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Forkhead box O1 (FoxO1) is a key molecule for the develop-
ment and functions of peripheral T cells. However, the precise
mechanisms regulating FoxO1 expression in peripheral T cells
remain elusive. We previously reported that Zfatf/f-CD4Cre
mice showed a marked decline in FoxO1 protein levels in
peripheral T cells, partially through proteasomal degradation.
Here we have identified the precise mechanisms, apart from
proteasome-mediated degradation, of the decreased FoxO1 lev-
els in Zfat-deficient T cells. First, we confirmed that tamoxifen-
inducible deletion of Zfat in Zfatf/f-CreERT2 mice coincidently
decreases FoxO1 protein levels in peripheral T cells, indicating
that Zfat is essential for maintaining FoxO1 levels in these cells.
Although the proteasome-specific inhibitors lactacystin and
epoxomicin only moderately increase FoxO1 protein levels, the
inhibitors of lysosomal proteolysis bafilomycin A1 and chloro-
quine restore the decreased FoxO1 levels in Zfat-deficient T
cells to levels comparable with those in control cells. Further-
more, Zfat-deficient T cells show increased numbers of
autophagosomes and decreased levels of p62 protein, together
indicating that Zfat deficiency promotes lysosomal FoxO1 deg-
radation through autophagy. In addition, Zfat deficiency
increases the phosphorylation levels of Thr-308 and Ser-473 of
Akt and the relative amounts of cytoplasmic to nuclear FoxO1
protein levels, indicating that Zfat deficiency causes Akt activa-
tion, leading to nuclear exclusion of FoxO1. Our findings have
demonstrated a novel role of Zfat in maintaining FoxO1 protein
levels in peripheral T cells by regulating the activities of
autophagy and the Akt signaling pathway.

Forkhead box O 1 (FoxO1), a member of the FoxO subfamily,
is a multifunctional transcription factor that has important
roles in regulating diverse cellular processes, such as differenti-
ation, proliferation, survival, and metabolism (1). In addition to

a variety of posttranslational modifications, the activity of
FoxO1 is mainly regulated by Akt-mediated phosphorylation
on three conserved sites, leading to the translocation of FoxO1
from the nucleus to the cytosol and its subsequent degradation
through the ubiquitin-proteasome pathway (2– 4). Several
recent studies have identified the key role played by FoxO1 in
the development and function of peripheral T cells in the
immune system (5, 6). T cell-specific FoxO1-deficient mouse
models revealed that FoxO1 is required for the proper control
of T cell quiescence and tolerance by regulating the expression
of KLF2 and the � subunit of the interleukin 7 receptor (IL-
7R�)3 (7, 8). Furthermore, FoxO1-dependent transcriptional
programs regulate the development and functions of regulatory
T cells (9 –12) and determine the functional differentiation of
CD8� T cells into effector and memory cell subsets (13, 14).
Despite the identification of these important roles of FoxO1,
the mechanisms regulating FoxO1 expression in peripheral T
cells remain elusive.

The nuclear zinc-finger protein Zfat has important roles in
the immune system (15–19). We have reported that Zfat-gene
ablation in thymic T cells in Zfatf/f-LckCre mice results in a
drastic decrease in the number of CD4�CD8� double positive
cells, accompanied by impaired positive selection and excessive
apoptosis (20, 21). Furthermore, we have reported that Zfat
deficiency in peripheral T cells in Zfatf/f-CD4Cre mice results in
a decrease in the number of peripheral T cells, accompanied by
the decreased surface expression of IL-7R� and the impairment
in the induction of IL-2 in response to T cell receptor stimula-
tion (22). These studies have clearly demonstrated that Zfat is a
key molecule for the development, survival, and proliferation of
both thymic and peripheral T cells.

Recently, we reported that FoxO1 protein levels were dimin-
ished in splenic T cells in Zfatf/f-CD4Cre mice (23). Further-
more, epoxomicin, which is an inhibitor specific to protea-
somes, increased FoxO1 protein levels in Zfat-deficient T cells,
suggesting that the decreased FoxO1 levels are partially due to
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we have identified the precise cause underlying the decline in
FoxO1 protein levels in Zfat-deficient cells using Zfat knockout
mouse models and protease inhibitors. We found that Zfat-
deficient T cells showed hyperactivation of autophagy and the
Akt signaling pathway, leading to the nuclear exclusion of
FoxO1 and its enhanced lysosomal degradation. Here we dem-
onstrated a novel role of Zfat in maintaining FoxO1 protein
levels in peripheral T cells by regulating the activities of
autophagy and the Akt signaling pathway.

