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Multiple organ systems require epithelial barriers for normal function, and barrier loss is a hallmark of diseases ranging from
inflammation to epithelial cancers. However, the molecular processes regulating epithelial barrier maturation are not fully eluci-
dated. After contact, epithelial cells undergo size-reductive proliferation and differentiate, creating a dense, highly ordered
monolayer with high resistance barriers. We provide evidence that the tight junction protein occludin contributes to the regula-
tion of epithelial cell maturation upon phosphorylation of S471 in its coiled-coil domain. Overexpression of a phosphoinhibi-
tory occludin S471A mutant prevents size-reductive proliferation and subsequent tight junction maturation in a dominant man-
ner. Inhibition of cell proliferation in cell-contacted but immature monolayers recapitulated this phenotype. A kinase screen
identified G-protein-coupled receptor kinases (GRKs) targeting S471, and GRK inhibitors delayed epithelial packing and junc-
tion maturation. We conclude that occludin contributes to the regulation of size-reductive proliferation and epithelial cell matu-
ration in a phosphorylation-dependent manner.

Cells characteristically form epithelial monolayers through log-
arithmic growth when cells are subconfluent followed by cell-

to-cell contact and concluding with contact inhibition of prolifer-
ation (CIP), proliferative quiescence, and epithelial monolayer
maturation, including tight junction (TJ) formation (1, 2). CIP is
an important step in monolayer maturation that is mediated in
part by the activation of the Hippo pathway. Hippo involves a
signaling cascade with multiple mechanisms of regulation that
may be initiated by homophilic interactions between extracellular
domains of the adherens junction (AJ) protein E-cadherin on ad-
jacent cells, ultimately leading to the exclusion of the transcrip-
tional coactivator Yes-associated protein (YAP) from the nucleus
(3, 4).

However, Puliafito et al. demonstrated that cell-cell contact is
not sufficient for CIP in Madin-Darby canine kidney (MDCK)
epithelial cells (2). In fact, proliferation continues at a near-sub-
confluent rate even in contacted cells until a critical cell density, or
transition point, is reached, after which proliferation diminishes
until cells reach quiescence (2, 5). Proliferation in contacted cells
is accompanied by little or no hypertrophic growth. While sub-
confluent daughter cells ultimately attain nearly 100% of the
mother cell area, confluent cells remain at �50%, indicating a
nearly complete lack of hypertrophic growth in the densely con-
fluent monolayer, consistent with the previously identified inverse
relationship between individual cell size and density (2, 6). This
reduction in cell size acts as the major activator of YAP nuclear
exclusion through a reduction of cytoskeletal stress (7, 8). Indeed,
a forced reduction in cell size by growth on micropatterned fi-
bronectin islands of a defined area or growth in soft agar, to reduce
cytoskeletal tension, leads to YAP exclusion in a manner depen-
dent on F-actin-capping/severing proteins but independent of cell
contact (7). Thus, subconfluent cells are subjected to tensile forces
on the cytoskeleton that, combined with a lack of cell contact,
promote YAP nuclear localization and proliferation (7–9). Con-

fluent, pre-transition-point epithelial cells, while contacted, also
maintain YAP nuclear localization due to continued cytoskeletal
tension, promoting proliferation. However, the cells are exposed
to constraining forces that discourage postmitotic hypertrophic
growth, causing a period of size-reductive proliferation, ulti-
mately reducing cytoskeletal stress and transitioning the cells to
proliferative quiescence and, finally, monolayer maturation (2).
This process sharply decreases cell area and increases cell density,
resulting in increased uniformity of cell area and shape, and estab-
lishes a mature, packed, epithelial monolayer.

A mature epithelial monolayer possesses well-developed TJs,
which are necessary to control fluid and solute flux. TJs form
between adjacent cells apical to the AJ, create and maintain semi-
permeable barriers to paracellular flux, and may contribute to
maintaining cell polarity. Over 40 proteins have been identified at
TJs (10), including occludin (Occ), the first transmembrane TJ
protein to be discovered (11). While occludin knockout mice
failed to exhibit any increase in intestinal permeability, these ani-
mals presented with a constellation of complex phenotypes con-
sistent with barrier dysregulation, including male sterility, an in-
ability to nurse, and brain calcification (12, 13). Human patients
expressing a recessive mutation in the occludin gene exhibit sim-
ilar brain calcification as well as gross cranial malformation (14).
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Taken together, these studies support the prevailing view of occlu-
din as a regulator of the TJ.

Recently, occludin has been increasingly implicated in nonbar-
rier roles, including the regulation of cell proliferation. Occludin
is present at centrosomes and regulates mitotic entry and cell pro-
liferation in a phosphorylation-dependent manner (15). Occludin
knockout mice exhibit intestinal cell hyperplasia (12), and occlu-
din downregulation or loss has been implicated in cancers of the
skin (16), uterus (17), and breast (18) and is correlated with in-
creased metastatic potential (19). Furthermore, occludin reex-
pression rescues murine tumorigenesis after implantation of on-
cogenic, Raf1-transformed cells (20). The emerging importance of
occludin in cell proliferation, particularly in tumors of the conflu-

ent epithelium, suggests a possible role in high-confluence prolif-
eration and, by extension, in cell packing.

