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Abstract

Imaging biomarkers for the predictive assessment of treatment response in patients with cancer 

earlier than standard tumor volumetric metrics would provide new opportunities to individualize 

therapy. Diffusion-weighted MRI (DW-MRI), highly sensitive to microenvironmental alterations at 

the cellular level, has been evaluated extensively as a technique for the generation of quantitative 

and early imaging biomarkers of therapeutic response and clinical outcome. First demonstrated in 

a rodent tumor model, subsequent studies have shown that DW-MRI can be applied to many 

different solid tumors for the detection of changes in cellularity as measured indirectly by an 

increase in the apparent diffusion coefficient (ADC) of water molecules within the lesion. The 

introduction of quantitative DW-MRI into the treatment management of patients with cancer may 

aid physicians to individualize therapy, thereby minimizing unnecessary systemic toxicity 

associated with ineffective therapies, saving valuable time, reducing patient care costs and 

ultimately improving clinical outcome. This review covers the theoretical basis behind the 

application of DW-MRI to monitor therapeutic response in cancer, the analytical techniques used 

and the results obtained from various clinical studies that have demonstrated the efficacy of DW-

MRI for the prediction of cancer treatment response.
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INTRODUCTION

Monitoring cancer treatment response

Image-based assessment of cancer treatment response continues to be an active area of 

research with advances in medical imaging instrumentation providing opportunities to 

fundamentally change the clinical management of patients with cancer. MRI represents a 

key modality that has found use in the diagnosis, treatment planning, and assessment of 

response and recurrence of solid malignancies. By providing high spatial resolution and soft 

tissue contrast, MRI allows exquisite noninvasive radiographic detection of tumor location, 

whilst also providing a determination of the tumor number and dimensions.
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Computed tomography and, soon after, MRI have been used since the 1960s to measure 

gross changes in tumor volume following a therapeutic intervention (1). Although there have 

been advancements in quantitative imaging techniques, such as diffusion-weighted MRI 

(DW-MRI), dynamic contrast-enhanced MRI (DCE-MRI) and fluorodeoxyglucose-positron 

emission tomography (FDG-PET), standard practice for patient management and clinical 

trials continues to employ anatomical images to assess tumor response to treatment (2–4). 

The World Health Organization (WHO) and the Response Evaluation Criteria in Solid 

Tumors (RECIST) have proposed guidelines primarily based on a single linear summation of 

specific lesions, where monitoring of the morphological changes in tumor volume allows for 

routine measurements for cancer response assessment. Nevertheless, there continues to be 

growing concerns regarding the adequacy of these criteria as some treatments, such as 

molecularly targeted agents, may provide therapeutic benefit without significantly reducing 

the tumor volume (5–7). These concerns underscore the urgency for the development and 

implementation of reliable response imaging biomarkers or surrogates that can detect 

response to treatment earlier than current methodologies (8,9).

GENERAL CONCEPTS IN DIFFUSION

The first diffusion MR sequence was demonstrated in 1965 by Stejskal and Tanner (10) and, 

by the 1980s, DW-MRI of in vivo systems was reported (11–13). Since then, reviews have 

been generated on the principles and technical aspects of this MR technique, as well as 

consensus recommendations using diffusion imaging as a response metric for treatment 

assessment (14–16). Molecular diffusion is the thermally driven random translational motion 

of molecules in media, which is referred to as ‘Brownian motion’. Key factors that exert 

their influence on the mobility of a diffusing molecule include medium viscosity, 

temperature and its molecular mass. Diffusion is not a magnetization-related process such 

as, for example, T1 and T2 magnetization relaxation, which drives conventional MRI 

contrast. Nevertheless, MRI can be used to noninvasively quantify (image) water diffusion 

values spatially in vivo. This is accomplished in part through the use of magnetic gradients 

that allow for the ‘encoding’ of initial locations of constituent water molecules in the tissue. 

Following a brief interval, the same gradients are used to ‘decode’ the molecular locations. 

