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Abstract Extensive experiments on rats have shown that

environmental cues play an important role in goal locating

and navigation. Major studies about locating and naviga-

tion are carried out based only on place cells. Nevertheless,

it is known that navigation may also rely on grid cells.

Therefore, we model locating and navigation based on

both, thus developing a novel grid-cell model, from which

firing fields of grid cells can be obtained. We found a

continuous-time dynamic system to describe learning and

direction selection. In our simulation experiment, accord-

ing to the results from physiology experiments, we suc-

cessfully rebuild place fields of place cells and firing fields

of grid cells. We analyzed the factors affecting the locating

accuracy. Results show that the learning rate, firing

threshold and cell number can influence the outcomes from

various tasks. We used our system model to perform a goal

navigation task and showed that paths that are changed for

every run in one experiment converged to a stable one after

several runs.

Keywords Grid cell � Hippocampus � Learning �
Navigation � Place cell � Place field

Introduction

Hippocampus is a key organization for learning andmemory.

Correlated with hippocampus, goal locating and navigation

is a basic function of animals. Some principal cells dis-

tributed in hippocampus are identified as place cells (PCs).

Place cells fire with a higher frequency in some particular

locations than other places (O’Keefe and Dostrovsky 1971;

O’Keefe and Nadel 1978). These particular locations within

an environment are named place fields (PFs). Many models

have been founded for place cells, using such tools as

Gaussian function in (O’Keefe and Burgess 1996; Hartley

et al. 2000; Foster et al. 2000), neuronal plasticity in (Arleo

et al. 2004; Sheynikhovich et al. 2005; Krichmar et al. 2005),

independent component analysis in (Franzius et al. 2007),

and circuit-level model in (Jayet Bray et al. 2010). These

studies most focus on fire description and place field (PF)

formation. However, there is little discussion over the

locating accuracy of place cells which remains an important

issue in animal navigation (Etienne and Jeffery 2004; Jeffery

et al. 2003; Hines and Whishaw 2005; Harvey et al. 2009).

Grid cells are another type of important cells for naviga-

tion task in entorhinal cortex, which has been reported in

previous studies (Hafting et al. 2005;Moser andMoser 2008;

Giocomo et al. 2011; Stensola et al. 2012; Brandon et al.

2014). They fire with a higher frequency like place cells in

specific locations in an environment, but differ from place

cells in that grid cell firing fields (FFs) are organized into a

hexagonal grid. In this study, a new model developed from

Gaussian functions is employed to simulate grid cell FF

formation.
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Some experiments were performed on goal navigation

task by rats in (Etienne and Jeffery 2004; Jeffery et al.

2003; Hines and Whishaw 2005; Chen et al. 2013). Con-

sequently, some models were proposed based on place cells

in (Arleo et al. 2004; Sheynikhovich et al. 2005; Krichmar

et al. 2005; Arleo and Gerstner 2000; Kulvicius et al.

2008). It is commonly believed that place cells may be

driven by grid cells (McNaughton et al. 2006; Solstad et al.

2006a, b; Molter and Yamaguchi 2008; Si and Treves

2009). But little is known about the interactive mechanism

of place cells and grid cells. Recently, some studies

demonstrate that grid cells may also depend on place cells

in a reverse direction (O’Keefe and Burgess 2005; Kropff

and Treves 2008; Sreenivasan and Fiete 2011). In the study

by Bonnevie et al. (2013), experimental data suggest that

the feedback from place cells to grid cells is more promi-

nent than that of grid cells on place cells. Meanwhile, the

study addresses that grid cells may also play an important

role on navigation. However, most of the previous model

studies on navigation were mainly based on place-cell

models, and only few on grid-cell models, not to mention

those on both of them. Thus, natural questions are how

place cells interact with grid cells, and what their interac-

tive roles are on goal navigation?

Another interesting question is how the rats learn envi-

ronmental cues. Studies show that one of the main functions

of hippocampal neurons, like place cells and grid cells, is the

learning of spatial location information from an environment

(Huxter et al. 2003;Nakazawa et al. 2004;Moser et al. 2014).

