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In this work, we optimise microfluidic converging/diverging geometries in order to

produce constant strain-rates along the centreline of the flow, for performing studies

under homogeneous extension. The design is examined for both two-dimensional and

three-dimensional flows where the effects of aspect ratio and dimensionless

contraction length are investigated. Initially, pressure driven flows of Newtonian fluids

under creeping flow conditions are considered, which is a reasonable approximation

in microfluidics, and the limits of the applicability of the design in terms of

Reynolds numbers are investigated. The optimised geometry is then used for

studying the flow of viscoelastic fluids and the practical limitations in terms of

Weissenberg number are reported. Furthermore, the optimisation strategy is also

applied for electro-osmotic driven flows, where the development of a plug-like veloc-

ity profile allows for a wider region of homogeneous extensional deformation in the

flow field. All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4954814]

I. INTRODUCTION

A large amount of industrial processes and scientific investigations dealing with Newtonian

and non-Newtonian fluids are characterised by the occurrence of strong extensional flows.

There is a current demand for appropriate devices capable of assisting in the investigation of

the extensional behaviour and the characterisation of extensional material properties of fluids of

interest, in particular, those exhibiting complex rheological behaviour such as polymer solutions

or various biofluids (Galindo-Rosales et al., 2013 and Haward, 2016). Unlike Newtonian fluid

flows—in which the extensional viscosity is proportional to the shear viscosity (Trouton ratios

of 3 or 4 for uniaxial and planar extension, respectively)—viscoelastic fluid flows often lead to

significantly larger flow resistance due to strong extensionally thickening effects, with Trouton

ratios that can be orders of magnitude greater than for Newtonian fluids (Haward, 2016). This

makes thorough experimental characterisation of extensional properties of viscoelastic fluids

crucial in various contexts, ranging from fundamental studies to industrial applications, aiming

to: accurately describe and predict their behaviour; effectively control their flow; design effi-

cient and safe devices/fluidic components; detect subtle dissimilarities in their composition

(e.g., for product quality control); provide quality-assurance of final products (e.g., in polymer

or food processing industries).

Lab-on-a-chip platforms have been proven a very powerful tool in the context of exten-

sional flows of complex fluids (Rodd et al., 2005 and Galindo-Rosales et al., 2013). The char-

acteristic small length scales (1 lm–1000 lm) of microfluidic devices allow the generation of

large deformations and deformation rates for relatively small flow rates, enhancing mechanical
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properties that might otherwise be masked by inertial effects in macro-scale flows. The small

amount of sample needed to operate the microfluidic devices and their ability to reproduce pre-

cisely controlled, three dimensional environments, make them a promising candidate over other

techniques used conventionally in biomedical research (Sackmann et al., 2014 and Sousa et al.,
2016). Examples include studies of cell responses, molecular stretching, as well as droplet de-

formation and other interfacial studies (Shui et al., 2007; Velve-Casquillas et al., 2010;

Mulligan and Rothstein, 2011; Mai et al., 2012; and Gossett et al., 2012). Microfluidics have

also found a niche application for investigating and characterising the rheological behaviour of

viscoelastic fluids (Pipe and McKinley, 2009; Galindo-Rosales et al., 2013; and Haward, 2016),

both under shear and extensional deformation.

Abrupt contractions are arguably the most frequently used geometries for studying exten-

sional flows. Despite their geometric simplicity, they are able to produce flows with a combina-

tion of strong shear effects close to the walls and strong extensional effects along the centreline

region in the vicinity of the contraction (Rothenstein and McKinley, 2001). Such entry flows

have been established as one of the most appropriate geometries for benchmarking the effi-

ciency of computational methods for non-Newtonian fluids (Hassager, 1988; Owens and

Phillips, 2002; and Alves et al., 2003b) and have been extensively used experimentally for

investigating the mechanisms of fluid elasticity (Boger, 1987; Rothenstein and McKinley, 2001;

and Rodd et al., 2005; 2007), where the “excess” pressure drop due to extensional flow in the

contraction is correlated to important viscoelastic normal-stress effects (Ober et al., 2013).

However, abrupt contractions fail to produce homogeneous extension conditions and therefore

are unlikely to establish a region of constant strain-rate (Oliveira et al., 2008). As with shear

viscosity measurements, where shear rheometers generate a constant shear rate canonical flow,

which allows the measurement of the shear viscosity as a function of shear rate, for an exten-

sional rheometer constant extension rate would be ideal for investigating extensional properties

of the fluids (Galindo-Rosales et al., 2013). With that goal in mind, Alves (2008) introduced

the “peculiar” shape of an optimised cross-slot, named OSCER (Optimised Shape Cross-slot

Extensional Rheometer), by demonstrating numerically its ability to generate homogeneous

extension along the centrelines of the flow field for both Newtonian and viscoelastic fluids.

Haward et al. (2012) fabricated and studied experimentally the performance of the optimised

cross-slot, demonstrating the good performance of the OSCER device for both Newtonian and

low viscosity polymer solutions, validating its potential for extensional rheology measurements.

The same configuration has been later employed for investigating the rheological properties of

hyaluronic acid (Haward et al., 2013).

Galindo-Rosales et al. (2013) reviewed various micro-fabricated configurations for potential

use in experimental studies related to elongational flows and highlighted the relevance of micro-

fluidics in the context of extensional rheometry. Hyperbolic shaped microchannels were among

the geometries suggested for this purpose, and have also been discussed in a recent review by

Haward (2016). The idea of constrained converging flows was proposed by Cogswell (1978,

1972), in order to enforce elongation and assist in extensional flow rheological measurements

of polymer melts. James et al. (1990) introduced the principles of a hyperbolic converging rhe-

ometer pointing out its advantage to generate constant strain-rates along the centreline of the

flow. Compared to configurations like the OSCER device, the advantage of this type of entry

flow geometry is its intrinsic simplicity, with only one inlet and one outlet. In this case, the

nominal strain-rate can be controlled by varying the volumetric flow rate of a single stream

(instead of at least three streams which are required for cross-slot and flow focusing devices),

making it very practical for experimental studies. To the best of our knowledge, Oliveira et al.
(2007) were among the first to consider a micro-fabricated hyperbolic configuration as a poten-

tial microfluidic rheometer and studied its performance both numerically and experimentally,

using a Newtonian fluid. They presented a detailed study of the flow kinematics in a hyperbolic

contraction followed by an abrupt expansion and pointed out the difficulty in distinguishing

extensional from shearing effects within the contraction region, with the flow being non-

homogeneous and the developed strain-rate deviating from the ideal uniform profile. The same

configuration was also used for estimating the apparent extensional viscosity of polyethylene
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oxide solutions (McKinley et al., 2007), for investigating the flow of low viscosity Boger fluids

(Campo-Dea~no et al., 2011) and also for mimicking flows along stenoses in the human micro-

circulatory system using blood analogue solutions (Sousa et al., 2011). Additionally, this type

of converging/diverging geometries have been used to study the deformability of white blood

cells (Rodrigues et al., 2015) and of red blood cells under strong extensional flow, for potential

use in diagnosis of blood diseases (Lee et al., 2009; Yaginuma et al., 2013; and Wu and Feng,

2013). Ober et al. (2013) extended the study on the use of hyperbolic channels for rheological

purposes by considering a micro-channel with a symmetric hyperbolic contraction/expansion

used in the commercially available “Extensional Viscometer-Rheometer-On-a-Chip” (EVROC).