Mass spectrometric analysis has identified several novel occlu-
din phosphorylation sites, including the S471 site within the C-
terminal coiled-coil domain (21). Notably, this residue is located
at the first turn of the coiled coil, which has been established as a
point of interaction with the scaffolding protein zonula occludens
1 (ZO-1) (22). ZO-1 interacts with and organizes many TJ pro-
teins and links the junction to the actin cytoskeleton (23), and
members of the ZO family are necessary for the assembly of TJs
(24, 25). ZO-1 is a membrane-associated guanylate kinase
(MAGUK) protein and contains the typical catalytically inactive
guanylate kinase (GuK)-like domain. The GuK domain acts as a

FIG 1 TJ and cytoskeletal proteins are mislocalized in occludin S471A mutant-expressing cell lines. (A and B) Schematic of occludin with the S471 site (yellow
dot) (A) and fusion protein construct with mutations used for stable expression in MDCK cell lines (B). (C to E) Immunofluorescence maximum projected stacks
(3 �m thick) or slices (phalloidin images only, 0.5 �m thick) of the indicated TJ (C), cytoskeletal and afadin (D), and AJ (E) proteins at 4 days postconfluence
(bars � 10 �m). (F) Maximum projected colocalization of E-cadherin, used as a marker of the junctional complex, with ZO-1, demonstrating the loss of ZO-1
at junctions (bar � 50 �m). (G) Quantification of data shown in panel F (averages from 4 images per cell line). Data are expressed as means � SD. *, P � 0.05
compared to WT Occ or S471D Occ.
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specialized P-serine/P-threonine binding pocket (26), and the
ZO-1 GuK domain interacts with the acidic head of the occludin
coiled coil, including the S471 site, making it an intriguing site for
potential functional regulation and further analysis (22).

In the present study, we present evidence that the expression of
the occludin S471A phosphoinhibitory mutant prevents size-re-
ductive proliferation and cell packing in MDCK cells. Expression
of the S471A mutant has no effect on subconfluent proliferation
but inhibits size-reductive proliferation after contact and prevents
bicellular and tricellular TJ maturation, creating a highly perme-
able monolayer that appears morphologically indistinguishable
from an immature monolayer before cell packing. Furthermore,
inhibition of cell cycle progression after cell contact yields a sim-
ilar, immature monolayer, suggesting that cell packing is neces-
sary for monolayer maturation and TJ formation. The S471 site is
a target of members of the G-protein-coupled receptor kinase
(GRK) family, and inhibition of GRK4-6 also inhibits size-reduc-
tive proliferation and delays epithelial cell maturation. Further-
more, the effect of the GRK inhibitors on monolayer maturation
can be overcome by the expression of the phosphomimetic S471D
occludin mutant. The data suggest that occludin phosphorylation
at S471 contributes to the control of size-reductive proliferation
after contact and to epithelial cell maturation.

MATERIALS AND METHODS
Cells. All reagents were purchased from Sigma Chemical (St. Louis, MO)
unless otherwise noted. MDCK cells were obtained from the American
Type Culture Collection (Manassas, VA) and cultured in minimum es-
sential medium (MEM) as previously reported (15). All cells were kept at
37°C with 5% CO2.

MDCK stable lines were generated via transfection with Lipo-
fectamine 2000 (Invitrogen, Carlsbad, CA) of an empty vector, wild-type
human occludin, the S471A occludin mutant, or the S471D occludin mu-
tant in a pmaxFP expression vector (Amaxa, Cologne, Germany) accord-
ing to the manufacturer’s instructions and as previously described (27).
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FIG 2 S471 point mutations do not affect tight junction protein content. Shown are Western blots for the indicated TJ and AJ proteins. P, parental; EV, empty
vector; W1 and W2, WT Occ clones 1 and 2; A1 to A3, S471A Occ clones 1 to 3, D1 and D2, S471D Occ clones 1 and 2. Arrows indicate exogenous GFP-occludin
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FIG 3 Coimmunoprecipitation, colocalization, and cocultures. (A) Protein
ratio of coimmunoprecipitation for GFP-occludin and ZO-1 normalized to
the WT Occ protein ratio (n � 5 to 6). IB, immunoblotting; IP, immunopre-
cipitation. (B) Colocalization of GFP-occludin and the endosomal marker
EEA1 (averages from 3 to 5 images per condition). Data are expressed as
means � SD. *, P � 0.05 compared to WT Occ. (C) Parental cells were labeled
with CellLight Mitochondria BacMam baculovirus (red) and then cocultured
with GFP-tagged S471A Occ-expressing lines (green) and stained for ZO-1
(faux colored white). Left, merged image; right, ZO-1 alone. Arrows indicate
intact parental-parental (white) and disrupted S471A-S471A (yellow) borders.
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Briefly, fluorescence-activated cell sorting was carried out following 2
weeks of culture in normal MEM with 2.5 mg/ml Geneticin (Gibco, Carls-
bad, CA). Single cells were plated in a 96-well plate with 2.5 �l/ml Gene-
ticin, grown out, and screened for green fluorescent protein (GFP) expres-
sion by Western blotting. W2, A3, and D2 lines were used unless otherwise
indicated.

All reported experiments were repeated on separate days except for
experiments shown in Fig. 4, which represent multiple platings. Cells were
plated at a density of 162,500 cells/cm2 unless otherwise noted.