For those water molecules in which displacement has occurred during the time interval, 

decoding will be incomplete, resulting in the loss of signal through spin dephasing. The 

dephasing amount increases in proportion to the distance translated between encode/decode 

diffusion gradient pulses. Highly mobile water molecules will have greater attenuation of the 

signal relative to water in more restricted/cellular tissue environments. The determination of 

the degree of signal loss at various diffusion gradient settings provides for the ability to 

calculate molecular mobility in complex systems, such as tumor tissue. However, because 

tumor tissue is composed of water located in a highly complex microenvironment, the 

concept of a single diffusion coefficient is not valid and, as such, it is reported as an 

‘apparent diffusion coefficient’ (ADC) (13,14). ADC measurements can be used to assess a 

myriad of properties that impede molecular motions, including cell membrane integrity, cell 

density, interactions with macromolecules, and processes that enhance mobility via active 

transport, convective motion and perfusion.

Galbán et al. Page 2

NMR Biomed. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The ability of water to sample its surrounding environment is the foundation behind its 

efficacy as a measure of tumor response to cancer. The thermal, i.e. Brownian, motion of 

free water at body temperature (~35 °C) is approximately 3 × 10–3 mm2/s. Clinical DW-MRI 

sequences typically have a bipolar gradient interval around 50 ms, resulting in a 

displacement of free water molecules of 30 μm. By applying these motion-sensitive 

gradients, water molecules can be exploited to sample the microenvironment of biological 

systems well within the resolution of the MRI sequence. Structures within the solid tumor 

that are sampled by water molecules may include the tumor cell membranes, organelles, 

myelin layers and macromolecules, as well as additional cellular and subcellular entities, all 

of which are on the order of micrometers. Transient association of water with large, slow-

moving macromolecules and cell membranes that result in water binding, as well as 

impediment by membranes and other structures, effectively reduce water mobility to an 

ADC lower than free water diffusion. The greater the bulk density of structures within a 

tumor tissue that impede water mobility, the lower the ADC value for that tumor. As such, 

ADC is considered to be a noninvasive imaging biomarker of cellularity or cell density. 

However, if two tissues have different ADC values, the lower ADC tissue may not 

necessarily have the greater number of cells per unit volume. Other factors that make up the 

microenvironment (e.g. cell size, viscosity, vasculature, extracellular matrix and 

permeability) also affect water mobility and ADC. Within a given tissue or cell type, ADC is 

useful as an indicator of the relative cellularity, such as in the evolution of a tumor over time 

following therapy. Cellular alterations caused by disease or intervention, as well as changes 

in cellular organization or integrity of cellular elements, are available for study by diffusion 

imaging.

Water diffusion on the order of cellular distances is measurable in spite of the presence of 

other much larger physiologic motions. A single-shot echo-planar imaging (EPI) approach 

(17) is the standard imaging sequence for the acquisition of diffusion-weighted imaging. By 

acquiring the entire set of echoes for an image within one single scanning period, respiratory 

bulk tissue motion, which would overwhelm the measurement of molecular motion, is 

essentially eliminated. By decreasing the acquisition times by a factor of 100, EPI also 

allows DW-MRI to be incorporated as a standard MRI sequence in clinical scanners to be 

used in routine clinical scanning protocols. However, images generated by EPI are sensitive 

to artifacts, such as distortion and signal loss owing to magnetic susceptibility. These 

limitations aside, EPI is the most commonly used clinical sequence, combined with diffusion 

sensitization gradient pulses, to perform DW-MRI.

ADC AS A MEASURE OF TUMOR CELLULARITY

It is traditionally viewed that, as cellular density increases, the added tortuosity within the 

microenvironment reduces water mobility. Figure 1 illustrates the effect of an effective 

therapeutic agent on the water diffusivity in a solid tumor mass (18). Solid tumors typically 

have a mean ADC value around 1 × 10–3 mm2/s (Fig. 1). Following the intervention of a 

therapeutic agent that results in cell killing (i.e. a decrease in tumor cellularity), the extra-

cellular space increases as the intracellular space diminishes (Fig. 1). This results in a shift 

in the tumor water diffusivity to higher values in therapeutically responsive regions of the 

tumor. Several groups have reported the inverse relationship between ADC and cellular 
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density (19–22). To aid in the interpretation of these results, a biphasic model relating ADC 

values to cellularity has been proposed in which two pools of water within the tissue exist: a 

fast diffusion pool and a slow diffusion pool (23). The slow diffusion pool is proposed to 