Meanwhile, a phenomenon called remapping has been dis-

cussed in the literature (Muller and Kubie 1987; Wilson and

McNaughton 1993; Shapiro et al. 1997; Tanila et al. 1997;

Knierim et al. 1998). Accordingly, the centre and shape of a

place cell will change, when a rat switches to a new envi-

ronment. Therefore, the focus of the current study is on how

to learn the environmental information.

Models and methods

Experiment environment and neural networks

We set a square space with side length L (see Fig. 1a). A

rat is placed randomly in a position of the environment,

setting a task of finding food in the experiment. In this

environment, the rat perceives environmental cues by using

its visual system, then learns and integrates the sensory

information by its neural network made of place cells and

grid cells, and finally performs locating and navigation in

the task (Fig. 1b). Place cells in the model mainly under-

take the function of locating, while grid cells are concerned

more on the integration of the navigation path. Especially,

it is known from the literature (McNaughton et al. 2006;

Molter and Yamaguchi 2008; O’Keefe and Burgess 2005;

Bonnevie et al. 2013) that the connection is mutual

between hippocampus place cells and cortex grid cells.

Therefore, we design an interactive mechanism of these

two kinds of neurons. The locating function of place cells

is the premise of navigation, while path integration by grid

cells will in turn affect the next locating of place cells.

Directions are chosen in navigation for the next step by

motor neurons.

Sensory model

In the experiment, the environment is a square place

without any references, where the rat can only get visual

information from four walls W, E, S and N. We choose the

distances from the rat’s current location to all four walls as

sensory inputs, using the same processing method in many

earlier studies (O’Keefe and Burgess 1996; Ollington and

Vamplew 2004). Note that the real location of the rat at

time t is X(t) = (x1(t), x2(t), x3(t), x4(t)), where xi(t) is the

real distance from wall i, i = 1, 2, 3, 4 corresponding to W,

S, E and N (Fig. 1a). Obviously, x1(t) ? x3(t) = x2(t) ?

x4(t) = L. However, sensory neurons of the rat have no

accurate perception of its own locations. The perception

input model is given by the following formula:

X̂ðtÞ ¼ x̂1ðtÞ; x̂2ðtÞ; x̂3ðtÞ; x̂4ðtÞð Þ
x̂iðtÞ ¼ xiðtÞð1þ agÞ; i ¼ 1; 2; 3; 4:

�
ð1Þ

where a signifies the error rate of the visual perception,

which is related to the individual rats. g is a random

number from a uniform distribution within the interval

[-1, 1]. Namely, g * U[-1, 1].

Place-cell and grid-cell models

We use a simple feedforward neural network to describe

the system model. Place cells receive the input X̂ðtÞ from
the sensory neurons. It is a fully-connected network where

every sensory neuron is connected to every place cell with

weights WP tð Þ ¼ ðwP
ijðtÞÞ4�NP

, where i = 1, 2, 3, 4, j =

1, 2, …, NP and NP is the total number of place cells, and

wP
ijðtÞ is the connection weight from the ith sensory neuron

to the jth place cell. Similar to place cells, grid cells have

weights WGðtÞ ¼ ðwG
ij ðtÞÞ4�NG

, where i = 1, 2, 3, 4,

j = 1, 2, …, NG and NG is the total number of grid cells.

Weights are initialized by the following functions:

wP
ij 0ð Þ ¼ 1þ exp

c� E cð Þ
2r2

� �� ��1

ð2Þ

wG
ij 0ð Þ ¼ sin L

,
1þ exp

c� E cð Þ
2r2

� �� ��1
 !

ð3Þ
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where c is a random number with c�U 0; 1½ �.
Then, we choose the model in (Hartley et al. 2000;

Kulvicius et al. 2008) to describe the place cells,

rPj tð Þ ¼ exp �
1
n

X̂ tð Þ
L

�WP
j tð Þ

��� ���
2r2j

0
@

1
A ð4Þ

where rPj ðtÞ is the firing rate of the jth place cell, n is the

number of sensory inputs, WP
j tð Þ is the jth row of WP tð Þ, rj

is a random number from a normal distribution, and the

norm is the Euclidean distance. Results show that rj affects
the width of PFs. Therefore, the random number

rj * N(0.03, 0.005) can be used to simulate the diversity

of cells.

