neighboring cells. We demonstrated that bone 
marrow MSCs modulate albumin-induced renal tubular 
inflammation and fibrosis by secreting hepatocyte growth 
factor and TNF-stimulated gene 6 (TSG-6) both in vitro 
and in vivo  [70] . Conditioned medium of human um-
bilical cord blood-derived MSCs significantly inhibited 
α-SMA, TGF-β 1 , collagen I, and Hsp 47 upregulation and 
E-cadherin and BMP-7 downregulation induced by 
TGF-β 1  in NRK-52E cells in a dose-dependent manner 
through secretion of humoral factors  [71] . MSC-trans-
planted kidneys of type 1 diabetic rats expressed higher 
levels of BMP-7, indicating that the protective effects of 
MSCs may be mediated in part by increasing BMP-7 se-
cretion  [36] . Through the production of soluble factors, 
MSCs altered the secretion profile of dendritic cells, re-
sulting in an increased production of the anti-inflamma-
tory cytokine IL-10 and a decreased production of the 
proinflammatory factors IFN-γ and IL-12  [72] . More-
over, MSCs can suppress T-cell proliferation, inhibit pro-
liferation and IgG secretion of B cells, influence dendritic 
cell maturation, and modulate other immune cells such 
as natural killer cells and macrophages  [73, 74] .

  Limitations and Challenges 

 Stem Cells under Diabetic Conditions 
 The microenvironment under diabetic conditions is 

harsh for stem cells to survive, migrate to the target in-
jured tissue, and exert their reparative functions. It has 
been found that a reduced synthesis of proteoglycans and 
glycosaminoglycans in the surrounding tissue results in a 
reduced proliferation and viability of MSCs in vivo    [75] . 
Also, the production of advanced glycosylated end prod-
ucts inhibited the proliferation of MSCs by activating 
apoptosis and reactive oxygen species production  [76] . In 
diabetic patients, oxidative stress may also influence the 
paracrine effects of MSCs under hypoxic conditions. In 
hypoxic MSCs, high glucose attenuates the production of 
angiogenic growth factors, including hypoxia-induced 
factor-1α, VEGF-A, and PDGF-B, by significantly in-
creased intracellular superoxide levels in MSCs  [76, 77] . 
In addition, the migratory capacity of MSCs is also im-

paired. Elevated osteoprotegerin in diabetic patients will 
neutralize the promigratory activity of TNF-related apo-
ptosis-inducing ligand, which promotes the migration of 
bone marrow stem cells  [78, 79] . Indeed, high glucose per 
se also directly reduces the migration of MSCs  [78] .

  Animal Models of DN 
 The National Institute of Health-funded Animal Mod-

els of Diabetic Complications Consortium (AMDCC) 
published as guidelines the following three key criteria for 
an ideal rodent model of DN  [80] : (1) greater than 50% 
decline in glomerular filtration rate during the lifetime of 
the animal; (2) albuminuria (10-fold increase compared 
with controls), and (3) characteristic pathologic changes 
including advanced mesangial matrix expansion, any de-
gree of arteriolar hyalinosis, basement membrane thick-
ening, and interstitial fibrosis. Unfortunately, the existing 
animal models of DN applied for stem cell treatment did 
not satisfy these criteria. Nonobese and STZ-induced dia-
betic animals only mimicked the earlier stages of human 
DN and infrequently developed features of human ad-
vanced DN  [81] . The BTBR ob/ob mouse model of DN 
comes close to meeting all of the proposed criteria of the 
AMDCC and offers an alternative option in the future 
 [82] .

  Conclusions and Future Prospects 

 Stem cell-based therapy holds promise for DN treat-
ment. Although kidney-specific stem cells were identified 
in recent years, the involvement of these stem cells in the 
regeneration of the kidney was still in doubt  [83] . Cur-
rently, each type of candidate cell for a cell-based approach 
has advantages and disadvantages. We need to continue 
seeking for better ideal cell sources or developing opti-
mized manipulation methods of existing cells. No matter 
whether targeting podocytes, PTECs, or other cell types in 
DN, the ideal cell candidate for cell replacement should 
have the following properties. First, these cells should be 
easily accessible. Second, they should have a higher sur-
vival ability to weather the diabetic stress and the differ-
entiation ability into the desired cell types   both in vitro  
 and in vivo. Last, but most crucial for clinical use, there is 
safety. Although significant advances have been made in 
generating iPSCs from somatic cells as well as functional 
kidney cells and tissues from pluripotent stem cells (ESCs 
and iPSCs), providing a wonderful platform to explore 
disease mechanisms and potential cell sources, the safety 
issue remains unsolved. Criteria for the validation of in-
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duced renal progenitor cells need to be established. The 
tumorigenic property of iPSCs based on viral transduc-
tion technology must be eliminated before clinical trans-
plantation. The development of iPSCs without viral vec-
tors might be helpful in the generation of iPSCs from an 
autologous source  [84] . Bone marrow MSCs remain an 
attractive autologous cell source mainly due to the ease of 
harvesting and their low immunogenicity. USCs or urine-
derived iPSCs from DN patients might also serve as suit-
able cell sources for investigating the pathogenetic mech-
anisms, screening new treatment, and offering possibili-
ties of future personalized regenerative therapies.
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