consist of a water layer trapped by electrostatic forces of the cellular membranes and 

associated cytoskeleton. The fast diffusion pool is thought to belong to a combination of 

intra- and extracellular compartments which are, however, slower than free water. Both the 

traditional, i.e. monoexponential, and biphasic diffusion models provide for the rationale that 

water diffusion will decrease during cell swelling or cell proliferation, and increase during 

treatment-induced loss of cellular viability or density. Regardless of the underlying 

mechanism, the fact remains that tumor diffusion values increase as tumor tissue initially 

progresses from a solid, cellular lesion to an acellular, necrotic tumor during successful 

cytotoxic therapy. This characteristic of tumor water diffusion values provides a key 

opportunity to use this biophysical and quantifiable ADC parameter as a sensitive biomarker 

for the detection of the underlying changes in tumor cytoarchitecture associated with 

treatment (24).

DIFFUSION IMAGING TO ASSESS TREATMENT RESPONSE

Twenty years of research in preclinical studies have supported the notion that water 

diffusivity is highly dependent on the tumor microenvironment. This suggests that diffusion 

MR can be used to noninvasively detect cellular changes associated with treatment-induced 

cell killing in animal models (19,20,22,25–30). The key findings in many studies are that 

changes in ADC values precede changes in tumor volume regression, as well as being 

treatment independent and dose/efficacy dependent. All of this supports the claim that this 

imaging biomarker may indeed be used as an early surrogate for the assessment of treatment 

outcome.

Diffusion MRI as a method for therapeutic response assessment in the clinic was first 

demonstrated in patients with glioma (21). Tumors treated with radiation, with or without 

chemotherapy, demonstrated an increase in ADC values from baseline. The magnitude of 

change in ADC values correlated with cellularity in the tumor mass, albeit in a pilot study. 

Through advances in radiofrequency coil design, parallel imaging and rapid pulse 

sequencing, diffusion MRI has been demonstrated as a biomarker of treatment response in 

breast cancer (31–38), liver cancer (39–47), prostate cancer (34,48), rectal cancer (49–57), 

lymphomas (20,58–63), head and neck cancer (64,65) and metastases (29,33,37,66–72). 

Results from clinical studies have shown a significant difference in the mean ADC values 

between patients responding to treatment relative to patients who were determined to be 

nonresponsive to treatment.

An example of the clinical application of DW-MRI for the assessment of early treatment 

response was reported in patients with stage II/III breast cancer treated with neoadjuvant 

chemotherapy (NAC) (73). Presented in Fig. 2 are representative slices of ADC tumor maps 

from two patients with breast cancer who underwent two cycles of NAC. The first patient 

revealed an increase in tumor diffusion values (Fig. 2A), indicating that cell killing had 

occurred with no significant reduction in tumor size (Fig. 2B). Following the second cycle of 

treatment, a significant decrease in tumor volume was noted. In the second patient with 
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breast cancer, ADC values remained stable over the treatment period and the patient was 

subsequently classified as non-pathological complete response (non-pCR) (Fig. 2C, D). 

These data reveal the tremendous potential of DW-MRI for the early monitoring of cancer 

treatment response.

Although an initial increase in tumor ADC values during treatment is typically associated 

with cell death, a subsequent decrease in tumor ADC values may occur, indicating tumor 

regrowth or, possibly, fibrosis. This present understanding is supported by findings in 

recurrent high-grade gliomas and osteosarcomas, where lower ADC values are observed in 

viable tumor and higher ADC values in regions of necrosis following treatment (74,75). 

Thus, ADC values in the context of the determination of the treatment response should 

probably be limited to early time intervals post-treatment initiation because of the more 

complex late-stage cellular processes that may complicate interpretation.

Metastatic lesions pose a very distinct problem for the treatment management of patients 

with cancer with disseminated disease. In many cases, primary tumors that have 

metastasized will seed osseous regions. Although bone scans using technetium 99m single 

photon emission computed tomography (Tc99m-SPECT) imaging are standard clinical 

practice for the diagnosis of metastatic cancer to the bone, RECIST continues to label bony 

tumors as ‘non-measurable’ because of the complex metabolic state of the bone interacting 

with the tumor. DW-MRI, with its high soft tissue contrast and resolution, has been shown to 

be highly sensitive to tumor response to therapy, irrespective of bone turnover. In a 

preliminary pilot study, Lee et al. (29) first demonstrated the utility of DW-MRI for 

therapeutic response assessment in two patients with metastatic prostate cancer to the bone, 

which was later validated in a large dataset by Reischauer et al. (76).