Results

Zfat Is Essentially Required for Maintaining FoxO1 Expres-
sion Specifically in Peripheral T Cells—To elucidate the precise
cause of the decreased FoxO1 levels in Zfat-deficient T cells, we
employed two lines of mouse models with T cell-specific dele-
tion of the Zfat gene, Zfatf/f-CD4Cre and Zfatf/f-LckCre mice.
Consistent with our previous study (23), FoxO1 protein levels
were markedly decreased in CD4� T and CD8� T cells derived

from either spleen or lymph nodes in Zfatf/f-CD4Cre mice com-
pared with those from Zfatf/f mice (Fig. 1A). The decreased
expression of FoxO1 was also observed in peripheral T cells
from Zfatf/f-LckCre spleen (Fig. 1B). On the other hand, FoxO1
protein levels in thymocytes were comparable between Zfatf/f

and Zfatf/f-LckCre mice despite an obvious decrease in Zfat
protein (Fig. 1B), similar to our observations in Zfatf/f-CD4Cre
mice (23). These results suggest that Zfat is involved in the
control of FoxO1 expression, specifically in peripheral T cells.

To further confirm that Zfat is essentially required for FoxO1
expression in peripheral T cells, we deleted the Zfat gene in
peripheral T cells using CreERT2 transgenic mice. In cells
expressing CreERT2, Cre recombinase is not active until
tamoxifen is provided. We generated Zfatf/f-CreERT2 mice by
crossing CreERT2 mice with Zfatf/f mice and employed this
system to delete Zfat in peripheral T cells. Zfatf/w-CreERT2 and
Zfatf/f-CreERT2 mice were injected daily with tamoxifen for 3
days and analyzed 24 h after the final administration. Tamox-
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FIGURE 1. Decrease in FoxO1 protein in Zfat-deficient T cells. A–D, immunoblot analysis of the indicated proteins on peripheral CD4� T, CD8� T, and B220�

cells or thymocytes from the indicated genotype mice. Actin was used as a loading control. Levels of protein expression were quantified by densitometry and
normalized to actin levels. C, Zfatf/w-CreERT2 and Zfatf/f-CreERT2 mice were treated with tamoxifen for 3 days. A–C, data are representative of two or three
independent experiments.
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ifen treatment caused a decrease in Zfat protein in both CD4�

T cells and CD8� T cells from Zfatf/f-CreERT2 mice compared
with those from Zfatf/w-CreERT2 control mice (Fig. 1C). FoxO1
protein levels were diminished in splenic T cells, particularly in
CD4� T cells, from tamoxifen-treated Zfatf/f-CreERT2 mice
compared with those from control mice (Fig. 1C). These results
clearly indicated that Zfat is essentially important for maintain-
ing FoxO1 protein levels in peripheral T cells and that the
decreased FoxO1 levels are not due to defects in thymocyte
differentiation, which might be caused by Zfat deficiency in the
Zfatf/f-CD4Cre and Zfatf/f-LckCre thymuses.

FoxO1 belongs to the FoxO family, which consists of FoxO1,
FoxO3, FoxO4, and FoxO6. FoxO family proteins share a high
homology in amino acid sequence and have redundancy in their
function and regulation (24). As FoxO6 is known to be predom-
inantly expressed in the brain, we examined the expression lev-
els of FoxO3 and FoxO4 in splenic CD4� T cells from Zfatf/f

and Zfatf/f-CD4Cre mice. Zfat deficiency caused a marked
decrease in the protein levels of FoxO3 and FoxO4 in peripheral
T cells (Fig. 1D), suggesting that Zfat is required for maintain-
ing the levels of these FoxO proteins expressed in peripheral T
cells.