The device includes four pressure sensors along the length of the channel for separately evalu-

ating the pressure drop due to shear effects in the fully developed regions upstream and down-

stream of the contraction, where the flow is fully developed, and the pressure drop across the

hyperbolic contraction/expansion. It was intended that by subtracting these two pressure drops,

it would be possible to evaluate the extra pressure drop due to elastic normal stresses alone.

However, they reported that the configuration used was producing a non-homogeneous flow

field, with entrance and exit effects resulting in a region with combined shear and elongational

characteristics. In the present work, we overcome the challenge of non-homogeneity of the ve-

locity field by optimising the shape of a converging/diverging channel to generate the ideal

strain-rate profile along the centreline of the flow for use in elongational studies of macromole-

cules (e.g., DNA) or cells and for potential use as an extensional rheometer.

An attractive advantage of microfluidic devices is that fluid flow within the channels can be

achieved efficiently in different ways, including pressure-driven or electro-osmotic flows (Webster

et al., 2011). For a pressure-driven flow, the fluid motion is frequently imposed using syringe

pumps or pressure pumps, resulting in a variety of fully developed velocity profiles depending on

the cross-sectional aspect ratio, as a consequence of fluid-wall interactions, and on the rheology of

the fluid. For an electro-osmotic flow (EOF), the charged walls of the microfluidic channel attract

the counterions of the fluid and form an electric double layer (EDL) near the interface. By apply-

ing an electric field between the inlet and the outlet of the microchannel, the electrically neutral

bulk is set in motion due to the electric force acting on the EDL, generating a plug-like velocity

profile. Pressure-driven flows are usually the most common, but the velocity profile dependence on

the channel position can be undesirable for some applications (Galindo-Rosales et al., 2014). The

typical plug-like flow of electro-osmosis could reduce this effect by extending the extensional

behaviour along the centreline over a wide region, and has found many applications in engineer-

ing, biomedicine, and chemistry (Wang et al., 2009). In this work, we perform optimisations for

both pressure-driven and EOF devices.

The remainder of the paper is organised as follows: The characteristic dimensions of the

configuration studied are given in Sec. II, together with the ideal velocity and strain-rate pro-

files that are used as targets in the optimisation procedure. Sec. III presents the optimisation

strategy followed for finding the optimal shape of each configuration, and Sec. IV presents the

governing equations of fluid motion for pressure driven and electro-osmotic flows. The optimi-

sation of pressure driven flows is examined in Sec. V where we discuss the effects of the con-

traction length, the channel depth and assess the limits of the designs for increasing Reynolds

(Re) and Weissenberg (Wi) numbers. Electro-osmotic flows are considered in Sec. VI, and the

optimal shape solutions are presented for various geometry aspect ratios. Finally, the main con-

clusions of this study are summarised in Sec. VII.

II. GEOMETRY DEFINITION

The primary aim of this work is to find the optimised shape of a converging/diverging

channel that is able to produce wide regions of constant strain-rate, _e ¼ @u=@x, along the cen-

treline of the flow for pressure-driven and electro-osmotic flows.

The flow is driven from one inlet with an average velocity, Uu, towards the outlet of the

device as shown in Fig. 1. As the fluid flows through the contraction, the velocity along the

centreline of the flow, u, will ideally start to increase linearly (James et al., 1990 and James,
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1991) as shown in Fig. 2(a), reaching a maximum value at the throat of the contraction/expan-

sion region. In the same manner, the fluid velocity is expected to decrease linearly in the sym-

metric diverging part. This ideal behaviour results in a region of strong extension, where the

strain-rate remains constant along the centreline of the flow as shown in Fig. 2(b). The geome-

try is characterised by an upstream width, wu, and a contraction width, wc (cf. Fig. 1), which

define the contraction ratio CR¼wu/wc, the length of the contraction, lc, and produces a total

extension, described by the value of Hencky strain, �H¼ ln(CR). A device that is able to gener-

ate these ideal flow characteristics can be useful for extensional rheology as well as for per-

forming single cell/droplet/molecule studies under homogeneous extensional flow, such as drop-

let deformation, DNA and actin filament stretching, among others.

In the converging part of the contraction, the lateral walls approach each other and create a

narrow region where the fluid is stretched. Typically, the cross-sections of microfluidic plat-

forms are not circular but exhibit a rectangular shape with constant depth. As such, the channel

aspect ratio varies significantly along the streamwise direction within the contraction region.

This, together with typical abrupt or short-length hyperbolic configurations used (Oliveira et al.,
2007 and Ober et al., 2013), leads to non-ideal flow kinematics resulting in a non-homogeneous

strain-rate along the centreline. In this work, we attempt to overcome this problem by employ-

ing optimisation techniques that change the shape of the microchannel in order to approach the

ideal profiles illustrated in Fig. 2. The choice of a symmetric converging/diverging contraction

is based on the fact that this configuration provides a constant strain-rate along the entire length

of the contraction/expansion, with a positive strain-rate in the converging region and a negative

value in the expansion region, where the stretching and relaxation processes can be analysed

under homogeneous flow conditions. On the other hand, a smooth contraction/abrupt expansion

configuration similar to Oliveira et al. (2007) would generate a large undershoot of the strain-

rate in the vicinity of the expansion plane, due to the sudden decrease in the velocity along the

centreline, which would not be ideal for devices intended to produce homogeneous extension.

We consider geometries with an upstream width eight times larger than the contraction

width (CR¼ 8). For all the cases studied, the contraction length is correlated to the upstream

width with the use of a factor n1, such that lc¼ n1wu. The effect of using different contraction

lengths on the final optimised designs are reported in Section V B, highlighting the importance

FIG. 1. Configuration of the converging/diverging geometry.