Immunofluorescence (IF). Cells were plated onto chambered glass
slides and fixed at 4 days postconfluence, unless otherwise noted, with
either 3.5% paraformaldehyde (PFA) for 10 min or 50% methanol–50%
acetone for 20 min at �20°C (Thermo Scientific, Waltham, MA). PFA
fixation was followed by 15 min of permeabilization in Tris-buffered sa-
line (TBS) plus 0.25% Triton X-100, while methanol-acetone fixation did
not require permeabilization. Cells were blocked in 10% goat serum (Life
Technologies, Carlsbad, CA) with 0.25% Triton X-100 for 1 h and then
stained with the indicated primary antibodies overnight at 4°C at a 1:200
dilution in blocking solution, except for anti-turbo GFP (1:400), anti-
YAP (1:100), and anti-GRK (1:100). Secondary antibody (Alexa Fluor
488, 555, and 647; Life Technologies, Carlsbad, CA) exposure was done
for 1 h at room temperature in blocking buffer at a 1:1,000 dilution.
Fluorescence was determined from z-stacks of 0.5-�m slices taken on a
Leica TCS SP5 confocal microscope (63�, 1.4-numerical-aperture [NA]
oil objective; Wetzlar, Germany) with photomultiplier tube detectors and
by using Leica Advanced Fluorescence software. Images were analyzed by
using Metamorph software (Molecular Devices, Sunnyvale, CA). In some
cases, occludin and ZO-1 border staining was quantified by a semiquan-
titative ranking score system based on a scale of 1 to 5: 1 for the near-
complete loss of border staining (0 to 25%), 2 for 25 to 50% continuous
border staining, 3 for 50 to 75% continuous border staining, 4 for 75 to
100% continuous border staining, and 5 for completely continuous bor-
der staining. Scoring was completed in a masked fashion by 3 impartial
observers provided scoring standard images for comparison.

Cell counts. Nuclei were counted from monolayers stained with either
Hoechst or PicoGreen nuclear stain (Life Technologies, Carlsbad, CA) by
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using the ImageJ cell counter plug-in (NIH, Bethesda, MD). Data from at
least four microscopy fields were averaged for each cell line or treatment (63�
objective, 5� zoom). A total of 1,400 cells/cm2 were also plated onto 12-well
plates and then trypsinized and counted at 1, 2, 3, and 4 days postplating by

using a Mo-FLO cell sorter (Beckman Coulter, Brea, CA). Forward-scatter
data were collected to determine suspended-cell sizes.

DNA synthesis/cell proliferation assays. A total of 7,857, 100,000, or
185,714 cells/cm2 were plated onto eight chambered glass slides (Thermo
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Scientific, Waltham, MA) and allowed to grow overnight (7,857 and
100,000 cells/cm2) or for 4 h (185,714 cells/cm2). Cells were incubated
with 10 �M 5-ethynyl-2=-deoxyuridine (EdU) (Click-It EdU kit; Life
Technologies, Carlsbad, CA) for 4 h (7,857 and 100,000 cells/cm2) or
24 h (185,714 cells/cm2) according to the manufacturer’s instructions.
Cells were fixed with 3.5% PFA and stained with Hoechst or PicoGreen
nuclear stain (Invitrogen, Carlsbad, CA). At least 500 cells per condi-
tion were examined by using the ImageJ cell counter plug-in (NIH,
Bethesda, MD), and the percentage of total cells expressing EdU was
calculated.

Transepithelial resistance. Transepithelial resistance (TER) was de-
termined by using an electric cell-substrate impedance sensing (ECIS)
system (Applied Biophysics, Troy, NY) at 500 Hz. Cells were plated on
8W10E	 ECIS plates and allowed to become confluent overnight. All
treatments were added at the time of plating and replenished along

with fresh medium every 24 h unless otherwise noted. Electrical resis-
tance was determined on the fourth day postconfluence unless other-
wise noted.

Solute flux assay. Cells were plated onto 12-well plates with polyester
Transwell inserts (0.4 �M pore; Corning, Corning, NY) and allowed to
become confluent overnight. Solute flux was determined on the fourth
day postconfluence as previously described (28). Briefly, 480 nM 6-car-
boxytetramethylrhodamine (TAMRA) (467 Da) was added to the apical
chamber, followed by sampling of 50 �l from the basolateral chamber
every 30 min for 3 h. Ten microliters was also removed from the apical
chamber at the last time point for apical concentration determination.
Fluorescence was measured (excitation at 560 nm and emission at 590
nm) in a flat-bottom black-wall 96-well plate (Greiner, Monroe, NC) by
using a FLUOstar microplate reader (BMG Labtech, Ortenburg, Ger-
many).
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Cell cycle inhibitor assays. Cells were treated with 10 �M roscovitine
(Calbiochem, San Diego, CA) 24 h after plating. Drug was replenished
along with fresh medium every 24 h, and TER measurements proceeded
for two additional days (ECIS), or cells were fixed for imaging at 60 h
postplating.

Kinase screen. A list of potential kinases was compiled by entering the
sequence around S471 (KELDDYREESEEYMAAADE) into three online
kinase prediction programs: GPS (29), KinasePhos (30), and NetPhos
(31). Kinases predicted to phosphorylate S471 by at least two of the three
programs were included in an in vitro 32P kinase assay (Millipore, Dundee,
Scotland, United Kingdom) of the same peptide with two added lysines at
the amino terminus to promote peptide capture on nitrocellulose filters
(KKKELDDYREESEEYMAAADE; NeoBioSci, Cambridge, MA). GRK
identified in this screen was inhibited in MDCK cells by using the kinase-
specific inhibitors CCG215022 (GRK inhibitor 22 [GRK Inhib 22]) (32),
4-amino-5-(bromomethyl)-2-methylpyrimidine hydrobromide (ABMH;
Santa Cruz), and paroxetine (Toronto Research Chemicals, Toronto, ON,
Canada). Kinase assays with all three inhibitors were performed exactly as
previously reported (32).