Decreased FoxO1 Levels in Zfat-deficient T Cells Are Only
Partially Dependent on Proteasome Activity—We previously
reported that the FoxO1 mRNA levels were not affected by Zfat
deficiency and that a proteasome-specific inhibitor, epoxomi-
cin, increased FoxO1 protein levels in Zfatf/f-CD4Cre CD4� T
cells, suggesting that the dysregulation of its proteasomal deg-
radation is involved in the decline in FoxO1 protein levels in

Zfat-deficient T cells (23). We first examined the proteasome
activity in CD4� T cells, which showed no difference between
Zfatf/f and Zfatf/f-CD4Cre mice (Fig. 2A). Next, we assessed the
effects of MG132 on FoxO1 protein levels in peripheral T cells.
MG132 is known to be a proteasome inhibitor, but it also inhib-
its several other proteases (25, 26). Surprisingly, MG132 ele-
vated FoxO1 protein levels in Zfat-deficient T cells more mark-
edly compared with those in cells treated with epoxomicin or
lactacystin, both of which are proteasome-specific inhibitors
(27, 28) (Fig. 2B). Lactacystin and epoxomicin increased the
ubiquitinated proteins at levels comparable with those in the
cells treated with MG132 (Fig. 2B), indicating that lactacystin
and epoxomicin properly inhibit proteasome activity at the
concentrations used in this study. These results indicated that
the decreased FoxO1 levels in Zfat-deficient T cells are only
partially dependent on proteasome activity.

We compared the effect of MG132 and its structural ana-
log N-benzyloxycarbonyl-Val-Leu-leucinal (Z-VLL-CHO) on
FoxO1 protein levels. Both MG132 and Z-VLL-CHO elevated
FoxO1 protein levels in splenic CD4� T cells from Zfatf/f-
CD4Cre mice, even at a concentration of 0.01 �M (Fig. 2C).
Because these peptidyl aldehyde inhibitors are known to inhibit
not only proteasome activity but also the activities of �- and
�-secretases (29 –31), we examined the effects of inhibitors spe-
cific for these secretases on FoxO1 protein levels. However,
�-secretase inhibitor IV, and DAPT and DAPM, which are
inhibitors specific for �-secretase, failed to increase FoxO1 pro-
tein levels (Fig. 2B). Taken together, these results suggest that
there are MG132-sensitive proteases other than proteasomes
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FIGURE 2. Effects of protease inhibitors on FoxO1 protein levels in Zfat-deficient T cells. A, proteasome activity in splenic CD4� T cells from Zfatf/f and
Zfatf/f-CD4Cre mice after treatment with or without 10 �M MG132 at 37 °C for 2 h. The data are mean � S.D. (n � 3). n.s., not significant. RLU, relative light units.
B and C, immunoblot analysis of Zfat, FoxO1, or ubiquitin on splenic CD4� T cells from Zfatf/f and Zfatf/f-CD4Cre mice after treatment with protease inhibitors.
CD4� T cells prepared from Zfatf/f and Zfatf/f-CD4Cre mice were harvested immediately (control) or after incubation with 10 �M MG132, 10 �M Z-VLL-CHO, 10
�M lactacystin, 1 �M epoxomicin, 10 �M �-secretase inhibitor IV, 25 �M DAPT, 25 �M DAPM, or vehicle (DMSO) at 37 °C for 3 h. The cells were lysed and subjected
to immunoblotting with the specific antibodies. Actin was used as a loading control. Levels of FoxO1 protein expression were quantified by densitometry and
normalized to actin levels. A–C, data are representative of three independent experiments.

FoxO1 Regulation by Zfat via Autophagy and Akt Signaling

15284 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 291 • NUMBER 29 • JULY 15, 2016



and secretases that are responsible for decreased FoxO1 levels
in Zfat-deficient T cells.

Inhibition of Lysosomal Proteolysis Restores Decreased FoxO1
Protein Levels in Zfat-deficient T Cells—MG132 is known to
inhibit the activities of cathepsins as well as those of protea-
somes and secretases (32). Cathepsins are lysosomal proteases
that are optimally active under acidic conditions. We examined
the effects of bafilomycin A1 and chloroquine, both of which
inhibit the activities of lysosomal proteases by blocking acidifi-
cation of the lysosome (33, 34). Surprisingly, bafilomycin A1
and chloroquine markedly increased FoxO1 protein levels in
Zfat-deficient T cells (Fig. 3A). Next, we compared the effects of
bafilomycin A1 with those of MG132. The effect of MG132 on
FoxO1 protein levels was that they rapidly reached a maximum
at 0.5 h, whereas bafilomycin A1 elevated the FoxO1 levels
more slowly (Fig. 3B). Furthermore, co-treatment with MG132
and bafilomycin A1 was not additive in their effects on FoxO1
protein levels (Fig. 3C). Taken together, these results suggest
the possibility that MG132 and bafilomycin A1 may increase
FoxO1 protein levels by targeting different molecules on the
same pathway or the same molecule with different kinetics.