FIG. 2. Ideal velocity (a) and strain-rate profiles (b) along the centreline of the flow.
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of this choice. In the case of three dimensional geometries (3D), we found that the choice of

the depth of the device affects significantly the final shape, as shown in the results presented in

Section V C.

The envisioned ideal flow field in the converging/diverging geometries corresponds to a lin-

ear velocity profile along the centreline. However, this profile imposes instantaneous step changes

in the strain-rate at the beginning and at the end of the contraction, as illustrated in Fig. 2(b).

This limiting behaviour is not possible in reality because the gradient of the velocity profile is a

continuous function and therefore we consider a smooth transition in the velocity profile that is

first order differentiable and which yields a linear transition in the strain-rate profile (cf. Fig.

2(b)) except at the throat, x/wu¼ 0. The performance of the abrupt transition profile was also

examined and more information can be found in the supplementary materials provided.

The general form of the target velocity profile is given in Eq. (1) and holds for both 2D and

3D geometries. It considers a smooth transition of the velocity when the fluid enters the converg-

ing part and exits the diverging part of the channel. The smoothing of the target profile is achieved

by employing a region of length le, which is correlated to the upstream width by the use of a fac-

tor n2, such that le¼ n2wu. For all the cases studied here, we considered n2¼ 1. In this transition

region, the velocity is expressed by a second-order polynomial as shown in Fig. 2(a).

~u ¼

~uu if ~x � �n1 �
n2

2

f2 ~x þ n1 þ
n2

2

� �2

þ ~uu if � n1 �
n2

2
< ~x < �n1 þ

n2

2

f1~x þ ~uc if � n1 þ
n2

2
� ~x � 0

�f1~x þ ~uc if 0 � ~x � n1 �
n2

2

f2 ~x � n1 �
n2

2

� �2

þ ~uu if n1 �
n2

2
< ~x < n1 þ

n2

2

~uu if ~x � n1 þ
n2

2
:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(1)

All symbols with tilde represent normalised values, such that ~x ¼ x=wu; ~u ¼ u=Uu, where Uu

is the average upstream velocity, and the dimensionless parameters f1 and f2 are given by

f1 ¼ ð~uc � ~uuÞ=n1 and f2 ¼ ð~uc � ~uuÞ=2n1n2, respectively. When no smoothing is desired

(n2¼ 0; le¼ 0), the intervals of the smoothed function drop to zero, yielding only the linear

velocity profile. The resulting normalised strain-rate profiles corresponding to Eq. (1) are

given by (_e ¼ @u=@x)

_e= Uu=wuð Þ ¼

0 if ~x � �n1 �
n2

2

2f2 ~x þ n1 þ
n2

2

� �
if � n1 �

n2

2
< ~x < �n1 þ

n2

2

f1 if � n1 þ
n2

2
� ~x � 0

�f1 if 0 � ~x � n1 �
n2

2

2f2 ~x � n1 �
n2

2

� �
if n1 �

n2

2
< ~x < n1 þ

n2

2

0 if ~x � n1 þ
n2

2
:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(2)

Figure 2(b) shows that the smooth target velocity profile of Eq. (1) produces a linear increase/

decrease in the strain-rate along the centreline of the flow at the beginning/end of the contrac-

tion/expansion region, instead of the step profile of the linear velocity profile. At the contraction

throat (~x ¼ 0), there is a discontinuity in the strain-rate profile, but given the small total width

of the channel, the target profile is reasonably well approximated as will be shown.
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III. OPTIMISATION STRATEGY

The optimisation procedure is described schematically in the flow chart of Fig. 3. An itera-

tive procedure combining an automatic mesh generation routine and a fluid flow solver coupled

with an optimiser allows us to determine numerically the appropriate boundary shape of the de-

vice for a prescribed flow field, such as Eq. (1).

The outcome of each computational fluid dynamics (CFD) simulation from every set Y�

represents a single solution of a general unknown objective function. Here, we define the value

of the objective function as a cell-averaged velocity difference evaluation between the ideal

behaviour and the CFD results

Fobj ¼
X

i

j~ui � ~utarget;ijD~xi; (3)

where ~utarget;i is the desired dimensionless velocity value in each computational cell i required

to obtain the ideal velocity profile described by Eq. (1) and shown in Fig. 2(a); ~ui is the dimen-

sionless velocity evaluated from the CFD solver at each i-cell along the centreline of the flow;

and D~xi is the streamwise dimensionless spacing of the computational cell i. This optimisation

procedure is characterised by its non-linearity and therefore is not easy to solve. In this work,

we employ two freely available derivative-free optimisers, NOMAD (Le Digabel, 2011; Audet

and Dennis, Jr., 2006; and Audet et al., 2009) and CONDOR (Berghen and Bersini, 2005),

appropriate for performing constrained optimisations. NOMAD optimiser is based on the Mesh

Adaptive Direct Search algorithm whereas CONDOR is a generalisation of Powell’s UOBYQA

methodology (Powell, 2002), developed to deal with non-linear constrained optimisation

problems.

As indicated in Fig. 3, an initial estimate Y0 of the design points is given as input to the

mesh generation program for creating the discretised geometry. Here, two different mesh defor-

mation procedures have been used, considering 12 equally distributed design points along the

flow direction. One is based on the geometrical deformation of an object using Non-Uniform

Rational B-Splines (NURBS, Lasmunsin and Waggenspack, 1994) and was used in the optimi-

sations presented in Sec. V, whereas the second method uses Catmull-Rom interpolating splines

(Catmull and Rom, 1974), to generate the shape of the geometries discussed in Sec. VI. After

the geometry is generated/deformed, the flow solver computes the corresponding flow field,

from which the value of a single objective function, Fobj, is calculated. The current FobjðY�Þ is

then examined by the optimiser and a new set Ynþ1 is produced by the optimiser, which is

used to generate a new geometry. The aim of the optimiser is to minimise the value of the

objective function, approximating the desired velocity profile by minimising Eq. (3), ideally for

a small number of Fobj evaluations. When a minimum of Fobj is approached, the final optimised

solution Yopt is obtained. We note that the optimisers used in this work do not guarantee that

FIG. 3. Flow chart of the optimisation procedure.
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the global optimum solution is always achieved, since a local minimum can be found.

However, different initial estimates Y0 allow to obtain good results.