WHOLE-BODY DIFFUSION-WEIGHTED MRI (WBDW-MRI)

Although the aforementioned studies (29,76) focused only on treatment response in 

individual tumors, advances in wbDW-MRI may allow for multiple lesions to be monitored 

simultaneously (77,78). This is illustrated in the work by Horger et al. (59), where 20 

patients with lymphoma undergoing systemic therapy were monitored using wbDW-MRI. 

Figure 3 demonstrates the sensitivity of wbDW-MRI for the detection of variations in 

therapeutic response in a single patient. Multi-focal lesions within the patient were found to 

have increased ADC values, suggesting that cell killing occurred following treatment, as 

depicted in these inverted gray-scale images (arrows). In contrast, the large tumor in the 

pelvic node (arrowhead) revealed a stable ADC value. Through the use of wbDW-MRI, 

early response assessment can now be obtained over multiple lesions, but at a cost of 

reduced spatial resolution.

ANOMALIES IN REPORTED DIFFUSION VALUES FOR TUMOR RESPONSE

Most studies have reported that tumor water ADC values typically increase following 

successful intervention in solid tumors. Although this trend appears to be the norm, there 

have been cases in which a decrease, rather than an increase, in ADC measurements has 

been reported to correlate with a positive response (54,79–81). As the tumor mass will 
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respond dynamically throughout the course of fractionated therapies, the timing of the 

acquired DW-MRI measurement may have an impact on the findings. For example, two 

studies that investigated the efficacy of DW-MRI on treated rectal cancer (54,80) showed a 

brief, transient increase in ADC in the first week post-treatment initiation. Subsequently, a 

decrease in ADC was observed over the next several weeks. Histology confirmed that 

chemoradiation of rectal carcinoma resulted in increased interstitial fibrosis, which may 

have had the effect of reducing the ADC values in the tumor regions (54). The authors also 

drew attention to the fact that regions of obvious necrosis, as observed by MRI within the 

tumor mass, were not included in the volume of interest prescribed over the tumor mass. 

Omission of the necrotic regions would bias the measurement to lower ADC values. 

Therefore, the reported decreased ADC values that correlated with response appear to be 

primarily related to the timing of the measurement, as well as fibrotic formation following 

tumor cell death.

SPATIAL HETEROGENEITY IN TUMOR RESPONSE

Spatial heterogeneity in tumor response is a major confounding factor in assigning a single 

indicator to a patient. A given lesion often contains wide gradations of viable cellularity and 

necrosis, and the response of tumor subregions to treatment can be nonuniform and 

dependent on many factors. Histogram analysis of ADC values throughout the tumor is one 

approach to address heterogeneity (83,84). Although a variety of scalar quantities are 

derivable from tumor ADC histogram analysis, the magnitude of regional changes may be 

underestimated by whole-tumor summary statistics in the presence of heterogeneous 

response patterns. Figure 4 from ref. (85) illustrates the effect of response heterogeneity on 

the tumor histogram. Using simulated data, the authors demonstrated that uniform changes 

in tumor ADC values result in a mean ADC value that can detect alterations in tumor ADC 

values (Fig. 4B). Although other whole-tumor metrics may provide more sensitivity, such as 

the standard deviation for the case in which regions of the tumor demonstrate increasing and 

decreasing ADC values from baseline (Fig. 4C), we would need to know a priori the most 

appropriate measure. A more comprehensive evaluation has been performed on the efficacy 

of histogram-based measures for therapeutic response assessment using MRI-derived blood 

volume maps in patients with glioma (86). Although not performed using DW-MRI acquired 

parameters, the study observed negligible effectiveness of a variety of whole-tumor 

quantitative metrics for the detection of tumor response at both 1 and 3 weeks post-treatment 

initiation.