Lysosomal acidification is required not only for the optimal
activities of acidic proteases within the lysosome but also for
activation of the mammalian target of rapamycin complex 1
(mTORC1) (35). In addition, mTORC1 activity is known to be a
requirement for the nuclear exclusion of FoxO1 in peripheral
CD8� T cells (14). To explore whether bafilomycin A1
increases FoxO1 protein levels by inhibiting mTORC1 activity,
we examined the effect of rapamycin, which is an inhibitor spe-
cific for mTORC1 activity (36). Rapamycin had no effect on
FoxO1 protein levels in Zfat-deficient T cells, whereas the phos-
phorylation of S6 ribosomal protein, which is a surrogate
marker for the mTORC1 activity, was strikingly suppressed by
rapamycin treatment (Fig. 3D), indicating that mTORC1 activ-
ity is not involved in the effect of bafilomycin A1 on FoxO1
levels. Furthermore, E-64, which directly inhibits cysteine pro-
teases such as cathepsins (37), significantly increased FoxO1
protein levels in Zfat-deficient T cells (Fig. 3D). Together, these
results indicated that bafilomycin A1 increases FoxO1 protein
levels in Zfat-deficient T cells through the inhibition of prote-
ase activities within the lysosome, implying that Zfat deficiency
promotes FoxO1 degradation through the lysosomal proteases.

Activation of Autophagy in Zfat-deficient T Cells—
Autophagy is a unique digestion process by which cytoplasmic
proteins and organelles are delivered to the lysosome for deg-
radation (38). We hypothesized that the dysregulation of
autophagy is related to the enhanced lysosomal degradation of
FoxO1. First, we assessed autophagosome formation in splenic
CD4� T and B220� cells via flow cytometry using an autopha-
gosome-specific fluorescent probe. As shown in Fig. 4A, the
abundance of autophagosomes was higher in CD4� T cells
from Zfatf/f-CD4Cre mice than those from Zfatf/f mice,
whereas it was comparable in B220� cells from Zfatf/f and Zfatf/

f-CD4Cre mice. Furthermore, immunoblotting analysis
revealed that the level of p62 protein, which is a well known
autophagic marker protein, was significantly lower in CD4� T
cells from Zfatf/f-CD4Cre mice than in those from Zfatf/f mice
(Fig. 4B). In contrast, by treatment with bafilomycin A1, p62

protein accumulated in Zfat-deficient T cells at higher levels
than it did in control cells (Fig. 4B). All of these results indicate
that Zfat deficiency causes the activation of autophagy in
peripheral CD4� T cells.

Zfat Deficiency Results in PI3K-dependent Hyperactivation of
Akt and Promotes Nuclear Exclusion of FoxO1—Akt is known
to tightly regulate the localization and degradation of FoxO1
(2– 4). Upon activation of PI3K, both phosphoinositide-depen-
dent kinase 1 (PDK1) and Akt are recruited to the plasma mem-
brane, which enables PDK1 to phosphorylate Thr-308 of Akt
(39, 40). To be completely activated, Akt is further phosphory-
lated at Ser-473 by mTORC2 (41). To explore whether Akt is
involved in the enhanced FoxO1 degradation in Zfat-deficient
T cells, we assessed the phosphorylation levels of Akt in splenic
CD4� T cells by immunoblotting analysis. We observed that
the phosphorylation levels of both Thr-308 and Ser-473 of Akt
were significantly higher in CD4� T cells from Zfatf/f-CD4Cre
spleen than in those from Zfatf/f spleen, even without any stim-
ulation (Fig. 5A), indicating that Zfat deficiency caused an ele-
vation in basal Akt activity. As Akt activity is known to be neg-
atively regulated by phosphatase and tensin homolog (PTEN)
and protein phosphatase 2A (PP2A), we examined their protein
levels in peripheral T cells by immunoblotting analysis. As
shown in Fig. 5B, Zfat deficiency did not affect the expression
levels of PTEN or PP2A in peripheral T cells. In contrast,
LY294002, which is an inhibitor for PI3K, greatly decreased the
amount of constitutively phosphorylated Akt in Zfat-deficient
CD4� T cells (Fig. 5C), suggesting that an aberrant activation of
PI3K may be the underlying cause for the hyperactivation of
Akt in Zfat-deficient T cells.