IV. GOVERNING EQUATIONS

The CFD simulations performed for each evaluation of the objective function consider a

laminar, incompressible, and isothermal fluid flow, solving numerically the continuity and mo-

mentum equations

r � u ¼ 0; (4)

q
@u

@t
þ u � ru

� �
¼ �rpþr � sþ F; (5)

where q is the fluid density, u is the velocity vector, p is the pressure, s is the extra-stress ten-

sor, and F is the electric body force per unit volume which is required to simulate electro-

osmotic flows. For pressure-driven flows, F¼ 0. In the optimisations, we consider creeping flow

conditions (Re ! 0), a good approximation in microfluidics. Therefore, with the exception of a

small number of CFD simulations presented in Sec. V, the convective term in the momentum

equation is neglected. Initially, we search for a general design that exhibits the ideal flow kine-

matics using Newtonian fluids and then we investigate the operational limits of the optimised

geometries in terms of Re for Newtonian fluids, and Wi for viscoelastic fluids. The

Weissenberg number is here defined as Wi ¼ kðUc � UuÞ=lc, where k is the fluid relaxation

time. The Reynolds number is defined as Re ¼ qUuDhu=g0, where g0 ¼ gs þ gp is the total

zero shear viscosity, gp the polymer viscosity (gp¼ 0 for Newtonian fluids), gs the solvent vis-

cosity, and Dhu the upstream hydraulic diameter defined as Dhu ¼ 2wud=ðwu þ dÞ, where d is

the depth of the device.

For viscoelastic fluid flow, two models were tested, namely, the Oldroyd-B and the linear

form of the PTT model (Phan-Thien and Tanner, 1977). The Oldroyd-B model is used to assess

the response of viscoelastic fluids with constant shear viscosity, whereas the PTT model was

used because of its additional ability to predict shear-thinning behaviour. Both models can be

expressed by the compact form of the simplified Phan-Thien and Tanner constitutive equation

ks
r

p þ f ðspÞsp ¼ gpðruþruTÞ; (6)

where s
r

p is the upper-convected derivative of the polymeric component of the extra-stress ten-

sor, sp. The stress function, f ðspÞ, is expressed as a linear function of the trace of the polymeric

stress tensor, TrðspÞ

f spð Þ ¼ 1þ ke
gp

Tr spð Þ; (7)

where e is the extensibility parameter that affects the elongational properties of the fluid and

sets an upper bound for the extensional viscosity (Phan-Thien and Tanner, 1977; Oliveira and

Pinho, 1999; and Alves et al., 2001). When e¼ 0, the Oldroyd-B model is recovered and the

extensional viscosity is unbounded. For the viscoelastic cases, the extra-stress tensor in the mo-

mentum equations is decomposed in two parts, the solvent and the polymeric components

s ¼ gsðruþruTÞ þ sp: (8)

Additionally, for both viscoelastic models, the ratio of the solvent viscosity, gs, to the total zero

shear viscosity, g0, known as solvent viscosity ratio, b, needs to be defined. In the PTT model,

we consider b¼ 0.01 and e¼ 0.25, which are typical values for concentrated polymer melts,
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whereas for the Oldroyd-B model the viscosity ratio was set at b¼ 0.50 representative of a

constant-viscosity Boger fluid.

For pressure driven flow simulations (Sec. V), the electric force, F, is zero, and the fluid

flow is solved using an in-house implicit finite-volume CFD solver, developed for collocated

meshes, which is described in detail in Oliveira et al. (1998) and Oliveira (2001). The coupling

of pressure and velocity fields is achieved using the SIMPLEC algorithm for collocated meshes

with the Rhie and Chow (1983) interpolation technique. The convective terms in the momentum

and constitutive equations are discretised using the CUBISTA high-resolution scheme (Alves

et al., 2003a), while the diffusive terms are discretised with central differences. The transient

term in the momentum and constitutive equations are evaluated using a first-order implicit Euler

scheme. We note that since we are concerned with steady-state solutions, the lower order of accu-

racy of the transient term is irrelevant, as this term vanishes when steady-state is approached.

In converging flow configurations, die walls converge to a narrow region in the middle of

the contraction and thus are characterised by strong shear and elongational effects. Close to the

walls the flow is shear dominated, along the centreline, it is strongly extensional, but the inter-

mediate regions exhibit complex flow kinematics. This physical drawback may affect experi-

mental results when controlled flow kinematics are required, and thus, it is of paramount impor-

tance for experimentalists to know the level of these interactions. In order to reduce shearing

effects, we have also performed optimisations considering EOF. For electrokinetic flow, a plug-

like velocity profile is obtained, thus reducing the shearing effects in the vicinity of the walls

which allows for a wider region of extensional flow. When considering EOF, the electrical

body force per unit volume, F, in Eq. (5) is expressed as

F ¼ qeE; (9)

where E is the electric field and qe is the electric charge density. In this work, we consider the

Debye-H€uckel approximation for the electric charge density, which is expressed as (Bruus,

2008)

qe ¼ ��j2w; (10)

with j being the Debye-H€uckel parameter that is related to the EDL thickness, kD ¼ j�1. The

electric field in Eq. (9) is related to the electrical potential as

E ¼ �rU; (11)

where the electrical potential U is given by the sum of the externally imposed electric potential,

/, and the electric potential due to the net charge accumulation near the walls, w

U ¼ /þ w: (12)

These two contributions to the electrical potential are computed using the following

equations:

r2/ ¼ 0; (13a)

r2w ¼ �qe=�; (13b)

with � representing the electrical permittivity.

Electro-osmotic flows are investigated in Sec. VI using the OpenFOAM
VR

solver, which fol-

lows the method described by Afonso et al. (2012). The equations were implemented over

simpleFoam, which can be used as a steady-state solver for Newtonian incompressible fluids in

the OpenFOAM
VR

CFD toolbox. The coupling between pressure and velocity is ensured by the

SIMPLE algorithm. The convective terms were discretised using the second-order MINMOD

high resolution-scheme, while the diffusive terms were discretised using central differences.
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V. PRESSURE-DRIVEN FLOW

A. Optimised design in 2D

In this section, we report the optimisation results for pressure-driven flow in two dimen-

sions considering a constant contraction length, lc¼ 2wu. The shape obtained from the optimisa-

tion is presented in Fig. 4 and is compared with the ideal hyperbolic shape, which would be

expected for unidimensional flows without velocity gradients in the transverse direction. As al-

ready discussed, the ideal hyperbolic shape has been widely used in the past to design converg-

ing/diverging geometries. The same general function suggested in Oliveira et al. (2007) is used

in order to design the walls of the hyperbolic-shaped device, by considering the following

expression:

j~yj ¼ 2CR 1� j~xjwu � wc

lc

� �� ��1

for j~xj � n1

1=2 for j~xj > n1:

8><
>: (14)

It can be seen that both designs perform well, both in terms of the velocity and the strain-

rate profiles (Figs. 5(a) and 5(b), respectively). The optimised shape exhibits shiftings at the be-

ginning and at the end of the contraction/expansion region (Fig. 4), resulting in a better approx-

imation of the desired strain-rate profile in the transition regions, as shown in Fig. 5(b).