An alternative image processing approach has been developed to quantify and spatially map 

the intrinsic treatment-associated heterogeneity of diffusion values within a tumor. This 

technique is referred to as ‘functional diffusion mapping’ (fDM) (87). A key element of 

fDM is the spatial registration of baseline and follow-up three-dimensional quantitative 

diffusion maps (i.e. ADC) into a single geometrical space. Further reading on the 

registration techniques and limitations for therapeutic response assessment is provided in 

refs. (85,88,89). Once registered, diffusion changes are measured on a voxel-by-voxel basis 

from spatially aligned pre-treatment and post-treatment initiation ADC maps. Tumor voxels 

are then classified by their extent of change in ADC. Although fDM was initially evaluated 

in patients with glioma (87,90–93), this technique has been applied to other tumor types 
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(29,65,76,85). Figure 5 shows fDMs [also referred to as parametric response mapping 

(PRMADC)] with corresponding scatter plots from patients with head and neck squamous 

cell carcinoma (HNSCC) diagnosed as complete response (CR) (Fig. 5A) and partial 

response (PR) (Fig. 5B) following therapy. By analysis of the diffusion maps using fDM, 

heterogeneity in tumor response can be visualized, with red regions denoting response (i.e. 

increase in ADC from baseline) versus stable and decreased ADC regions depicted as green 

and blue, respectively. As demonstrated in a variety of tumor types, large regions of 

increased ADC from baseline (i.e. red voxels) were strongly correlated with treatment 

response, irrespective of the presence of tumor regions with stable or decreasing ADC 

values.

STANDARDIZATION AND REPEATABILITY OF ADC MEASUREMENTS

As discussed in this review, the biophysical premise and technical feasibility have allowed 

quantitative DW-MRI to become a clinically viable technique. Nevertheless, for this imaging 

protocol to become routine in the management of patients and clinical trials, there is a need 

to standardize DW-MRI acquisition schemes to account for intra and inter-vendor instrument 

variability (94). In an effort to bring uniformity throughout the various MRI systems, 

phantoms have been developed to confirm quantitative agreement across platforms. The 

ideal phantom must be stable throughout the imaging sequences and provide meaningful 

ADC measurements consistent with biological systems. As a result of the complexity of 

water diffusion in living tissue, the development of a phantom that is both stable and mimics 

all tissue properties has its difficulties. Simple fluid-based test objects are the preferred 

approach to phantom development using fluids that are thermally stable, readily available 

and safe when properly handled (95,96). In a study by Tofts et al. (97), the diffusion 

coefficients of 15 organic liquids were evaluated and found to stably provide repeatable 

ADC measurements within the relevant range of biological systems [(0.36–2.6) × 10–3 

mm2/s]. In 2011, Chenevert et al. (98) reported a temperature-controlled phantom using 

water cooled to near freezing. This phantom consisted of liquid water jacketed with ice 

water, such that the inner chamber was cooled to ~0 °C. Although water diffusivity is highly 

sensitive to temperature (99), jacketing the liquid water with ice allowed a stable 

environment with temperatures maintained for up to 4 h and a reliable, biologically relevant 

ADC value (~1 × 10–3 mm2/s). The availability of stable and reproducible phantoms has 

allowed multi-center studies to be performed, demonstrating the repeatability of quantitative 

DW-MRI across platforms (100,101).

In the absence of a standard DW-MRI protocol, investigators of clinical trials are employing 

strategies to contend with intra-instrument variability. Affectionately referred to as the 

‘coffee-break exam’, this approach acquires repeat DW-MRI examinations, minutes to hours 

apart, to ascertain the variability in the ADC measurement prior to therapeutic intervention. 

The motivation of this strategy is to characterize the noise associated with the ADC 

measurement for a given patient and platform in the absence of disease- or treatment-related 

changes in tumor physiology and anatomy. Various studies, just to name a few, have reported 

stable quantitative DW-MRI measurements in HNSCCs (64), hepatocellular carcinoma 

(102), malignant lung lesions (103), rectal cancer (104) and primary breast cancer (105). 

Until uniformity in DW-MRI protocols between vendors, instruments and sites is obtained, 
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the strategy of repeat examinations prior to therapeutic intervention will help to elevate some 

of the variability in the ADC measurement within a given instrument.