Immunoprecipitation and Western blotting. Protein expression was
determined via Western blotting as previously described (28). Briefly,
MDCK cells were harvested in Stuart’s buffer composed of 100 mM NaCl,
1% Triton X-100, 0.5% sodium deoxycholate, 0.2% SDS, 2 mM EDTA, 10
mM HEPES (pH 7.5), 1 mM NaVO4, 10 mM NaF, 10 mM sodium pyro-
phosphate, 1 mM benzamidine, 10 �M microcystin (Cayman Chemical,
Ann Arbor, MI), and a Complete Mini protease inhibitor tablet (EDTA
free; Roche, Indianapolis, IN). Following gel electrophoresis and blocking
in 2% ECL prime (GE Healthcare, Little Chalfont, Buckinghamshire,
United Kingdom), proteins were probed with the indicated antibodies,
including occludin, claudin-1, and tricellulin (Invitrogen, Carlsbad, CA);

-catenin and afadin (Sigma, St. Louis, MO); turbo GFP (Evrogen, Mos-
cow, Russia); ZO-1 (Millipore, Billerica, MA); and E-cadherin (BD Bio-
sciences, Franklin Lakes, NJ). Alternatively, MDCK cells were harvested
for immunoprecipitation, as previously described (33), in buffer contain-
ing 50 mM Tris (pH 7.5), 150 mM NaCl, 1% NP-40 (USB, Cleveland,
OH), 1 mM NaVO4, 10 mM NaF, 10 mM sodium pyrophosphate, 1 mM
benzamidine, Complete Mini protease inhibitor tablet (EDTA free;
Roche, Indianapolis, IN), 1 �M microcystin (Cayman Chemical, Ann
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Arbor, MI), 10% glycerol (Fisher, Waltham, MA), and 2 mM EDTA
(Lonza, Walkersville, MD). Following harvest, cells were rocked for 15
min and spun at 12,000 � g for 10 min. The lysate containing 1 mg of
protein was precleared with a 30-�l packed volume of protein G-Sephar-
ose beads (GE Healthcare, Little Chalfont, Buckinghamshire, United
Kingdom) and then incubated overnight with 10 �g turbo GFP antibody
(Evrogen, Moscow, Russia). Protein G beads were added to the mixture of
the antibody and lysate for 1 h and then washed with buffer and prepared
for Western blotting as described above.

Coculture experiments. Subconfluent parental MDCK cells were
transduced with Cell-Light Mitochondria BacMam baculovirus (Invitro-
gen, Carlsbad, CA). The next day, transduced parental MDCK cells were
plated with untransduced S471A Occ cells at a ratio of 10%/90%, respec-
tively. Cells were fixed in PFA and prepared for IF as described above.

Ion permeability. Cells were plated onto Biopore cell culture inserts
(0.4-�m pore; Millipore, Billerica, MA), with fresh MDCK medium being
provided daily. On the fourth day postconfluence, inserts were loaded
into an Ussing chamber (Harvard Apparatus, Holliston, MA), and both
sides were gently filled with HEPES Ringer solution composed of 135 mM
NaCl, 5 mM KCl, 10 mM HEPES, 10 mM glucose, 1.8 mM CaCl2, and 1
mM MgCl2. Permeability to specific ions was determined exactly as de-
scribed previously by Hou et al. (EC-800 amplifier; Warner Instruments,
Hamden, CT), except that the concentration of ions of interest (NaCl or
KCl) in Ringer solution was reduced to 25% of the original concentration,
and all experiments were conducted at 22°C (34).

Cell viability. Cell viability was determined by using a WST-1 assay
(Roche, Indianapolis, IN). A total of 31,250 cells/cm2 were plated into a
96-well plate, allowed to grow overnight, and then incubated with 5 �l
WST-1 reagent for 1 h. Absorbance was measured (770/410 nm) by using
a FLUOstar microplate reader (BMG Labtech, Ortenburg, Germany).

Statistical analysis. Data were analyzed by using two-tailed Student’s
t test (2 groups) or one-way analysis of variance (ANOVA) with a Bon-
ferroni post hoc test (3 or more groups) by using Prism 5.0 (GraphPad
Software, La Jolla, CA). Line graphs were analyzed by using a two-way
ANOVA (simple effect within rows) with Bonferroni post hoc analysis.
Data are expressed as means � standard deviations (SD) unless otherwise
indicated.

RESULTS
S471A Occ expression compromises TJ protein organization.
MDCK lines overexpressing human occludin with a phosphoin-
hibitory serine-to-alanine (S471A) or phosphomimetic serine-to-
aspartic acid (S471D) mutation were generated along with wild-
type occludin (WT Occ) control lines to investigate the effect of
S471 phosphorylation on TJ protein organization (Fig. 1A and B).
Both exogenous GFP-tagged occludin (80 kDa) and endogenous
occludin (55 kDa) were detectable by Western blotting, and no
appreciable changes were observed for the expression of any tested
TJ or AJ proteins in lines utilized for the present study (Fig. 2).
Cells expressing WT Occ had a well-organized localization at the
border for the TJ proteins occludin (GFP-occludin and total oc-
cludin), ZO-1, and claudin-1 based on immunofluorescence (IF)
labeling (Fig. 1C). Additionally, tricellulin appeared at tricellular
junctions. Phalloidin staining for F-actin revealed stress fibers ba-
solaterally and crisp cortical actin staining apically, while afadin
was present at the border (Fig. 1D). Finally, the AJ proteins E-
cadherin and 
-catenin demonstrated strong cell border organi-
zation (Fig. 1E). All results were consistent with the known local-
ization of these proteins in cells with high electrical resistance and
low solute permeability. S471D Occ-expressing cells were similar
to control lines in their staining patterns and in many cases were
qualitatively better organized, with increased uniformity in cell
shape and brighter, more focused border staining, particularly in