In order to assess the dependence of the optimised solution on the mesh refinement, besides

the base mesh M0, a refined mesh M1 was also used (Table I). A very good agreement between

the computed velocity profiles is reported, with the maximum deviation in the strain-rate being

less than 0.5%.

FIG. 4. Comparison between the optimised shape (dashed-dotted line) and the ideal hyperbolic design (continuous line)

discussed in Oliveira et al. (2007) (2D, CR¼ 8, lc¼ 2wu, and le¼wu).

FIG. 5. Velocity (a) and strain-rate (b) profiles computed for creeping flow conditions along the centreline of the flow for

the optimised geometry and the ideal hyperbolic design (2D, CR¼ 8, lc¼ 2wu, and le¼wu). The target velocity profile is

represented as a continuous line.
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B. Contraction length effects

The choice of the desired contraction length lc is crucial for the performance and for the

final shape of the optimised device. The results obtained show that as the contraction length

decreases, the optimisation procedure produces geometries with larger deviations from the

hyperbolic shape at the start and the end of the converging/diverging region, as shown in Fig.

6(a). Conversely, the opposite happens as we increase the length of the contraction, where the

optimisation procedure predicts optimal shapes approaching the ideal hyperbolic geometry. This

finding is particularly important for experimentalists wishing to use the hyperbolic function for

designing their microfluidic geometries, or for applications that are especially built for studying

specific properties under extensional flow. For example, in studies where a large strain history

is required, the hyperbolic shape will in fact perform well, providing a reasonable approxima-

tion to the linear velocity profile. However, when it comes to applications where stretch should

be quick and in a short length of the device, the use of optimisation for obtaining a more appro-

priate design with enhanced performance is required.

C. Channel depth effects

When the devices have low or moderate depth, as is typical in microfluidic platforms, three

dimensional effects due to wall interactions need to be taken into account. In such cases, the

flow dynamics are different and the optimised shape obtained for 2D flow will not be adequate.

In this section, we investigate the effect of aspect ratio on the optimised shape of the geometry

considering the same contraction length lc¼ 2wu. Defining the aspect ratio based on the

upstream part of the channel as AR¼wu/d (where d is the depth of the device), we consider

the cases of a 3D geometry with a square cross-sectional area in the middle of the contraction/

expansion region (AR¼ 8), another with a square cross-sectional area at the inlet (AR¼ 1) and

two intermediate cases with AR¼ 2 and AR¼ 4.

In order to find the designs that will produce the desired constant strain-rate regions along

the flow centreline, shape optimisations have been performed considering symmetry conditions

along xy- and xz-centreplanes in order to reduce the cost of the CFD simulations required at

every optimisation step. That way, only a quarter of the full geometry was simulated. The target

profiles for the 3D cases were constructed by evaluating the maximum velocity from the fully

TABLE I. Mesh characteristics for 2D flow simulation when CR¼ 8 and lc¼ 2wu.

Mesh dxmin/wc dymin/wc #Computational cells

M0 0.045 0.045 4862

M1 0.023 0.023 19448

FIG. 6. Shapes of the optimised and the ideal hyperbolic devices (a) and strain-rate profiles along the flow centreline for

the optimised devices (b) with lc¼ 4wu and lc¼ 2wu (2D, CR¼ 8, and le¼wu) for creeping flow conditions. Note that in (a)

x and y axes are not to scale.
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developed velocity profiles upstream and in the middle of the contraction along the centreline

(y¼ 0, z¼ 0), using the analytical solution given for each AR (White, 2006):

u y; zð Þ ¼
12Q

p3ab

X1
i¼1;3;::

�1ð Þ
i�1

2 1� cosh ipz=2að Þ
cosh ipb=2að Þ

� �
cos ipy=2að Þ

i3

1� 192a

p5b

X1
i¼1;3;::

tanh ipb=2að Þ
i5

; (15)

where Q is the flow rate and a, b, are the half-width and half-depth of the channel cross-section

respectively.

Initially, the performance of the hyperbolic shape was examined for all aspect ratios.

Figure 7 shows the strain-rate profiles along the flow centreline. The hyperbolic geometry does

not generally perform as well as for the 2D cases, exhibiting large deviations from the desired

target profile, especially for the two intermediate cases of AR¼ 2 (Fig. 7(b)) and AR¼ 4 (Fig.

7(c)). For 3D planar channels, characteristic of microfluidics, the varying rectangular cross-

section results in velocity profiles that are not necessarily the same in both transverse directions

but depend on the local aspect ratio, which explains this deviation. Considering the upstream

velocity profiles along the centreplanes xz and xy for the case of AR¼ 1, both profiles will be

identical since d¼wu. However, as the fluid flows towards the middle of the contraction and

the width of the channel decreases, the profile on the xz-plane will gradually become more flat-

tened than the xy-plane profile, reaching a maximum difference in the throat of the contraction/

expansion region. A similar but inversed behaviour is found in the case of AR¼ 8, with the ve-

locity profile in the xy-plane exhibiting a more flattened region close to the centreline when

compared to the profile in the xz-plane in the region upstream of the contraction and identical

velocity profiles in both planes at the throat, where d¼wc. These gradual transitions of the

examined limiting cases (AR¼ 1 and AR¼ 8) result in some deviation in the strain-rate profiles

shown in Figs. 7(a) and 7(d). These deviations are however more pronounced for the two

FIG. 7. Strain-rate profiles along the flow centreline computed under creeping flow conditions for a geometry with lc¼ 2wu,

le¼wu, and CR¼ 8 and (a) AR¼ 1, (b) AR¼ 2, (c) AR¼ 4, and (d) AR¼ 8. The optimised shapes are compared with the

hyperbolic function.
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intermediate cases of AR¼ 2 and AR¼ 4, as shown in Figs. 7(b) and 7(c), where the local as-

pect ratio varies from above one upstream of the contraction to below one at the throat of the

contraction/expansion region.