Finally, we examined the subcellular localization of FoxO1 in
CD4� T cells by subcellular fractionation, followed by immu-
noblotting analysis. Consistent with previous studies (14, 42),
most of the FoxO1 protein was detected in the nuclear fraction
in Zfatf/f CD4� T cells (Fig. 5D). On the other hand, about half
of the FoxO1 protein was detected in the cytosolic fraction in
Zfatf/f-CD4Cre CD4� T cells, indicating that Zfat deficiency
promotes the translocation of FoxO1 from the nucleus to the
cytosol, where FoxO1 is rapidly degraded (Fig. 5D). Further-
more, LY294002 increased FoxO1 protein levels in the nuclear
fraction in Zfat-deficient T cells but not in control cells (Fig.
5D). Taken together, these results suggest that Zfat deficiency
results in PI3K-dependent hyperactivation of Akt in peripheral
T cells, leading to the nuclear exclusion of FoxO1.

Discussion

The important roles played by FoxO1 in the development
and function of peripheral T cells are being increasingly recog-
nized (6). Therefore, the identification of factors controlling
FoxO1 expression in peripheral T cells is important for under-
standing immunoregulation and for treating immunological
diseases. Our study has shown that Zfat maintains FoxO1 pro-
tein levels in peripheral T cells by regulating the activities of
autophagy and the Akt signaling pathway.

We reported previously that the deletion of Zfat decreased
FoxO1 protein levels in peripheral T cells and that epoxomicin
increased FoxO1 protein levels in Zfat-deficient T cells, which
suggested that the decreased FoxO1 protein levels resulted
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from the dysregulation of its proteasomal proteolysis (23).
However, in this study, we have revealed that the decrease in
FoxO1 protein levels in Zfat-deficient T cells was attributable

to the enhanced lysosomal degradation of the FoxO1 protein.
First, we showed that MG132 and Z-VLL-CHO, which are pro-
teasome inhibitors with relatively low specificities, increased
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FIGURE 3. Inhibition of lysosomal proteolysis restores FoxO1 protein levels in Zfat-deficient T cells. A–D, immunoblot analysis of FoxO1 or phospho-S6
ribosomal protein (Ser-235/Ser-236) on splenic CD4� T cells from Zfatf/f and Zfatf/f-CD4Cre mice after treatment with inhibitors. CD4� T cells prepared from
Zfatf/f and Zfatf/f-CD4Cre mice were harvested immediately (control) or after incubation with 10 �M MG132, 100 nM bafilomycin A1, 50 �M chloroquine, 100 nM

rapamycin, 10 �M E-64, or vehicle (DMSO) at 37 °C for 3 h or the indicated time periods. The cells were lysed and subjected to immunoblotting with the specific
antibodies. Actin was used as a loading control. Levels of FoxO1 protein expression were quantified by densitometry and normalized to actin levels. Data are
representative of three independent experiments.
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FoxO1 protein levels in Zfat-deficient T cells more markedly
compared with those in cells treated with epoxomicin or lacta-
cystin, which are inhibitors with a high specificity for protea-
somes (Fig. 2). This result implies that proteases other than
proteasomes are involved in the decline of FoxO1 levels. Next,
we showed that the decreased FoxO1 protein levels in Zfat-
deficient T cells were significantly restored by inhibitors for
lysosomal acidification, bafilomycin A1 and chloroquine, and
by E-64, which is an inhibitor specific for cysteine proteases
such as cathepsins (Fig. 3). Finally, we showed that Zfat defi-
ciency caused the activation of autophagy in peripheral T cells
(Fig. 4). These results indicate that Zfat deficiency promotes
lysosomal FoxO1 degradation through autophagy, although
proteasomes are only partially involved in decreased FoxO1
levels. In addition, we showed that Zfat deficiency yielded an
elevation in the phosphorylation levels of both Thr-308 and
Ser-473 of Akt and in the relative amounts of cytoplasmic to
nuclear FoxO1, indicating that Zfat deficiency causes Akt acti-
vation, leading to the nuclear exclusion of FoxO1 (Fig. 5). Taken
together, these results revealed that, in Zfat-deficient periph-
eral T cells, hyperactivated Akt promotes the phosphorylation
of FoxO1, leading to its translocation from the nucleus to the
cytosol, after which the cytoplasmic FoxO1 is degraded by lys-