regard to cortical F-actin (Fig. 1C to E). In contrast, TJs were
disorganized in S471A Occ-expressing lines, with mislocalized or
missing border staining in all examined TJ proteins. These studies
were performed on day 4 after plating, and TJ disorganization was
maintained for at least 10 days after plating. The TJ proteins oc-
cludin, ZO-1, and claudin-1 appeared as noncontinuous aggre-
gates, often colocalizing with each other, while tricellulin staining
was largely absent (Fig. 1C). S471A Occ expression did not, how-
ever, decrease the occludin–ZO-1 interaction, as judged by coim-
munoprecipitation experiments (Fig. 3A), or alter the colocaliza-
tion with early endosome antigen 1 (endosome marker) (Fig. 3B),
nor was there evidence that S471A mutant cells corrupted the
neighboring parental cell TJ organization (Fig. 3C), suggesting a
cell-autonomous effect. In contrast, F-actin staining was altered,
with fewer visible stress fibers and a dim, broad, cortical actin
organization. Afadin was also disorganized or lost at bicellular
junctions (Fig. 1D), but importantly, the AJ proteins E-cadherin
and 
-catenin appeared unaffected (Fig. 1E). To quantify the ex-
tent of ZO-1 protein mislocalization, colocalization between
ZO-1, a marker of TJ organization, and E-cadherin, an AJ protein
unaffected by S471A Occ expression, was measured. The percent-
age of E-cadherin colocalized with ZO-1 (indicating ZO-1 border
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staining) was significantly decreased in S471A Occ-expressing
lines and increased in S471D Occ-expressing lines compared with
lines expressing WT Occ (Fig. 1F and G). Together, these obser-
vations demonstrate that the expression of S471A Occ compro-
mises TJ organization in a dominant manner.

TJ formation occurs after size-reductive proliferation. As de-
tailed in the introduction, size-reductive proliferation is required
for monolayer maturation. Here, the formation of TJs was exam-
ined across size-reductive proliferation and epithelial cell matura-
tion. MDCK cells were plated onto 8 chambered slides at 162,500
cells/cm2 (yielding confluence on the first day of plating). The cells
underwent dramatic morphological changes associated with size-
reductive proliferation in the first 3 days following confluence.
Cell density increased by over 2-fold, as indicated by nucleus
counts (Fig. 4A and B). Meanwhile, the AJs were partially com-
pleted by day 1 and largely formed by day 2, and the area within
the AJ decreased by half by day 3 (Fig. 4C and D). Finally, TJ
assembly assessed by ZO-1 staining was largely incomplete on day
1 but increased dramatically over days 2 and 3 such that colocal-

ization with E-cadherin increased, indicating increased ZO-1 bor-
der localization (Fig. 4E and F). Packing was complete by 3 days
postconfluence for each of the measured parameters, and no sta-
tistically significant changes occurred between days 3 and 4. The
TJ organization observed in the S471A mutant-expressing lines
appeared highly similar to that at the early time point in epithelial
cell maturation; therefore, cell size and proliferation were exam-
ined in the mutant lines.

Size-reductive proliferation is attenuated by S471A Occ ex-
pression. Cell monolayers expressing S471A Occ were composed
of fewer and larger cells than WT Occ- or S471D Occ-expressing
monolayers (Fig. 5A to C). The number of nuclei was approxi-
mately half that of cells expressing WT Occ or the S471D mutant,
and the area within the AJ (E-cadherin staining) was increased in
S471A Occ-expressing confluent monolayers by 2- to 3-fold com-
pared to WT Occ- or S471D Occ-expressing lines (Fig. 5A and B).
To determine if S471A mutants altered cell proliferation, the cells
were plated at a low density (1,400 cells/cm2) and counted on days
1 to 4. The number of cells, as determined by flow analysis, was
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reduced in S471A Occ-expressing monolayers at higher conflu-
ences on days 3 and 4 but not on day 1 or 2 when confluence was
low and there was little cell contact, suggesting a loss of prolifera-
tion in a density-dependent manner (Fig. 5D). To further examine
this possibility, we measured the proliferative rates of WT Occ-,
S471A Occ-, and S471D Occ-expressing lines at various conflu-
ences by DNA synthesis measurements (Click-IT EdU). At 7,857
cells/cm2 (�10% confluent) and 100,000 cells/cm2 (�55% con-
fluent), the number of cells with active DNA synthesis was mea-
sured over a 4-h period, whereas for plating of 185,714 cells/cm2

(�100% confluent), the number of synthetically active cells was
measured over 24 h since the rate of overall synthesis dramatically
decreases as cells become more confluent. No difference in prolif-
eration was observed at low confluence (Fig. 6A) but became in-
creasingly evident with increasing confluence (Fig. 6B and C).
When plated at �100% confluence, fewer than 10% as many
S471A Occ-expressing cells proliferated over 24 h (4 to 28 h post-
plating) compared to WT Occ-expressing cells, while there was no
difference between WT Occ- and S471D Occ-expressing cells
(Fig. 6C). The proliferation rate was near zero in all cell lines from
28 to 52 h postplating (Fig. 6D), suggesting that when plated at
high confluence, proliferation is restricted in MDCK cells to a
size-reductive or packing phase lasting no longer than 24 h, fol-
lowed by relative quiescence. However, the expression of S471A
Occ inhibits this packing phase. The transcriptional coactivator
YAP promotes cell proliferation in the nucleus, and its nuclear
exclusion marks the end of the Hippo signaling pathway and
contributes to CIP (35). Despite proliferative quiescence, YAP
localization remained nuclear in S471A Occ-expressing lines
compared to WT Occ-expressing lines at quiescence, consis-
tent with the S471A mutant stalling size-reductive prolifera-
tion and preventing YAP nuclear exclusion (Fig. 6E and F).
Taken together, these results indicate that size-reductive pro-
liferation is deficient in S471A Occ-expressing lines and raise
the possibility of a connection between defective packing and
poor TJ assembly (Fig. 1C).