A new model developed from the above equation is

employed to represent grid cells, as

rGj tð Þ ¼ exp �
1
n

sin
X̂ tð Þ
m

� �
�WG

j tð Þ
��� ���

2r2j

0
@

1
A

þ exp �
1
n

� sin
X̂ tð Þ
m

� �
�WG

j tð Þ
��� ���

2r2j

0
@

1
A

ð5Þ

where the parameters are similar to that of place cells.

Learning, locating and navigation

According to a learning rule with a winner-takes-all

mechanism, the cell with the maximal firing rate wins the

learning chance (Kulvicius et al. 2008). Obviously, the

model has the low learning efficiency because we can only

change one cell’s weights at every step. Therefore, we

modified the competition learning strategy as follows:

dWP
J1 tð Þ
dt

¼ l1
X̂ tð Þ
L

�WP
J1 tð Þ

� �

dWG
J2 tð Þ
dt

¼ l2 sin
X̂ tð Þ
m

� �
�WG

J2 tð Þ
� �

J1 ¼ jjrPj tð Þ[Rthr

n o
J2 ¼ jjrGj tð Þ[Rthr

n o

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

where li is the learning rate, Rthr is the responding

threshold and J1 (J2) is the responding set. In our model,

all the cells responding to the current position can win a

chance to modify their weights from sensory neurons.

From the former model, we get all place cells’ firing

rates rP tð Þ. For place cells, place fields can be obtained by

analyzing the positions where they respond to. Meanwhile,

the centre of PFs is

CP
j ¼

r
T
0 r

P
j tð ÞX̂ tð Þdt

r
T
0 r

P
j tð Þdt

ð7Þ

Now, we build a place-cell locating model as follows:

P tð Þ ¼
P

j s
P
j tð ÞCP

jP
j s

P
j tð Þ ð8Þ

sPj tð Þ ¼ 1 rPj tð Þ[Rthr

0 rPj tð Þ�Rthr

�
ð9Þ

where sPj tð Þ is the responding function.

We elaborate the navigation process in two aspects,

namely goal-orientation-selection and Q value selection.

Fig. 1 a Experimental environment and design. A rat is randomly

placed in a square environment with the task of finding the goal

marked by ‘‘asterisks’’. The rat running in the square can only

estimate the distances to borders W, S, E and N. These distances are

sensory inputs to its neural system. b Locating and navigation neural

network structure. System receives the sensory inputs to neurons by

learning environmental cues. Locating and navigation are determined

by the interaction between place cells and grid cells. Results will be

output to motor neurons, which are used to complete the goal

searching task. c A simply feedforward fully-connected neural

network
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Goal-orientation-selection focuses on the prediction of the

goal position, which depends on the perception and estima-

tion of the rat. Note that the goal prediction at t of the rat is

X̂goalðtÞ ¼ x̂
goal
1 ðtÞ; x̂goal2 ðtÞ; x̂goal3 ðtÞ; x̂goal4 ðtÞ

� �

Then, the goal orientation preference is defined as

follows:

ĥgoal tð Þ ¼ arg ðx̂goal1 tð Þ � x1 tð ÞÞ þ x̂
goal
2 tð Þ � x2 tð Þ

� �
i

� �

Simultaneously, Q-values are selected based on the

past path integration. The model is designed by

programming.

max
0� h� 2p

Q h; tð Þ ¼
P

j s
G
j tð Þuj hð ÞP
j s

G
j tð Þ

sGj tð Þ ¼ 1 rGj tð Þ[Rthr

0 rGj tð Þ�Rthr

�

duj

dh
¼ aus

G
j tð Þ uj � bQmax

� 	

8>><
>>:

ð10Þ

where Qmax is the maximum Q-value in the previous step.

The optimal solution of this programming, ĥQ tð Þ, is used as

Q-value selection preference.

Further, we define the final direction preference by

ĥ tð Þ ¼ qĥgoal tð Þ þ 1� qð ÞĥQ tð Þ þ f
p
4

Dq ¼ dSq 1� qð Þ

(
ð11Þ

where f�U �0:1; 0:1½ � is noise, S refers to runs that the rat

gets the food, and d is the rate factor.