osomal proteases through autophagy, which is up-regulated by
Zfat deficiency (Fig. 5D).

Consistent with the fact that FoxO family proteins share the
mechanisms for Akt-mediated phosphorylation and subse-
quent nuclear exclusion (43), Zfat deficiency led to a marked
decrease in protein levels of FoxO1, FoxO3, and FoxO4. Hyper-
activation of Akt, which is caused by Zfat deficiency, will pro-
mote the phosphorylation of FoxO1, FoxO3, and FoxO4, lead-
ing to their translocation from the nucleus to the cytosol and,
subsequently, their degradation. In addition to their specific
roles, FoxO family proteins function in a redundant manner to
regulate the development and function of T cells. In fact, mice
with a deletion of both FoxO1 and FoxO3 in T cells showed
more a severe inflammatory disorder phenotype than mice with
a deletion of individual genes (11), indicating that Zfat is a crit-
ical molecule in immunoregulation.

The lysosome is a membrane-enclosed organelle containing
various hydrolases responsible for the degradation of intracel-
lular components and extracellular materials. Lysosomal dys-
function is known to be associated with several human diseases
and the process of aging (44). Zfat deficiency promoted the
lysosomal degradation of FoxO1. However, it remains
unknown whether protein degradation in the lysosome is gen-
erally increased in Zfat-deficient T cells. Further studies will be
required to elucidate the roles of Zfat in lysosomal protein deg-
radation. As Zfat is considered to be a transcriptional regulator,
identification of Zfat target genes in T cells will lead to a better
understanding of the function of Zfat in lysosomal protein deg-
radation. Zfat might regulate the expression of genes involved
in lysosomal biogenesis, leading to increased lysosomal protein
degradation.

Zfat deficiency did not affect FoxO1 protein levels in thymo-
cytes (Fig. 1B), indicating that Zfat regulates FoxO1 levels in a
cell type-specific manner. Zfat is required for maintaining
FoxO1 protein levels in peripheral T cells but not in thymo-
cytes. We showed previously that Zfat deficiency in peripheral
T cells resulted in decreased IL-7R� expression (22). However,
the precise mechanisms by which Zfat deficiency lowered
IL-7R� expression remained unknown. In this study, using
three lines of Zfat knockout mouse models, we showed that
Zfat was essentially required for maintaining FoxO1 expression
specifically in peripheral T cells (Fig. 1). Given that FoxO1 tran-
scriptionally regulates IL-7R� expression in peripheral T cells
(7, 8), the lower IL-7R� expression in Zfat-deficient T cells
could be attributed to the decreased expression of FoxO1 pro-
tein. The homeostasis of peripheral T cells is largely maintained
by signaling from both IL-7R and T cell receptor (45, 46).
Accordingly, Zfat is considered to play an important role in
peripheral T cell homeostasis by controlling FoxO1 protein
levels.

Mice with T cell-specific deletion of the FoxO1 gene
(FoxO1f/f-CD4Cre mice) showed similar immunological phe-
notypes as observed in Zfatf/f-CD4Cre mice. For example, both
Zfatf/f-CD4Cre mice and FoxO1f/f-CD4Cre mice showed
defects in survival and proliferation in peripheral T cells (7).
Interestingly, FoxO1f/f-CD4Cre mice exhibited an autoimmune
phenotype, such as multiorgan lymphocyte infiltration and
autoantibody production (7). Indeed, FoxO1 deficiency in T
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cells resulted in defects in development and function in regula-
tory T (Treg) cells as well as an increase in the number of Th17
cells (9 –12, 47). Although Zfat was identified as a candidate
susceptibility gene for autoimmune thyroid disease (19), and
genetic variants of Zfat were reported to be associated with the
severity of Hashimoto disease and with interferon-� respon-
siveness in multiple sclerosis (48, 49), it remains unknown
whether Zfat deficiency in T cells leads to the autoimmune
phenotype. Further studies should be needed to elucidate the
roles of Zfat in autoimmunity.

