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Abstract Brain imaging methods allow a non-invasive

assessment of both structural and functional connectivity.

However, the mechanism of how functional connectivity

arises in a structured network of interacting neural popu-

lations is as yet poorly understood. Here we use a modeling

approach to explore the way in which functional correla-

tions arise from underlying structural connections taking

into account inhomogeneities in the interactions between

the brain regions of interest. The local dynamics of a neural

population is assumed to be of phase-oscillator type. The

considered structural connectivity patterns describe long-

range anatomical connections between interacting neural

elements. We find a dependence of the simulated func-

tional connectivity patterns on the parameters governing

the dynamics. We calculate graph-theoretic measures of

the functional network topology obtained from numerical

simulations. The effect of structural inhomogeneities in the

coupling term on the observed network state is quantified

by examining the relation between simulated and empirical

functional connectivity. Importantly, we show that simu-

lated and empirical functional connectivity agree for a

narrow range of coupling strengths. We conclude that

identification of functional connectivity during rest

requires an analysis of the network dynamics.

Keywords Functional connectivity � Brain dynamics

model � Graph theory � Structural connectivity

Introduction

Complex but highly structured patterns of correlated fluc-

tuations have been observed in spontaneous/task-free brain

activity measured by brain imaging techniques in healthy

(Biswal et al. 1995; Damoiseaux et al. 2006) and diseased

brain (Zhou et al. 2010). It has been shown that dynamical

patterns of these correlations are shaped by a complex

interplay between underlying anatomical connections and

ongoing activity of the interacting regions (Deco et al.

2011; Ghosh et al. 2008). Thus, allowing for long-distance

co-activity of functionally segregated brain areas and

forming the basis of cognitive functions (Werner 2009).

However, the exact mechanisms contributing to the long-

range cortical interactions still remain largely unknown. It

has been suggested that, together with the collective effects

governed by the network properties, inter-regional dis-

tances and indirect connections may also play significant

roles. Recent studies on large-scale functional connectivity

have begun to demonstrate the role of dynamic reconfig-

uration of resting-state functional connections over multi-

ple time scales (Hansen et al. 2015; Hutchison et al. 2013)

and of such reconfiguration when brain moves between

task-free and task-dependent state (Dimitriadis et al. 2015).

Theoretical models of the resting-brain dynamics allow

for exploration of these mechanisms, with the focus on the

relationship between large-scale anatomical connectivity

and either local or global dynamics (see Cabral et al.

(2014) for a recent review). The common approach of these

models is to consider the brain as a complex dynamical

system operating in so called metastable regime (Shanahan
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2010; Tognoli and Kelso 2014). The key properties of the

brain metastability is flexible network dynamics, which

allow for synchronization patterns that change over time.

In this paper, we utilize these approaches and addi-

tionally introduce anatomical inhomogeneities into cortical

interactions. Thus, making our model physiologically more

plausible, we explore conditions that allow long-distance

functional correlations.

Modeling functional connectivity

We use structural connectivity derived from diffusion

weighted Magnetic Resonance Imaging (dMRI) data

(Iturria-Medina et al. 2008) to numerically simulate rest-

ing-state functional correlations between brain areas. To

closely match empirical findings, a blood-oxygen-level-

dependent (BOLD) fMRI signal is inferred from the sim-

ulated activity of the node corresponding to the respective

brain region (Cabral et al. 2011, 2014; Deco et al. 2009;

Ghosh et al. 2008). This is done using a Balloon-Wind-

kessel hemodynamic model (Friston et al. 2000; Seth et al.

2013), which is a widely used model of neurovascular

coupling, and has been implemented in existing models of

large-scale brain functional connectivity (Cabral et al.

2011; Ghosh et al. 2008; Honey et al. 2009). We extend

this modeling approach by utilizing the following Kur-

amoto-type equation, whose neurobiological implications

are well established (Breakspear et al. 2010; Cabral et al.