The optimised shapes for each aspect ratio are presented and compared with the hyperbolic

shapes in Fig. 8(a). Clearly, the boundaries are deformed according to the different flow kine-

matics in each geometry, exhibiting different sizes in the shiftings of the boundary upstream of

the start of the converging region. The maximum shift of the boundary relative to the hyper-

bolic case is approximately 16% for AR¼ 1, 42% for AR¼ 2, 35% when AR¼ 4 and 68% for

AR¼ 8. More importantly, there are significant differences between the optimised and the

hyperbolic shapes in the first third of the contraction, with the differences becoming negligible

in the central region j~xj�1:3 (cf. Fig. 8). Applying these deformations on the boundaries of the

device, the desired strain-rate profiles along the flow centreline are better approximated, as

shown in Fig. 7, where all four cases exhibit a maximum deviation of approximately 1%.

As in the 2D case, two meshes were employed for each AR, with mesh M0 being used in

the optimisation procedure and mesh M1 for assessing the dependence of the optimised solution

on the mesh refinement (cf. Table II). For AR¼ 1 and AR¼ 2, the maximum deviation between

the two solutions was approximately 1.0%, for AR¼ 4 was approximately 0.7% and for AR¼ 8

was approximately 0.5%. Figure 9(a) illustrates the mesh used for obtaining the optimal

FIG. 8. (a) Comparison of the channel boundaries obtained from 3D optimisations for creeping flow conditions for AR¼ 1,

2, 4, and 8 and the ideal hyperbolic shape when lc¼ 2wu, le¼wu, and CR¼ 8. (b)–(e) Corresponding contour-plots of the

normalised streamwise velocity for each optimised geometry.

TABLE II. Mesh characteristics for the 3D optimisations for a geometry of lc¼ 2wu, le¼wu, and CR¼ 8 for AR¼ 1, 2, 4,

and 8.

Mesh dxmin/wc dymin/wc dzmin/wc #Computational cells

AR¼ 1

M0 0.045 0.045 0.364 53 482

M1 0.023 0.023 0.182 427 856

AR¼ 2

M0 0.045 0.045 0.182 53 482

M1 0.023 0.023 0.091 427 856

AR¼ 4

M0 0.045 0.045 0.091 53 482

M1 0.023 0.023 0.045 427 856

AR¼ 8

M0 0.045 0.045 0.045 53 482

M1 0.023 0.023 0.023 427 856
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solution of the design (only a quarter of the geometry is used) for AR¼ 1, and Fig. 9(b) shows

the corresponding refined mesh M1.

D. Design limits

In this section, we report the operational limits of the 3D configurations presented in Sec.

V C. More specifically, the performance of all designs is examined for various Reynolds num-

bers considering Newtonian fluid flow, using the refined mesh M1. Moreover, the performance

of the configuration with AR¼ 1 is investigated for viscoelastic fluids as a function of the

Weissenberg number, under creeping flow conditions.

Figure 10(a) shows the effect of Re on the velocity profile along the centreline obtained

for a Newtonian fluid in the optimised geometry for AR¼ 1. For low Re, the geometry opti-

mised under creeping flow conditions performs well, but it is clear that for Re � 5 the kinemat-

ics in the device start deviating from the target, affecting noticeably the evolution of the

resulting strain-rate profiles, as shown in Fig. 10(b). As mentioned previously, all optimisations

were conducted considering creeping flow conditions, where the flow field is symmetric

upstream and downstream of the contraction. However, entrance and exit effects on the contrac-

tion/expansion region become more prominent as Re is increased, resulting in asymmetric

behaviour between the converging and diverging parts of the contraction. It should be noted

that for this particular case, flow recirculations are observed downstream of the expansion for

Re � 50.

FIG. 9. Meshes M0 (a) and M1 (b) for the optimised geometry with lc¼ 2wu, le¼wu, CR¼ 8, and AR¼ 1.

FIG. 10. Effect of Re on the velocity (a) and strain-rate (b) profiles computed along the flow centreline, for the optimised

geometry with lc¼ 2wu, le¼wu, CR¼ 8, and AR¼ 1 (Fig. 8), considering Newtonian fluid flow.
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Figure 11 illustrates the normalised pressure drop, DPc=ðg_eaÞ, between the start and the

end of the transition region of the contraction/expansion (�n1 � n2

2
� ~x � n1 þ n2

2
) for increasing

Re numbers, with _ea corresponding to the apparent strain-rate evaluated as

_ea ¼ ðUc � UuÞ=lc ¼ ðCR� 1ÞUu=lc. The inset figures present the normalised pressure profile

along the centreline for all Re, calculated based on a reference pressure value, Pref, taken at the

beginning of the transition region (~x ¼ �n1 � n2

2
) of each geometry. It can be seen that for

Re � 5, the increase in the nominal strain-rate results in an almost linear increase in the pres-

sure drop for all cases. However, for higher Re, this linearity breaks, and the strain-rate along

the centreline becomes asymmetric in the two parts of the design, similar to the behaviour

observed in Fig. 10 for AR¼ 1. Note that Re is evaluated using the upstream flow conditions,

but its value at the contraction will differ for each of the designs. More specifically, since the

Reynolds number reported is based on upstream flow conditions, the Reynolds number at the

throat is higher for larger AR, justifying the higher deviation of the normalised pressure drops

from the equivalent creeping flow value (dashed line) for the shallower designs when Re � 5

(c.f. Figs. 11(c) and 11(d)).

For viscoelastic fluid flows, the effect of elasticity on the velocity field is examined by per-

forming simulations of viscoelastic fluid flows at increasing Wi, using the optimised geometry

for AR¼ 1 under creeping flow conditions. As presented in Sec. IV, we consider two different

viscoelastic models, the Oldroyd-B model (e¼ 0, b¼ 0.5) and the linear form of the PTT model

(e¼ 0.25, b¼ 0.01). Using the Oldroyd-B model, we investigate the influence of elasticity alone

as there is no shear-thinning. Figure 12(a) shows that in the converging part of the channel a

reasonably good approximation to the linear increase in the velocity profile is achieved for all

Wi. However, increasing Wi leads to progressively higher velocity overshoots close to the

throat of the converging/diverging region where the maximum velocity is reached. Velocity

overshoots in contraction flows of viscoelastic fluids have also been reported by Poole et al.
(2007) for a UCM fluid, and Oliveira (2003) for a FENE-CR model. This deviation from the

FIG. 11. Normalised pressure drop for various Re across the contraction for a geometry with lc¼ 2wu, le¼wu, CR¼ 8 and