Autophagy is a fundamental catabolic process in which intra-
cellular proteins and organelles are degraded via the lysosome,
and it is up-regulated in response to extra- or intracellular
stress and signals such as starvation, growth factor deprivation,
and pathogen infection (50, 51). Furthermore, autophagy has
emerged as a key process regulating many aspects of T cell
function, including their development, survival, and homeosta-
sis (52–55). Here we found that Zfat deficiency caused the acti-
vation of autophagy in peripheral T cells. Therefore, it is impor-
tant to elucidate the mechanism by which Zfat influences the
activity of autophagy in peripheral T cells. Given that Zfat is
expected to be a transcriptional regulator in the nucleus, Zfat
might affect the expression of the genes involved in autophagy
regulation; this requires further investigation.

In this study, we found that both Thr-308 and Ser-473 of Akt
were hyperphosphorylated in Zfat-deficient T cells. Akt plays a
central role in the regulation of a variety of cellular processes,

including cell survival and cell cycle progression, downstream
of PI3K. Activated PI3K phosphorylates phosphatidylinositol
4,5-bisphosphate (PI(4,5)P2) to form phosphatidylinositol
3,4,5-triphosphate (PI(3,4,5)P3), leading to the recruitment of
Akt to the plasma membrane, where PDK1 phosphorylates
Thr-308 of Akt (39, 40). Akt is further phosphorylated at Ser-
473 by mTORC2 to gain its full activation capacity (41). On the
other hand, particular phosphatases, including PTEN and
PP2A, negatively regulate Akt activity through distinct mecha-
nisms (56 –58). Zfat deficiency did not affect the expression
levels of PTEN or PP2A in peripheral T cells, whereas the PI3K
inhibitorLY294002decreasedtheamountofconstitutivelyphos-
phorylated Akt, suggesting that Akt hyperactivation caused by
Zfat deficiency could be attributed to aberrant activation of
PI3K. In T cells, PI3K is activated in response to stimulation
through the T cell receptor as well as co-stimulatory, cytokine,
and chemokine receptors (59 – 61). Zfat might regulate the
expression levels of the molecules downstream of these recep-
tors, which are involved in the control of PI3K activity. Further
studies are required to elucidate the mechanisms by which Zfat
regulates the PI3K/Akt signaling pathway in peripheral T cells.

In summary, we demonstrated that Zfat deficiency in periph-
eral T cells results in activation of autophagy and the Akt sig-
naling pathway, leading to enhanced lysosomal degradation of
the FoxO1 protein. Further studies will provide additional
insights into the roles of Zfat in the development and function
of T cells.
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Experimental Procedures

General Reagents and Antibodies—MG132, Z-VLL-CHO,
lactacystin, epoxomicin, �-secretase inhibitor IV, N-[N-(3,5-
difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester
(DAPT), N-[N-3,5-difluorophenacetyl]-L-alanyl-S-phenylgly-
cine methyl ester (DAPM), and LY294002 were purchased from
Calbiochem. Bafilomycin A1 was from Wako Pure Chemical
Industries. E-64, chloroquine diphosphate salt, tamoxifen, and
anti-actin antibody (A2066) were from Sigma-Aldrich. Rapa-
mycin and anti-FoxO1 (2880), anti-FoxO3a (2497), anti-FoxO4
(9472), anti-S6 ribosomal protein (2212), anti-phospho-S6
ribosomal protein (Ser-235/236, 2211), anti-Akt (9272), anti-
phospho-Akt (Thr-308, 2965), anti-phospho-Akt (Ser-473,
4060), anti-PP2A C subunit (2259), and anti-PTEN (9552) anti-
bodies were from Cell Signaling Technologies. The anti-ubiq-
uitin antibody (P4D1) was from Santa Cruz Biotechnology. The
Proteasome-Glo assay kit was from Promega. The anti-Zfat
antibody was prepared as described previously (62).