FUTURE DIRECTIONS

The studies presented here support the use of DW-MRI as an early surrogate biomarker for 

tumor response assessment. In a growing body of literature, changes in tumor water 

diffusion values have been reported to correlate with response to therapy, despite the diverse 

set of tumor types, MRI manufacturers and magnetic field strengths used to collect the data, 

together with the varying approaches used to analyse the datasets (Figure 6, Table 1). Taken 

together, this reveals the overall robustness of DW-MRI for oncological treatment 

assessment. Clinical cancer studies on the efficacy of DW-MRI as a surrogate imaging 

biomarker of the tumor treatment response have demonstrated that treatment-induced cell 

death can be detected in responding tumors as an increased ADC value in these regions. As 

a result of variability in DW-MRI acquisition and analytical post-processing protocols, 

efforts have solidified in the publication of a consensus paper to provide for standardization 

across institutions (16). In addition, temperature-controlled phantoms have recently been 

developed to facilitate multi-center DW-MRI clinical trials (100,101). These standards are 

needed for data acquisition, post-image processing, timing of evaluation and the method 

used to generate the quantifiable metric used to report treatment response. Although the 

momentum for the use of DW-MRI in the context of tumor response assessment is 

continuing to grow, validation of DW-MRI as a surrogate imaging biomarker of response 

will require a large, prospective, multi-institutional trial performed in a standardized fashion 

between sites. Analysis of the data could also be useful for the validation of the image post-

processing software and for regulatory approval as a device. Having a Food and Drug 

Administration (FDA)- or European-approved software package would provide additional 

momentum for enhancing the probability that DW-MRI will ultimately be incorporated into 

routine clinical practice for the management of patients with cancer. Future opportunities in 

employing DW-MRI in the clinical management of patients with cancer may include 

adaptive therapy protocols based on intra-therapy evaluation of early ADC changes during 

fractionated dosage schedules, allowing for the modification of interventions and for the 

quantification of multi-focal disease response using wbDW-MRI (78). Finally, the recent 

emergence of anticancer immunotherapies raises an urgent need for the establishment of 

radiological metrics for assessment of the response to such experimental interventions (106–

108). Further efforts investigating advanced imaging techniques, such as DW-MRI, are 

needed to delineate its ability to provide meaningful insights into treatment responsiveness 

in order for it to have a successful impact on clinical decision making.
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Acknowledgments

Funding support for this work was provided by the National Institutes of Health grants P01CA085878 and 
U01CA166104.

Galbán et al. Page 8

NMR Biomed. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations used

ADC apparent diffusion coefficient

CR complete response

DCE-MRI dynamic contrast-enhanced MRI

DW-MRI diffusion-weighted MRI

EPI echo-planar imaging

FDG-PET fluorodeoxyglucose-positron emission tomography

FDM functional diffusion map

HNSCC head and neck squamous cell carcinoma

NAC neoadjuvant chemotherapy

PCR pathological complete response

PR partial response

PRM parametric response mapping

RECIST Response Evaluation Criteria in Solid Tumors

Tc99m-SPECT technetium 99m single photon emission computed 

tomography

wbDW-MRI whole-body diffusion-weighted MRI

WHO World Health Organization
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Figure 1. 
Schematic diagram of changes in water diffusivity in a tumor following an effective 

therapeutic agent. Changes in cellularity (left) occur with increasing molecular water 

mobility, measured as the apparent diffusion coefficient (ADC; right), as a tumor responds to 

treatment (top to bottom). As a tumor responds to therapy, an increase in extracellular space 

and membrane permeability occurs, which allows for increased water mobility, and is 

detected by diffusion-weighted MRI (DW-MRI) as an increase in ADC values. [Courtesy of 

ref. (18).]
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Figure 2. 
(A) Apparent diffusion coefficient (ADC) maps superimposed on the post-contrast dynamic 

contrast-enhanced MR (DCE-MR) images at three time points [pre-treatment, after one 

cycle and after all cycles of neoadjuvant chemotherapy (NAC)] for a patient achieving 

pathological complete response (pCR). The numbers for each panel represent the mean ADC 

values for each time point in the parametric map. (B) The difference image between pre-

contrast and post-contrast DCE-MRI at each time point. (C) ADC maps superimposed on 

the post-contrast DCE-MR images at three time points (pre-treatment, after one cycle and 

after all cycles of NAC) for a non-pCR patient. The numbers for each panel represent the 