(a) AR¼ 1, (b) AR¼ 2, (c) AR¼ 4, and (d) AR¼ 8, with the horizontal dashed lines indicating the normalised pressure

drop value under creeping flow conditions. The inset figures in (a)–(d) represent the normalised pressure profiles along the

centreline for each case, with the vertical dashed lines indicating the start and the end of the transition region of the con-

traction/expansion.
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target velocity profile is particularly noticeable in the streamwise velocity gradient profiles in

Fig. 12(b), with increasing fluctuations near ~x ¼ 0 and a clear overshoot for higher Wi. For

Wi¼ 0.20, the strain-rate overshoot deviates approximately 74% from the desired constant

value. This overshoot clearly affects the behaviour in the diverging part of the channel, and for

Wi� 0.05, the strain-rate profiles can no longer be considered constant. Furthermore, the asym-

metric profiles between the converging and the diverging part of the contraction demonstrate

that the strain history affects the velocity profile development, indicating that as Wi increases

the fluid memory becomes important. For Wi� 0.02, the strain-rate can be considered nearly

constant, with a maximum deviation of approximately 5% in the beginning of the diverging

region.

The PTT fluid exhibits a different behaviour for increasing Wi numbers as shown in Fig.

13 as a consequence of the additional shear-thinning behaviour. For the analysis of the velocity

profile along the centreline, we normalise the data using the fully developed velocity at the cen-

treline of the upstream channel (uu;fd), since the upstream streamwise velocity profile for a PTT

fluid is flattened compared to the Newtonian case due to its shear-thinning behaviour. It can be

seen that as the elasticity increases, the velocity profile along the centreline, shown in Fig.

13(a), increases as noted previously for the Oldroyd-B model. However, before the fluid

approaches the middle of the contraction the velocity gradient starts to decrease, forming a

small overshoot upstream of the diverging part in both the velocity and the strain-rate profiles

as a consequence of fluid’s elasticity. As the fluid flows through the diverging region, the veloc-

ity rapidly decreases to smaller values than the target profile, affecting the development of the

strain-rate profile (Fig. 13(b)), where an undershoot is observed at the beginning of the diverg-

ing part. Both the overshoot and the undershoot become more pronounced with increasing Wi

and these deviations should be taken into account when this type of fluid is used.

FIG. 12. Effect of Wi on the velocity (a) and strain-rate (b) profiles along the flow centreline computed for creeping flow

conditions, for the optimised geometry with lc¼ 2wu, le¼wu, CR¼ 8, and AR¼ 1 (Fig. 8), for the Oldroyd-B model

(b¼ 0.5).

FIG. 13. Effect of Wi on the velocity (a) and strain-rate (b) profiles along the flow centreline computed for creeping flow

conditions, for the optimised geometry with lc¼ 2wu, le¼wu, and CR¼ 8 for AR¼ 1 (Fig. 8), considering a PTT fluid

(e¼ 0.25, b¼ 0.01).
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Figures 14(a) and 14(b) present the variation of the normalised pressure profile along the

centreline for the Oldroyd-B and the PTT fluids, respectively. It can be seen that both models

predict smaller pressure drops across the contraction compared to the Newtonian fluid, with the

PTT fluid demonstrating higher differences, due to the shear-thinning behaviour. Moreover, the

normalised pressure drop between the start and the end of the transition region is shown in Fig.

14(c), demonstrating the decrease of the pressure drop for increasing Wi. Similar behaviour

was reported by Binding et al. (2006), for the flow of an Oldroyd-B fluid along a contraction/

expansion geometry. In contrast to numerical findings, experimental measurements for visco-

elastic fluid flows in contraction geometries demonstrate pressure drop enhancement and an

additional flow resistance with the increase in fluid elasticity for Boger fluids (Nigen and

Walters, 2002 and Campo-Dea~no et al., 2011). This inability of the closed-form viscoelastic

models to predict the correct pressure drop is a well known drawback of viscoelastic numerical

studies (Owens and Phillips, 2002 and Alves et al., 2003b). These constitutive models do not

contain sufficient information related to the micro-structure of the polymer chains, and it is

believed that possible inclusions at this level will assist in capturing the physics of polymer

flows with greater accuracy (Rothenstein and McKinley, 2002).

VI. ELECTRO-OSMOTIC FLOW

In this section, the optimisation of a converging/diverging channel is considered for

electro-osmotic flow. Similarly to what was described in Sec. V for pressure-driven flow, here

we consider only the case of lc ¼ 2wu; le ¼ wu for CR¼ 8. For this case, an additional mesh

refinement was used, in order to resolve accurately the flow inside the EDL (cf. Table III). The

grading was such that at least 10 cells existed within a distance of 1/j from the walls, where

j¼ 200/wc was used for optimisation purposes (i.e., an electric double layer which is 100 times

thinner than the channel contraction half-width). Moreover, only 2D geometries were consid-

ered in the optimisation, although the final optimal shapes were also tested in 3D configurations

in order to assess the aspect ratio independence of the centreline velocity.

FIG. 14. Normalised pressure profile along the centreline for the Oldroyd-B model (a), the PTT model (b) and normalised

pressure drop across the contraction/expansion region for both models under creeping flow conditions (c), when the opti-

mised geometry with lc¼ 2wu, le¼wu, CR¼ 8, and AR¼ 1 is used. The start and the end of the transition region of the con-

traction/expansion are indicated by the vertical dashed lines in (a) and (b). The horizontal dashed line in (c) corresponds to

the normalised pressure drop for the Newtonian fluid under creeping flow conditions.
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A. Optimised design

The optimised shapes and the corresponding flow kinematics along the centreline for EOF

are presented in Figs. 15 and 16, respectively. Mesh M0-EOF was used for optimisation pur-

poses, for which the peak strain-rate at the centreline deviates less than 1% from the value on

the more refined mesh M1-EOF. The optimised geometries only differ significantly from the

ideal hyperbolic shape in the transition regions. This fact demonstrates that the ideal hyperbolic

shape is in fact very close to the optimal shape for a region of constant strain-rate and the opti-

misation procedure is only useful to control (impose) the strain-rate profile at the transition

region. The good performance of the hyperbolic shape in electro-osmosis is not surprising,

since that shape is the analytical solution for a constant strain-rate region assuming potential

flow (Ober et al., 2013). For the conditions of the present work, although the electric field is

irrotational, the velocity is not irrotational due to internal pressure gradients and the no-slip

conditions at the walls. Therefore, the similitude between the electric field and the velocity field

is broken (Cummings et al., 2000 and Santiago, 2001; 2007). However, a quasi-potential flow

can still be considered, since the added dynamic pressure due to changes in the cross-sectional

area of the channel, which reflects on a velocity variation, is relatively small and the electric

TABLE III. Mesh characteristics for the EOF optimisations for a 2D geometry with CR¼ 8.