2011), to simulate the dynamics of brain regions:

_hiðtÞ ¼ xi þ c
XN

j¼1

Aij sin½hjðtÞ � hiðtÞ � aij�; ð1Þ

where hiðtÞ describes the state of the brain region (network

node) i over time, N is the number of regions considered

(N ¼ 90), and c is a sufficiently strong global coupling

chosen from a range of values to (i) engage phase inter-

actions (Izhikevich and Kuramoto 2006; Nicosia et al.

2013; Strogatz 2000)) and (ii) influence correlated
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Fig. 1 A Anatomical and B functional connectivity obtained from

DTI and fMRI data, respectively. The connectivity analysis is

performed on the 90 brain regions according to the list in Table 1

Table 1 Cortical and sub-cortical regions as defined in the automated

anatomic labeling (AAL) template image

Index R/L Anatomical description Label

1/46 Precentral PRE

2/47 Frontal Sup F1

3/48 Frontal Sup Orb F10

4/49 Frontal Mid F2

5/50 Frontal Mid Orb F20

6/51 Frontal Inf Oper F30P

7/52 Frontal Inf Tri F3T

8/53 Frontal Inf Orb F30

9/54 Rolandic Oper RO

10/55 Supp Motor Area SMA

11/56 Olflactory OC

12/57 Frontal Sup Medial F1M

13/58 Frontal Mid Orb SMG

14/59 Gyrus Rectus GR

15/60 Insula IN

16/61 Cingulum Ant ACIN

17/62 Cingulum Mid MCIN

18/63 Cingulum Post PCIN

19/64 Hippocampus HIP

20/65 ParaHippocampal PHIP

21/66 Amygdala AMYG

22/67 Calcarine V1

23/68 Cuneus Q

24/69 Lingual LING

25/70 Occipital Sup O1

26/71 Occipital Mid O2

27/72 Occipital Inf O3

28/73 Fusiform FUSI

29/74 Postcentral POST

30/75 Parietal Sup P1

31/76 Parietal Inf P2

32/77 Supra Marginal Gyrus SMG

33/78 Angular AG

34/79 Precuneus PQ

35/80 Paracentral Lobule PCL

36/81 Caudate CAM

37/82 Putamen PUT

38/83 Pallidum PAL

39/84 Thalamus THA

40/85 Heschi HES

41/86 Temporal Sup T1

42/87 Temporal Pole sup T1P

43/88 Temporal Mid T2

44/89 Temporal Pole Mid T2P

45/90 Temporal Inf T3

Indexes from 1–45 indicate right (R) and 46–90 left (L) hemisphere

regions
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amplitude fluctuations at lower frequencies (Cabral et al.

2014; Vuksanović and Hövel 2014). The parameter xi is

the natural frequency of the ith oscillator, set in the c fre-

quency range (drawn randomly from a Gaussian distribu-

tion with the mean x0 ¼ 30Hz) to facilitate the emergence

of the desired dynamical network state (Cabral et al. 2014,

2011; Vuksanović and Hövel 2014) and relate local node

dynamics to the neurophysiology (Leopold et al. 2003;

Logothetis et al. 2001).

The connectivity matrix, Aij

� �
, determining the cou-

pling topology, represents a structural connectivity matrix

estimated from dMRI data, according to the procedure

described in Iturria-Medina et al. (2008). The procedure

maps out probabilities for the presence of the direct neural

connections between all pairs of the 90 considered

anatomical regions of interest. We will therefore refer to

this map as the anatomical connectivity (AC) map or

matrix (Iturria-Medina et al. 2008), whose weighted entries

ranges from 0 to 1 (Fig. 1A). Structural inhomogeneities

are introduced in the coupling term by distance-dependent

phase offsets aij. The element aij makes network interac-

tions biologically more plausible translating neural signal

transmission delays into corresponding phase offsets

(Breakspear et al. 2010), thus preventing full synchro-

nization of the network (Keane et al. 2012; Nicosia et al.