mean ADC values for each time point in the parametric map. (D) The difference image 

between pre-contrast and post-contrast DCE-MRI at each time point. [Courtesy of and 

adapted from ref. (73).]
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Figure 3. 
Whole-body diffusion-weighted MRI (wbDW-MRI) is presented as an early indicator of 

response to systemic therapy in patients with lymphoma. (A) Image of a 48-year-old man 

diagnosed with diffuse large B-cell lymphoma obtained at baseline shows the ubiquitous 

involvement of lymph nodes (e.g. cervical and retroperitoneal, small arrows) and axillary 

regions (large arrows) with marked restriction of water diffusivity. A larger pelvic node 

(arrowhead) is also seen left of the midline. (B) At day 7 following the institution of 

chemotherapy with rituximab (anti-CD20 antibodies) + CHOP (cyclophosphamide, 

hydroxydaunorubicin, vincristine, prednisolone), wbDW-MRI shows evident reduction in 

signal intensity in the cervical and retroperitoneal node regions (small arrows) and axillary 

region (large arrows) (from ADC = 0.90/0.33/0.67/0.61 to ADC = 1.66/0.73/1.36/1.22), with 

a corresponding increase in ADC (not shown), but a less marked response, in the pelvic node 

(arrowhead) (from ADC = 0.83/0.51 to ADC = 1.12/0.67) At the interim, the patient 

achieved complete remission. [Courtesy of ref. (59).]
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Figure 4. 
Simulated comparison of whole-tumor histogram analysis (top row; blue line, pre-treatment 

tumor data; red line, post-treatment tumor data) versus the corresponding voxel-based 

analysis using a joint density histogram (bottom row). Histograms from tumors with no 

major change (A), significant uniform shift to higher apparent diffusion coefficient (ADC) 

values with a 34% net mean change (B) and heterogeneous ADC changes (increased and 

decreased ADC values) resulting in no net detectable histogram shift (C). Parametric 

response maps from the corresponding histograms are also shown, where, in (D), the 

confidence interval for the detection of change was set to 95%, and thus no significant 

change in red voxels (increased values) or blue voxels (decreased values) was detected. (E) 

An increase in the number of red voxels was detected at 29% of the total tumor voxels. (F) 

Both an increase and a decrease in tumor voxels of approximately 15% were detected, 

whereas no major shift was detected using a histogram analysis of the same data (C). 

[Courtesy of Ref. (85).]
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Figure 5. 
Functional diffusion mapping (fDM) applied to clinical data acquired from patients with 

head and neck squamous cell carcinoma (HNSCC) diagnosed as pCR (pathological 

complete response) (A) and PR (partial response) (B). Results from the fDM analysis are 

presented as color-coded maps superimposed on contrast-enhanced T1-weighted images and 

scatter plots with axes pre-treatment ADC (x-axis) and post-treatment ADC (y-axis). Color-

coding is as follows: red, increased ADC values; blue, decreased ADC values; green, 

unchanged ADC values. [Courtesy of ref. (65).]
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Figure 6. 
Number of annual publications on the application of diffusion-weighted MRI (DW-MRI) for 

therapeutic response assessment. Yearly evaluation showed a growing increase in the 

number of studies demonstrating the efficacy of DW-MRI for cancer response to treatment. 

The search was performed on Pubmed using the following criteria [((diffusion OR ADC OR 

“apparent diffusion coefficient”) AND MRI AND response) NOT (stroke OR review)]. 

Individual references were manually evaluated.

Galbán et al. Page 26

NMR Biomed. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Galbán et al. Page 27

Table 1

Please provide legend

Site Reference

Abdominal (109)

Acoustic neuroma (110)

Bladder (111,112)

Bone marrow (113)

Brain (26,87,93,114–138)

Breast (35–38,139–152)

Cervical (153–160)

Eye (161,162)

Leiomyoma (163–165)

Liver (41,42,44,46,70,166–181)

Lung (182–185)

Lymphoma (186–188)

Myeloma (189,190)

Ovarian (191–193)

Pancreas (194)

Prostate (29,195–198)

Rectal (54,79,199–207)

Sarcoma (208–214)

HNSCC (65,215–220)

1
HNSCC, head and neck squamous cell carcinoma.
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