Mesh dxmin/wc dymin/wc #Computational cells

M0-EOF 0.104 0.000488 10 500

M1-EOF 0.052 0.000244 42 000

FIG. 15. Optimised shapes obtained for pressure-driven flow (PD) and for electro-osmotic flow (EOF), in contrast with the

ideal hyperbolic geometry (2D flow, lc¼ 2wu, le¼wu, and CR¼ 8).

FIG. 16. Velocity profiles computed in the optimised geometry and comparison with the computed electric field (a) and the

resulting strain-rate (b) profiles along the centreline for EOF. The profiles obtained with EOF using the ideal hyperbolic ge-

ometry are also plotted (2D, lc¼ 2wu, le¼wu, and CR¼ 8).
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double layers are thin. This is proved both by the good performance of the hyperbolic shape, as

well as by the quasi-linearity of the electric field (E/E0, where E0 is the uniform value of the

electric field at the inlet/outlet of the channel) along the centreline of the contraction/expansion

region, as shown in Fig. 16(a). This last observation further points to the possibility of replac-

ing the velocity variable by the electric field to define the objective functions. Indeed, due to

the similitude between both fields, this procedure would lead to a dramatic reduction in the

CPU time for the optimisations, since the Navier-Stokes equations coupled to the electric field

equations would be replaced by a single Laplace equation to be solved for the electric field.

We have not followed this approach because for higher Hencky strains, the internal pressure

gradients increase and the similitude between the velocity and the electric field is weaker, lead-

ing to differences between electric field and velocity profiles (results not shown). The imple-

mented routine is thus more general, at a cost of a higher computation time.

It is worth to note that having a linear electric field profile at the channel centreline is also

a desired feature when considering extensional flows driven by electrophoresis, since electro-

phoretic motion follows the electric field lines and a constant strain-rate will be imposed.

Therefore, it is of no surprise that the electrophoretic extension of long molecules, as k-DNA

was already performed in hyperbolic micro-contraction devices (Larson et al., 2006; Randall

et al., 2006; and Hu et al., 2009).

B. Aspect ratio effect

When the conditions for the similitude between velocity field and electric field are fulfilled,

it was demonstrated that the velocity does not depend on the channel depth (Cummings et al.,
2000). Hence, the 2D shapes obtained and discussed in Sec. VI A can be generalised to 3D con-

figurations without loss of performance, something that was not possible for the geometries

optimised for pressure-driven flow, as shown in Sec. V C. This was numerically confirmed and

the results are plotted in Fig. 17(a) for the velocity and in Fig. 17(b) for the strain-rate profiles

along the centreline for two 3D configurations, with AR¼ 8 and AR¼ 1, corresponding to the

maximum and minimum AR examined for the pressure-driven flow cases (Sec. V).

VII. CONCLUSIONS

We use shape-optimisation numerical procedures to design microfluidic devices that are

able to produce specific and well controlled flow kinematics. The design of various converging/

diverging geometries with different aspect ratios and a constant contraction ratio (CR¼ 8) have

been optimised to generate a region of constant strain-rate along the centreline, under creeping

flow conditions.

In the 2D limit when the contraction region is long enough, the outline of the geometries

optimised to produce a region of constant strain-rate approaches an ideal hyperbolic shape. In

this case, the optimisation procedure is only useful to control the strain-rate profile of the

FIG. 17. Velocity (a) and strain-rate (b) profiles computed numerically for EOF using the 2D optimised shapes in 3D con-

figurations with lc¼ 2wu, le¼wu, and CR¼ 8 for AR¼ 1 and AR¼ 8.
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transition region at the contraction entrance and expansion exit. However, such limits are sel-

dom used in practice in lab-on-a-chip devices, for which the well-known hyperbolic shape is

not the most suitable configuration for producing homogeneous extensional flows. As the con-

traction becomes shorter, entrance and exit effects affect the strain-rate distribution, an issue

also observed experimentally by Oliveira et al. (2007) and Ober et al. (2013). In order to over-

come this problem, the optimised geometry exhibits transition regions at the start and at the

end of the contraction/expansion, which become larger for short lengths. Even more dramatic is

the effect of having 3D planar configurations with close bounding walls as typically used in

lab-on-a-chip devices. This introduces a variable aspect ratio along the contraction. The optimi-

sation procedure for a 3D device generated shapes that significantly improved the performance

relative to the hyperbolic shape and are unique for each aspect ratio (1�AR� 8). This outcome

is important and may be useful as a guideline to help experimentalists better decide upon the

appropriate shape to be used.

We showed that all configurations obtained for 1�AR� 8 perform well up to Re� 5 for

Newtonian fluids. Additionally, for the viscoelastic fluids studied using the design of AR¼ 1,

it was demonstrated that when they exhibit significant shear-thinning (PTT model), the opti-

mised configuration for Newtonian fluid flow fails to produce a constant strain-rate along the

flow centreline even for low Wi numbers, whereas for the constant viscosity viscoelastic fluid

(Oldroyd-B), it can be used accurately in the full converging/diverging region up to

Wi¼ 0.02 (or even higher if we are interested in the converging region alone). Use beyond

these limits would require optimisations for the particular fluid/flow condition under

consideration.

In contrast to pressure-driven flows, for electro-osmotic flow, the optimised geometries are

nearly hyperbolic for both 2D and 3D configurations. The more interesting advantage of EOF

in this flow topology is the reduced shear effects, producing a wider region of constant strain-

rate around the centreline, as a consequence of the typical developed plug-like velocity profile

in electro-osmotic flows.

The geometries optimised in this work, with their inherent simplicity and their ability to

generate a wide region of homogeneous strain-rate, can be interesting platforms for studies of

cell and droplet deformation, or stretching of single molecules (e.g., DNA, proteins) under uni-

form controlled extensional flows. In addition, these optimised configurations have the potential

to be used for performing measurements of the extensional properties of complex fluids.

SUPPLEMENTARY MATERIAL

See supplementary material for the effect of the abrupt transition profile at the start of the

contraction region and at the end of the expansion region on the shape of the optimised design

and its performance.
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APPENDIX: DATA AVAILABILITY

Data files containing the outlines of the optimised shapes presented in this paper are available

for download at http://dx.doi.org/10.15129/7928f08f-aacd-4e12-b3b5-a1a1539a7dc1.
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