2013). Heterogeneous phase-offsets are scaled into interval

0; p=2ð Þ according to the distances between the brain

regions of interests. We aim to explore synchrony between

neural populations that arises as a result of these inhomo-

geneities in the coupling term1.

We quantify the degree of network synchrony using

order parameter R, defined in the following way:

RðtÞ ¼ eihjðtÞ
D E���

��� j ¼ 1; . . .;N: ð2Þ

Extreme values of the order parameter, RðtÞ ¼ 1 and

RðtÞ ¼ 0, indicate the network’s complete synchrony or

asynchrony, respectively. Values between 0 and 1 represent

network’s transition from less to more synchronized state,

i.e. network metastable regime (Shanahan 2010).

Characterization of brain networks

Simulated functional connectivity

For assessment of the simulated functional connectivity

(FC) we employed the simple linear (Pearson) coefficient

of correlation of the simulated BOLD time series. The
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Fig. 3 Global synchrony R given by Eq. (2) as a function of time for

a coupling strength c ¼ 23:32

Fig. 4 Characterization of the weighted anatomical connectivity

matrix: node degree, clustering coefficient and local efficiency

Fig. 2 Simulated functional connectivity according to Eq. (1) obtained for five different values of the coupling strength c

1 Technical details on the numerical analysis. The simulations are

carried out using the PYTHON module SCIPY. The algorithm used is

based on the Bogacki-Shampine method (Boggio et al. 2009) with an

adaptive step size for the numerical integration of Eq. (1). This is

similar to the ODE23 routine implemented also in MATLAB

(Shampine and Reichelt 1997). Initially, at t ¼ 0, all phases

hi; i ¼ 1; . . .;N, are randomly chosen from a uniform distribution.
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representative examples of simulated FCs for different

values of the coupling strength c are given in Fig. 2. We

find that scaling the global coupling strength within the

range from 23.3 to 23.4, in steps of 0.01, affects functional

correlations between simulated time series and therefore

FCs so as to agree with the empirical FC. Visually, patterns

of correlated activity between empirical and simulated FC

matrices agree best for c ¼ 23:32 with a correlation coef-

ficient q ¼ 0:32 and mean squared error of 0.12 [compare

Figs. 1B and 2]. At the same time, global network syn-

chrony, measured via Eq. (2), displays a considerable

amount of variation over time (Fig. 3). Variations in level

of network synchrony represent an important property of

the resting-state brain dynamics, that allow flexible net-

work interactions. This is, again, the range of global cou-

pling strength values where simulated FCs show best

agreement with experiment.

Anatomical and functional connectivity

For exploration of the relation between structural connec-

tivity and simulated functional connectivity, we consider a

graph-theoretic approach (Bullmore and Sporns 2009).

Here, we used standard methods to compute some of the

most commonly used network characteristics: node degree,

clustering coefficient and local efficiency. (See Rubinov

and Sporns 2010 for details of these measures). All cal-

culations are performed on weighted matrices – empirical

AC and simulated FC – for c ¼ 23:32. Figure 4 represents

the above mentioned network measures obtained on the AC

network. The same network measures calculated on sim-

ulated FC are represented in Fig. 5. Our analysis shows that

calculated network measures for simulated FC are on

average higher than those for the empirical AC. Further-

more, the degrees based on the simulated FC exhibit a

larger variability demonstrating self-organizing dynamics

in the network. These results suggest that an anatomical

connectivity analysis requires also an analysis of network

dynamics in order to provide insight into large-scale brain

connectivity.

Conclusion

In this study we have shown that functional connectivity

within a network of neural oscillators depends on the

parameters of the populations: coupling strength and

structural inhomogeneities. Moreover, the dependence for

the agreement between empirical and simulated FCs, as

well as for the global functional network properties, has

been investigated. In particular, in the parameter regions

where the simulated FC resembles the empirical FC, rela-

tion with the underlying structural connectivity is exam-

ined. The functional network shows a rich pattern of

activity, dependent on the underlying topology and con-

nections strength.
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