Cell packing is necessary for barrier assembly. To evaluate
the necessity of cell packing alone for barrier assembly, we treated
parental MDCK cells with the Cdk inhibitor roscovitine starting at
24 h postplating to halt the cell cycle and size-reductive prolifera-
tion. The number of nuclei was decreased (Fig. 7A), and the area
within the AJ was increased (Fig. 7B) compared to controls, con-
firming that packing was significantly attenuated. Transepithelial
electrical resistance (TER) was decreased on day 3 (Fig. 7C), and
there was a significant loss of ZO-1 border staining compared with
continuous E-cadherin staining (Fig. 7D and E), indicating disor-
ganization of TJ proteins at the border. These studies demonstrate
that inhibition of cell packing alone reduces TJ assembly and pre-
vents the formation of high resistance barriers.

S471A Occ compromises barrier function. The same loss of
high resistance barriers was observed in S471A Occ-expressing
lines with stalled size-reductive proliferation. WT Occ overex-
pression increased TER in mature (day 3 [Fig. 8A] and day 4 [Fig.
8B]) monolayers as well as after 12 h of reassembly following a
Ca2	 switch experiment (Fig. 8C), as previously reported (36–38).
No differences were evident between WT Occ- and S471D Occ-
expressing lines at any of the time points. In contrast, S471A Occ
expression reduced TER at all time points in all lines tested, and
permeability to Ca2	, K	, and Cl� ions was uniformly increased
in S471A Occ mutants (Fig. 9A to C). Permeability to the small

fluorescent molecule TAMRA (467 Da) was also increased in
S471A mutant-expressing lines, and there was no difference be-
tween WT Occ-expressing, S471D mutant-expressing, and paren-
tal lines in TAMRA flux (Fig. 8D). These results indicate an in-
crease in permeability to both ion and small-molecule flux in
S471A Occ-expressing lines.

S471 is phosphorylated in vitro by G-protein-coupled recep-
tor kinase (GRK), and GRK inhibitors attenuate epithelial cell
maturation. Our previous studies suggest that S471 phosphory-
lation is important for cell packing and barrier formation. To
screen potential cellular kinases for this residue, putative kinases
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were identified by using three kinase prediction software pro-
grams, and kinases predicted by at least two programs were
screened against a 21-amino-acid (aa) peptide with S471 at the
center (Fig. 10) (see Materials and Methods). This peptide was
phosphorylated in vitro by members of the polo-like kinase (PLK),
calcium/calmodulin-dependent kinase (CaMKII), and GRK fam-
ilies (Fig. 10). Since GRK was previously implicated in cell size
control (39), and GRK isoforms were present in MDCK cells
(Fig. 11A), this kinase was targeted for cell packing and junction
formation studies. Small interfering RNAs (siRNAs) for GRK
were unsuccessful in knocking down protein levels despite multi-
ple attempts. However, three chemically distinct pharmacological
GRK inhibitors prevented epithelial cell maturation. GRK Inhib
22 (CCG215022), a potent GRK inhibitor (32), demonstrated in-
hibition of GRK6 with a 50% inhibitory concentration (IC50) of
0.95 � 0.12 �M, while 4-amino-5-(bromomethyl)-2-methylpy-
rimidine hydrobromide (ABMH) and paroxetine (40) inhibited
GRK6 with IC50s of 499 � 144 �M and 78.80 � 12.30 �M, respec-
tively (Fig. 12A). MDCK cells were plated at confluence and
treated with a GRK inhibitor upon cell feeding every 24 h. Occlu-
din and ZO-1 localizations at the border were reduced on day 3
following treatment of parental MDCK cells with GRK Inhib 22
(Fig. 13A and B) or ABMH (Fig. 13A and C) compared with a
dimethyl sulfoxide (DMSO) control. Cell packing was attenuated

by both inhibitors, as demonstrated by a decrease in the number of
nuclei (Fig. 13D) and an increase in the area within the AJ (Fig.
13E). TER was measured in parental cells treated with GRK inhib-
itors. Treatment with all three GRK inhibitors reduced day 3 TER
and delayed barrier development in a dose-dependent manner,
yielding reduced TER on day 3 (Fig. 11B to E and 12B to D). Cell
viability was not decreased with any of the inhibitors (Fig. 14). In
contrast to the panspecific GRK Inhib 22, inhibitors specific to the
GRK2-3 subfamily (GRK Inhib 63 and GRK Inhib 64) did not
reduce TER (Fig. 11B). Importantly, overexpression of S471D Occ
was sufficient to attenuate the GRK Inhib 22-mediated TER de-
crease in parental MDCK cells, while WT Occ expression tended
to normalize TER but was not statistically significant (Fig. 11F).
These results strongly implicate GRK isoforms in the phosphory-
lation of occludin S471 and demonstrate that the inhibition of
GRK isoforms significantly decreases cell packing, TJ assembly,
and peak TER, which may be attenuated by the expression of the
S471D Occ phosphomimetic.

