Table 7.
Segmentation and recognition using crisp region proposals of materials (OS) and things & stuff (MSRC)
Dataset | Measure (%) | VGG-M | VGG-VD | ||||||
---|---|---|---|---|---|---|---|---|---|
FC-CNN | FV-CNN | FV+FC-CNN | FC-CNN | FV-CNN | FC+FV-CNN | CRF | SoA | ||
OS | pp-acc | 36.0 | 48.6 (46.9) | 49.8 | 38.5 | 55.5 (55.7) | 55.9 | 56.5 | – |
OSA | acc-osa (2) | 42.8 | 66.0 | 63.4 | 42.1 | 67.9 | 64.6 | 68.9 | – |
MSRC | acc-msrc (3) | 56.1 | 82.3 | 75.2 | 57.7 | 86.9 | 81.5 | 90.2 | 86.5 Ladicky et al. (2010) |
Per-pixel accuracies are reported, using the MSRC variant (see text) for the MSRC dataset. Results using MCG proposals (Arbeláez et al. 2014) are reported in brackets for FV-CNN