We suppose that the angle turning right or left cannot be

more than p=2. The final direction at time t is modified as

follows:

ĥf tð Þ ¼

ĥ t � Dtð Þ þ p
2
; ĥ tð Þ � ĥ t � Dtð Þ[ p

2

ĥ tð Þ; ĥ tð Þ � ĥ t � Dtð Þ



 


� p

2

ĥ t � Dtð Þ � p
2
; ĥ tð Þ � ĥ t � Dtð Þ\� p

2

8>>>>><
>>>>>:

ð12Þ

where Dt is the time step. Thus, the position of the rat is

changed according to the following equations:

Dx1 ¼ Rþ 2gð Þ cos ĥf tð Þ
� �

ð13Þ

Dx2 ¼ Rþ 2gð Þ sin ĥf tð Þ
� �

ð14Þ

where R is the distance of one step.

Parameter values in the model are:

L ¼ 100; a ¼ 0:1; au ¼ 0:1; b ¼ 0:7; NP ¼ 2000;

NG ¼ 1000; r ¼ 0:2; m ¼ 5; n ¼ 4; l1 ¼ 0:5;

l2 ¼ 0:003; d ¼ 0:05; R ¼ 5:

Results

Place fields and firing fields

We choose a square’s left bottom corner as the origin of

coordinates, E direction as the positive direction of abscissa

axis, and N direction as the positive direction of vertical

axis. In the simulated experiment, we discretize the time

steps for computational convenience. The rat freely

explores the new experimental environment for 50,000

time steps (Fig. 1a) to learn and familiarize itself with

environmental cues. After exploring, according to the dis-

charge data, the PFs can be obtained (Fig. 2). Results show

that place cells can only display the high frequency dis-

charge response to a certain position of the environment

(Fig. 2a, c) and that the corresponding grid cells make the

high frequency response to some position in the environ-

ment. Moreover, these positions can form hexagons on the

geometry (Fig. 2b, d). These hexagon firing fields are in

accordance with other experimental results in (Moser and

Moser 2008; Giocomo et al. 2011; Stensola et al. 2012).

The PF centers of place cells are located everywhere in

the environment (Fig. 2e), which indicates that the distri-

bution of centers is in accordance with the uniform distri-

bution features (Fig. 2f). Such a distribution allows the rat

to have higher identifiability of the environment in the

navigation task. Due to the individual differences among

place cells, the PF sizes are not consistent, highly similar to

the actual experiment results in (O’Keefe and Dostrovsky

1971; O’Keefe and Nadel 1978).

Analysis of locating accuracy

We are concerned with the errors of the locating system on

the rat, among which the sum of squared errors between the

locating and the actual locations of the nervous system, and

their means are the assessment standards (Fig. 3). A sim-

ulation experiment was carried out for a total of 100 times.

Results show that the distribution of locating accuracy in

different positions is random in the whole environment

(Fig. 3a), for the rat passes by all the positions unevenly

when it explores and learns environmental cues. Therefore,

locating of some positions makes errors, which explains the

reason why rats in the experiment box are always more

familiar with the places they have been to, than the sites

they have not been to before.

The learning rate l represents the learning ability of the

rat in the environment. The higher the learning rate is, the

greater the locating ability is and the more accurate loca-

tion the rat has (Fig. 3b). In particular, l = 0 means that

the locating error becomes larger when entering into a new

environment without learning. Hence, learning is a way for
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the rat to familiarize itself with the environmental cues, and

increasing the learning rate above 0.5 is a point of

saturation.

The effect of different thresholds and the number of

place cells on the locating accuracy are now discussed

(Fig. 3c). Firing threshold refers to the critical firing rate

which responds to any position. Big locating errors appear

at both ends of the threshold, which results in the smallest

or the largest threshold values. The smallest threshold leads

to many place cells being involved in locating, including

those almost resting place cells, while relatively low firing

rate cells lead to errors. Especially, when the threshold is

zero, all the place cells take part in locating. Conversely,

the largest threshold results in few place cells to access the

learning environmental cues, for which errors are ampli-

fied. The optimal threshold value is 0.1 and it is opted in

our studies. Simultaneously, it is shown that the locating

accuracy is improved due to the larger quantity of cells.

