Skip to main content
. 2016 Jan 9;118:65–94. doi: 10.1007/s11263-015-0872-3

Table 7.

Segmentation and recognition using crisp region proposals of materials (OS) and things & stuff (MSRC)

Dataset Measure (%) VGG-M VGG-VD
FC-CNN FV-CNN FV+FC-CNN FC-CNN FV-CNN FC+FV-CNN CRF SoA
OS pp-acc 36.0 48.6 (46.9) 49.8 38.5 55.5 (55.7) 55.9 56.5
OSA acc-osa (2) 42.8 66.0 63.4 42.1 67.9 64.6 68.9
MSRC acc-msrc (3) 56.1 82.3 75.2 57.7 86.9 81.5 90.2 86.5 Ladicky et al. (2010)

Per-pixel accuracies are reported, using the MSRC variant (see text) for the MSRC dataset. Results using MCG proposals (Arbeláez et al. 2014) are reported in brackets for FV-CNN