DISCUSSION

Despite the importance of barrier formation and dysfunction in a
variety of diseases (41–43), the series of events leading to barrier
maturation remain incompletely characterized. The present study
demonstrates the necessity of size-reductive proliferation or cell
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packing for normal barrier maturation and identifies a role for the
TJ protein occludin in this process. Previous studies demonstrated
that occludin contributes to growth control and cell cycle progres-
sion (15, 20), is altered in epithelial cancers (44, 45), and may act
as a tumor suppressor (20). Evidence is presented here demon-
strating that the phosphorylation of S471 of occludin regulates
entry into size-reductive proliferation after cell contact. Expres-
sion of an S471-phosphoinhibitory mutant, Occ S471A, acts in a
dominant manner to attenuate cell packing and subsequent TJ
maturation and the formation of high-resistance barriers. These
effects can be recapitulated by treating confluent monolayers with
a cell cycle inhibitor, demonstrating the necessity of cell packing
for complete TJ assembly and monolayer maturation. Finally, Occ
S471 was found to be a substrate for GRK, and three separate GRK
inhibitors attenuated epithelial cell maturation. These data sug-
gest that GRK phosphorylation of Occ S471 signals to allow size-
reductive proliferation. The reduced cell size then relieves cyto-
skeletal strain, promoting Hippo signaling for YAP nuclear
exclusion (7) and cellular quiescence with completed TJ forma-
tion. The inhibition of S471 phosphorylation or prevention of cell
cycle progression postconfluence prevents size-reductive prolifer-
ation, leading to fewer, larger cells with incomplete TJ formation
(Fig. 15).

TJ barrier regulation by occludin is dependent on phospho-
sites, which are particularly abundant in the C-terminal coiled coil
(46). Occludin dephosphorylation is associated with decreased
electrical resistance and localization of occludin at the membrane,
and C-terminal deletion increases solute flux and attenuates TJ
organization (36, 47). Specific phosphosites regulate the occludin-
mediated response to various growth factors and cytokines. For
example, phosphorylation at S490 by protein kinase C
II
(PKC
II) in response to vascular endothelial growth factor treat-
ment increases occludin ubiquitination, leading to endocytosis
and increased permeability (42, 48). S490 phosphorylation also
facilitates mitotic entry and increases proliferation (15). Phos-
phorylation at S408 mediates interleukin-13-induced barrier loss,
and inhibition of the S408 kinase CK2 increases TER through
altered intermolecular complex formation within the TJ (49).
Specific occludin phosphosites also regulate occludin’s interac-
tion with other TJ proteins, suggesting additional points of regu-
lation (50–52). These studies support a role for specific occludin
phosphosites in barrier regulation and suggest that novel sites may
have important regulatory roles.

Overexpression of nonphosphorylatable S471A Occ disrupted
cell packing and maturation of TJs but not AJs. AJs are formed
prior to TJs following cell-cell contact, and while TJ and cytoskel-

A

Pare
ntal

WT O
cc

S47
1A

S47
1D

R
ed

uc
ed

 W
ST

-1
 S

ub
st

ra
te

 
(N

or
m

al
iz

ed
 to

 P
ar

en
ta

l)
1.5

2.0

1.0

0.5

0.0

* *
1.25

0.50

1.00

0.25

0.00

DMSO (0
.5%

)

ABMH (8
00

 μm
)

GRK In
hib 22

 (5
0 

μm
)

0.75

R
ed

uc
ed

 W
ST

-1
 S

ub
st

ra
te

 
(N

or
m

al
iz

ed
 to

 0
.5

%
 D

M
SO

)

No Tr
ea

tm
en

t

Paro
xe

tin
e (

5 μ
m)

R
ed

uc
ed

 W
ST

-1
 S

ub
st

ra
te

 
(N

or
m

al
iz

ed
 to

 N
o 

Tr
ea

tm
en

t) *1.25

0.50

1.00

0.25

0.00

0.75

DMSO (0
.5%

)

Rosc
ovit

ine (
10

 μm
)

R
ed

uc
ed

 W
ST

-1
 S

ub
st

ra
te

 
(N

or
m

al
iz

ed
 to

 0
.5

%
 D

M
SO

) 1.50

0.50

1.00

0.25

0.00

0.75

1.25

C

B

D

FIG 14 Cell viability is not decreased by occludin overexpression or the tested pharmacological agents. Shown is quantification of WST-1 reduction as a measure
of viability for parental and occludin-overexpressing cell lines (A), GRK Inhib 22 and ABMH GRK inhibitors (B), the GRK inhibitor paroxetine (C), and the cell
cycle inhibitor roscovitine (D). Data are expressed as means � SD (n � 8). *, P � 0.05 compared to WT Occ, 0.5% DMSO, or no treatment.

Bolinger et al.

2062 mcb.asm.org August 2016 Volume 36 Number 15Molecular and Cellular Biology

http://mcb.asm.org


etal organization were decreased in a dominant fashion in S471A
Occ-expressing lines, AJ assembly was unaffected, revealing that
AJ formation does not require cell packing as TJ formation does.
Furthermore, GRK inhibition did not alter AJ formation. Addi-
tionally, S471A Occ-expressing monolayers were composed of
fewer cells with increased area, suggesting premature proliferative
cessation. The Hippo signaling pathway is an important determi-
nant of cell and organ sizes, and nuclear exclusion of the coacti-
vator YAP accompanies proliferative quiescence. While YAP is

just one of several nuclear Hippo proteins, proliferative cessation
in S471A Occ-expressing cell lines despite continued nuclear YAP
localization indicates a dominant effect of the mutant, leading to
the premature arrest of packing prior to the completion of the
Hippo signaling pathway.