Compared with the threshold given in our study, the

winner-takes-all mechanism is employed to illustrate the

learning in (Kulvicius et al. 2008). In this mechanism, only

one cell with the highest firing rate gets the opportunity to

learn while cells with firing rate bigger than the threshold

get opportunities to learn in our work. We found that a

large number of place cells under sufficient learning con-

tribute to more accurate locating, because a small number

of neurons cannot cover all the positions with their PFs. A

small number of neurons responding to the uncovered

Fig. 2 PF/FF formation and

distribution of place cells and

grid cells. a 64 place fields are

chosen from 2000 place cells.

They are scattered uniformly in

the square with diverse sizes

according to physiological

experiment data. Red represents

high frequency response to the

position, where blue is for

resting. b 64 firing fields are

chosen from 1000 grid cells.

These places responding to

some cells are organized as

hexagons. c The PF of a place

cell is enlarged for better

visualization. A line in the

square is the path that the rat

has explored. d The FF of a grid

cells is enlarged for better

visualization. e The distribution

of place cells’ PF centers. We

compute the centers of all place

cells and plot them into the

environment. f Frequency
analysis results with coordinates

of place field centers. (Color

figure online)

Cogn Neurodyn (2016) 10:353–360 357

123



positions turn out to be not enough, and even useless. The

direct effect is that the positions are dislocated or cannot be

located. Specific comparative results are shown in Table 1.

Navigation

The navigation task for the rat is presented (Fig. 4a). The

environment is a very big square space. Namely, we sup-

pose that the rat cannot see or smell the food directly. The

goal can only be seen or smelt when the distance between

the goal and the rat is \5. Confronted with a new envi-

ronment, the rat begins to tentatively and randomly explore

the environment. The foraging path presents great ran-

domness, while many steps are taken to learn environ-

mental cues. Once the rat finds the goal, it will be located

intangibly. The more runs rats have, the more precisely the

goal is located. After about ten runs, the rat selects a better

direction and path towards the goal immediately.

The number of runs in an experiment depends on the

moment when an optimal path is found. Data were

obtained from 100 experiments. With the increase of the

number of learning times, the total steps it needs fall

rapidly (Fig. 4b). Steps needed to a stable state converged

to 16 after about 10 runs, which means that the goal

position is located and memorized precisely. In the navi-

gation task, the goal can only be found when the distance

between the goal and the rat is\5. The task will be failed

and the rat will abandon searching the goal when the steps

exceed 1000 because of the sluggishness of the rat.

It is about 22 steps after 13 runs in (Kulvicius et al.

2008) while only 16 steps after 10 runs in our work

(Table 1). After learning, the convergent navigation path in

our results has stronger stability than the one in (Kulvicius

et al. 2008). The path and steps needed to get the goal are

fluctuant after sufficient runs while ours are not.

Conclusions

In 2014, John O’Keefe, May-Britt Moser and Edvard

Moser won the Nobel prize in medicine for their dis-

covery of place cells and grid cells. It is commonly

accepted that the two kinds of neurons take an important

part in locating and navigation. In other words, they may

reveal the answers to the following two questions: where

we are now and where we will go? Previous model

studies (Arleo et al. 2004; Sheynikhovich et al. 2005;

Krichmar et al. 2005; Arleo and Gerstner 2000; Kulvicius

et al. 2008) focus on the possible navigation mechanism

based on place cells or grid cells. None of the models

goes with these two kinds of cells, or with their interac-

tion in navigation tasks, which motivated our present

study. For the first time, to our knowledge, we have

implemented a place-cell and grid-cell model, and applied

it for goal navigation learning. Moreover, we proposed a

locating and navigation mechanism which leads to a

better performance than models based on a single place

cell (Kulvicius et al. 2008).

Fig. 3 Analysis of the locating

accuracy. a Locating errors are

defined between the real

position and the locating

position. They are distributed in

the square. The errors in some

positions are zero because the

rat didn’t go through these

places in its random

exploration. b Average locating

errors of all the explored

positions are obtained from 100

experiments with standard

deviations. c Average locating

errors versus the firing threshold

and the number of cells

Table 1 Comparative results
Ave. steps Ave. runs Stability

Results of our work 16 10 Strong

Results of Ref. (Kulvicius et al. 2008) 22 13 Weak
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The basic models of place cells and grid cells are

founded. We model place cell feedforward network based

on radial basis functions. O’Keefe and Burgess (Kulvicius

et al. 2008) used the thresholded sum of the Gaussian

tuning-curves of the rat’s distance from each box wall to

describe the place cell, which seems similar to ours.