Mice—Zfatf/f, Zfatf/f-CD4Cre, and Zfatf/f-LckCre mice were
generated as described previously (21, 22). Zfatf/f mice were
crossed to CreERT2 mice to generate tamoxifen-inducible Zfat
knockout (Zfatf/f-CreERT2) mice in the C57BL/6 background.
Zfatf/w-CreERT2 and Zfatf/f-CreERT2 mice were intraperitone-
ally injected daily with tamoxifen (2 mg/40 g of body weight) for
3 consecutive days and sacrificed 24 h after the final adminis-
tration. All animal experiments were performed under Institu-
tional Animal Care and Use Committee of Fukuoka University-
approved guidelines in accordance with approved protocols.

Cell Isolation and Culture—Spleens, mesenteric lymph
nodes, or thymuses from 8- to 12-week-old mice were pro-
cessed into a single-cell suspension. CD4� T, CD8� T, or
B220� cells were isolated via positive selection using MACS
(Miltenyi Biotech) following the protocol of the manufacturer.
In experiments using inhibitors, purified T cells were incubated
in RPMI1640 medium (Wako Pure Chemical Industries) sup-
plemented with 10% FBS (Gibco), 50 �M �-mercaptoethanol
(Sigma-Aldrich), penicillin (Life Technologies), and streptomy-
cin (Life Technologies).

Nuclear/Cytoplasmic Fractionation, Cell Lysis, and
Immunoblotting—Splenic CD4� T cells were fractionated into
their nuclear and cytoplasmic fractions using the NE-PER
nuclear and cytoplasmic kit (Thermo Scientific) following the
protocol of the manufacturer. Whole cell extracts were pre-
pared by incubating cells in radioimmune precipitation assay
(RIPA) buffer (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5%
sodium deoxycholate, 0.1% SDS, and 1% Triton X-100) supple-
mented with Complete EDTA-free protease inhibitor and
PhosSTOP phosphatase inhibitor (both from Roche) for 30 min
at 4 °C. Cell pellets were removed by centrifugation, and then
the supernatants were mixed with Laemmli sample buffer.
Equal amounts of protein were resolved via SDS-PAGE and
transferred to a nitrocellulose membrane (GE Healthcare). The
membranes were blocked in TBST (10 mM Tris-HCl (pH 8.0),
150 mM NaCl, and 0.1% Tween 20) containing 5% nonfat dry
milk and then incubated overnight at 4 °C with primary anti-
bodies diluted in TBST containing 1% BSA. Horseradish
peroxidase-conjugated secondary antibodies (Jackson

ImmunoResearch Laboratories) and SuperSignal West Pico
chemiluminescent substrate (Thermo Scientific) were used
for the detection. Quantitative analysis of the immunoblot-
ting was performed using ImageJ software (National Insti-
tutes of Health). The amounts of total protein loaded on
SDS-PAGE were determined by staining gels with CBB Stain
One (Nacalai Tesque). Neither Zfat deficiency nor treatment
with the inhibitors used in this study affected actin protein
levels.

Autophagy Measurement by Flow Cytometry—The forma-
tion of autophagosomes was determined using the Cyto-ID
autophagy detection kit (Enzo Life Science) according to the
protocol of the manufacturer. In brief, splenic cells were
depleted of erythrocytes by hypotonic lysis. After washing twice
with PBS, the cells were incubated with Cyto-ID for 30 min at
37 °C in the dark. After washing with PBS containing 5% FBS,
the cells were stained with anti-mouse CD4 APC-conjugated or
anti-mouse B220 APC/Cy7-conjugated antibody (both from
BioLegend). Data were collected using FACSAria II (BD Biosci-
ences) and analyzed using FlowJo software (Tomy Digital
Biology).

Author Contributions—S. I. and Y. I. designed, performed, and ana-
lyzed the experiments and wrote the paper. Y. T., K. D., M. K., H. L.,
K. N., and T. T. provided technical assistance for the experiments.
T. O. provided Zfat transgenic mice. S. S. conceived and coordinated
the study and wrote the paper. All authors reviewed the results and
approved the final version of the manuscript.
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