S471A Occ expression reduced TER despite similar TJ protein
expression and Ca2	, K	, and Cl� ion permeability in all lines
(Fig. 2 and 9), suggesting nonspecific flux from gaps in the TJ
rather than an altered expression of claudins or claudin pore for-

FIG 15 Model of the contribution of occludin S471 to monolayer maturation. (A) Increasing confluence leads to contact by E-cadherin extracellular domains
of adjacent cells (blue bars). Cell confluence continues to increase, and occludin S471 is phosphorylated by GRK, allowing size-reductive proliferation, decreasing
cell area, and increasing cell number. (B) As size-reductive proliferation progresses, YAP becomes excluded from the nucleus, and junctional maturation
proceeds, yielding a mature monolayer with high barrier resistance and proliferative quiescence. (C) Monolayer maturation may be perturbed by Ser-to-Ala
mutation of occludin at S471 (1), cell cycle inhibition of confluent monolayers (roscovitine) (2), or inhibition of the S471 kinase GRK (GRK Inhib 22, ABMH,
and paroxetine) (3). (D) In all cases, size-reductive proliferation is inhibited, leaving an immature monolayer with complete adherens junction formation but
nuclear YAP, poor TJ organization, and low TER.
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mation to induce changes in the permeability of a specific ion.
Importantly, packing deficiencies evident in S471A Occ-express-
ing lines, including mislocalized TJ proteins and reduced TER,
were recapitulated by pharmacological inhibition of packing
alone, indicating that packing is necessary for establishing ana-
tomically and functionally normal barriers. It is noteworthy that
many TJ proteins appear at the cell border upon contact and be-
fore packing but that a continuous apical TJ is not completed until
after size-reductive proliferation and quiescence. How these
downstream events are regulated remains an area for future inves-
tigation.

Structural analysis of occludin and ZO-1 binding suggests that
occludin S471 is located within the acidic head of the coiled coil
that specifically binds the GuK domain of ZO-1 (22), raising the
possibility that occludin S471 phosphorylation affects the confor-
mation of ZO-1 and thus epithelial cell maturation. The ZO family
acts to organize cell junctions and links the junction to the actin
cytoskeleton (53). Changes in the localization of all the TJ pro-
teins analyzed in the S471A Occ mutants as well as altered actin
organization, particularly at the cortical ring, are consistent
with an alteration in proper ZO-1 function at the cell mem-
brane. Occludin expression is not necessary for TJ formation in
the intestinal epithelia of mice or in MDCK cells (13, 54), sug-
gesting that the regulatory effect of occludin may eventually be
compensated for in its absence. However, the effect of the
S471A mutation was not transient, indicating that the presence
of nonphosphorylatable S471 occludin inhibits packing and TJ
formation in a dominant manner and revealing this site as a
regulator of size-reductive proliferation and epithelial cell mat-
uration.

GRKs can phosphorylate S471 Occ, and inhibition of GRKs
recapitulates results obtained with S471A Occ-expressing lines
and cell cycle inhibition. GRKs contribute to signal transduction
desensitization by phosphorylating G-protein-coupled receptors
and preventing coupling with cytoplasmic G proteins. The se-
quence surrounding Occ S471 was tested with multiple kinase
prediction software programs, and 41 kinases were selected for
screening. GRK family members were able to phosphorylate the
Occ S471-containing peptide, consistent with recent studies dem-
onstrating that non-G-protein-coupled receptor proteins, includ-
ing cytoskeletal (39), nuclear (55), and membrane (56) proteins as
well as transcription factors (57), can be GRK substrates. Seven
GRK isoforms have been identified and are divided into three
subfamilies based on sequence homology: isoforms 1 and 7 are
tissue specific to the eye, while isoforms 2 and 3 are ubiquitously
expressed, as are isoforms 5 and 6, while isoform 4 has limited
expression (58). Importantly, three structurally distinct GRK in-
hibitors were able to recapitulate deficiencies in packing and TJ
protein localization evident in S471A Occ-expressing lines in a
dose-dependent manner. In contrast to the panspecific GRK Inhib
22, two inhibitors with greater specificity for the GRK2-3 subfam-
ily did not decrease TER. This result along with a lack of GRK1 and
-7 expression in kidney and the confirmed expression of the
GRK4-6 subfamily in MDCK cells by Western blotting suggests
that at least one member of the GRK4-6 subfamily is an S471
kinase in MDCK cells. Silencing of GRK5 increases cell area,
decreases tumor size (39), and attenuates proliferation in var-
ious cancer lines (59, 60), demonstrating a regulatory role for
the GRK4-6 subfamily in cell size and proliferation. While
there are likely off-target effects of the GRK inhibitors used in

the present experiments, the ability of three structurally dis-
tinct inhibitors to induce the same effect, preventing epithelial
cell maturation, strongly suggests that GRK is the target. Crit-
ically, the GRK inhibitor-mediated TER decrease observed in
parental MDCK cells was significantly attenuated in phospho-
mimetic S471D Occ-overexpressing cells, implicating Occ
S471 as a critical GRK target in epithelial cell maturation.

Taken together, these observations support a model in
which Occ S471 phosphorylation contributes to the regulation
of entry into size-reductive proliferation after contact, fol-
lowed by epithelial quiescence and the assembly of TJs at the
cell border, leading to a high resistance barrier and a mature
monolayer. These findings extend the current understanding
of the role of occludin and establish the importance of cell
packing in barrier formation.
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