Another work where the firing rate of a place cell is

modeled as the thresholded sum of boundary vector cells is

the product of distance function and head direction func-

tion (Kulvicius et al. 2008). Compared with them, our

model has a simpler form. Moreover, we can keep the

width or shape diversity of PFs (Fig. 2a) by a rj obeying
normal distribution, while they depend on the distance to

the wall: the larger the distance is, the broader the field is.

Namely, the width of PFs in environment centre is bigger

than that in edge, which has not appeared in physiological

experiment. We use trigonometric function to develop grid

cell model. The periodicity of trigonometric function

results in hexagon firing fields. It is more convenient in

simulation than the function which is constructed from a

sum of three two-dimensional sinusoidal gratings (Kulvi-

cius et al. 2008). The advantages of our place cell model

are also presented in grid cell model because the grid cell

model is improved from place cells.

The locating accuracy is related to the relative path

explored. Some positions cannot be accurately located due

to the lack of exploration learning. Specifically speaking,

no accurate location is reflected when getting lost in an

actual task and choosing directions at random. Therefore, it

is concluded that locating errors are relatively big without

learning or with low learning rates, that an increase of the

learning rate can reduce the locating errors, and that the

locating error remains unchanged when the learning rate is

above a certain threshold. The firing threshold, as an

indicator, is used to distinguish whether neurons can

respond to events. The effect of firing thresholds on the

locating errors turns out to be in a ‘‘V’’ shape. Threshold

values at both ends, large or small, will enlarge the locating

errors. An optimal threshold is obtained minimizing the

average error. Another effective way of reducing the

average locating error is to increase the number of place

cells. When the number of neurons in the model decreases,

the error rate becomes relatively high, while the increase of

the number of neurons can obviously decrease the errors.

Correspondingly, the brain can process a large number of

cells. All these methods can be used to reduce the locating

errors, which brings fewer average steps needed to get the

food and higher rate of convergence of optimal path.

Simulation results show that after learning environ-

mental cues in several times, a rat can successfully com-

plete the navigation task, searching from an inefficient

initial path to an optimal one. In our model, the navigation

mechanism involves two key issues: locating and directing.

These two are fundamental and supportive to each other,

with place cells mainly undertaking the locating function,

and grid cells mainly selecting directions and estimating

distances. Finally, their combination finishes the navigation

task.
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Spatial representation and navigation in a bio-inspired robot. In:

Biomimetic neural learning for intelligent robots: intelligent

systems, cognitive robotics, and neuroscience, pp 245–264

Si B, Treves A (2009) The role of competitive learning in the generation

of DG fields from EC inputs. Cogn Neurodyn 3:177–187

Solstad T, Moser EI, Einevoll GT (2006a) From grid cells to place

cells: a mathematical model. Hippocampus 16(12):1026–1031

Solstad T, Moser EI, Einevoll GT (2006b) From grid cells to place

cells: a mathematical model. Hippocampus 16:1026–1031

Sreenivasan S, Fiete I (2011) Grid cells generate an analog error-

correcting code for singularly precise neural computation. Nat

Neurosci 14(10):1330–1337

Stensola H, Stensola T, Solstad T, Froland K, Moser MB, Moser EI

(2012) The entorhinal grid map is discretized. Nature 492:72–78

Tanila H, Shapiro ML, Eichenbaum H (1997) Discordance of spatial

representations in ensembles of hippocampal place cells. Hip-

pocampus 7:613–623

Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal

ensemble code for space. Science 261(5124):1055–1058

360 Cogn Neurodyn (2016) 10:353–360

123


	Locating and navigation mechanism based on place-cell and grid-cell models
	Abstract
	Introduction
	Models and methods
	Experiment environment and neural networks
	Sensory model
	Place-cell and grid-cell models
	Learning, locating and navigation

	Results
	Place fields and firing fields
	Analysis of locating accuracy
	Navigation

	Conclusions
	Acknowledgments
	References




