
A neurocomputational model of altruistic choice and its 
implications

Cendri A. Hutcherson1,4, Benjamin Bushong1,3, and Antonio Rangel1,2

1Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 
91125, USA

2Computational and Neural Systems, California Institute of Technology, Pasadena, CA 91125, 
USA

3Department of Economics, Harvard University, Cambridge, MA 02138, USA

4Department of Psychology, University of Toronto, Toronto, ON M1C 1A4, Canada

Summary

We propose a neurocomputational model of altruistic choice and test it using behavioral and fMRI 

data from a task in which subjects make choices between real monetary prizes for themselves and 

another. We show that a multi-attribute drift-diffusion model, in which choice results from 

accumulation of a relative value signal that linearly weights payoffs for self and other, captures 

key patterns of choice, reaction time, and neural response in ventral striatum, temporoparietal 

junction, and ventromedial prefrontal cortex. The model generates several novel insights into the 

nature of altruism. It explains when and why generous choices are slower or faster than selfish 

choices, and why they produce greater response in TPJ and vmPFC, without invoking competition 

between automatic and deliberative processes or reward value for generosity. It also predicts that 

when one’s own payoffs are valued more than others’, some generous acts may reflect mistakes 

rather than genuinely pro-social preferences.

Altruism involves helping others at a cost to the self, not only when such behavior is 

supported by strategic considerations like reciprocity or cooperation (Dufwenberg and 

Kirchsteiger, 2004; Falk and Fischbacher, 2006; Nowak and Sigmund, 1998), but even in the 

absence of expectation for future benefit (e.g. fully anonymous, one-time generosity: Batson, 

2011; Fehr and Fischbacher, 2003). A major goal of neuroeconomics is to develop 

neurocomputational models of altruistic choice, specifying which variables are computed, 

how they interact to make a decision, and how are they implemented by different brain 

circuits. Such models have proven useful in domains such as perceptual decision-making 

(Gold and Shadlen, 2007; Heekeren et al., 2008), simple economic choice (Basten et al., 

2010; Hunt et al., 2012; Rangel and Clithero, 2013), self-control (Hare et al., 2009; Kable 

and Glimcher, 2007; Peters and Büchel, 2011; van den Bos and McClure, 2013), and social 

learning (Behrens et al., 2008; Boorman et al., 2013). We propose a neurocomputational 
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model of simple altruistic choice and test it using behavioral and fMRI data from a modified 

Dictator Game in which subjects make choices between pairs of real monetary prizes for 

themselves ($Self) and another ($Other). These choices involve a trade-off between what is 

best for the self and what is best for the other, and thus require people to choose to act 

selfishly or generously.

Our model assumes that choices are made by assigning an overall value to each option, 

computed as the weighted linear sum of two specific attributes: monetary prizes for self and 

other. This type of simple value calculation captures a wide range of behavioral patterns in 

altruistic choice (Charness and Rabin, 2002; Eckel and Grossman, 1996; Engel, 2011; Fehr 

and Fischbacher, 2002; Fehr and Fischbacher, 2003). Our model also assumes that the 

overall value signal is computed with noise and that choices are made using a multi-attribute 

version of the Drift-Diffusion Model (DDM: Ratcliff and McKoon, 2008; Smith and 

Ratcliff, 2004). In this algorithm, a noisy relative value signal is integrated at each moment 

in time and a choice is made when sufficient evidence has accumulated in favor of one of the 

options. This type of algorithm has been shown to provide accurate descriptions of both 

choice and reaction time (RT) data (Busemeyer and Townsend, 1993; Hunt et al., 2012; 

Krajbich et al., 2010; Milosavljevic et al., 2010; Rodriguez et al., 2014; Smith and Ratcliff, 

2004), as well as neural response patterns associated with computing and comparing values 

(Basten et al., 2010; Hare et al., 2011; Hunt et al., 2012) in many non-social domains.

The model suggests neural implementation of two specific quantities. First, values for the 

attributes $Self and $Other must be computed independently. Second, an overall value signal 

must be constructed from the independent attributes. We hypothesized that areas like the 

temporoparietal junction, precuneus, or medial prefrontal cortex may compute quantities 

related to the value of these attributes. Prior research strongly implicates these regions in 

social behavior (Bruneau et al., 2012; Carter and Huettel, 2013; De Vignemont and Singer, 

2006; Decety and Jackson, 2006; Hare et al., 2010; Jackson et al., 2005; Moll et al., 2006; 

Saxe and Powell, 2006; Singer, 2006; Waytz et al., 2012; Zaki and Mitchell, 2011), although 

their precise computational roles remain poorly understood. Inspired by a large body of 

work on the neuroeconomics of non-social choice (Basten et al., 2010; Hare et al., 2009; 

Kable and Glimcher, 2007; Lim et al., 2013; McClure et al., 2004; Tom et al., 2007), we 

additionally hypothesized that the integration of specific attribute signals would occur in 

ventromedial prefrontal cortex (vmPFC). We explore these hypotheses with our fMRI 

dataset.

We also highlight three ways in which the development of a computational model of 

altruistic choice can be used to generate novel insights into the nature of altruistic choice. 

First, we compare the model’s predictions about RT and neural response for generous versus 

selfish choices. We find that, for the best-fitting parameters, the model predicts longer RT 

and higher BOLD response in decision-related regions for generous choices, and that the 

predicted effect sizes match the observed data. Second, we use simulations to identify how 

model parameters influence altruistic behavior, and find that several of these variables 

(including the relative importance of benefits to self and other and the decision boundaries 

of the DDM) predict observed individual differences in generosity. Third, we show that the 

model predicts that generous decisions are sometimes unintended mistakes resulting from 
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the noisy choice process, and exploit an aspect of our experimental design to test this using 

fMRI data.

 Results

We collected whole-brain BOLD responses in male subjects while they made 180 real 

decisions about different allocations of money between themselves and a real-but-

anonymous partner. Each trial consisted of a choice phase and an outcome phase (Figure 

1A). During the choice phase, the subject saw a proposal consisting of monetary prizes for 

himself ($Self) and for another person ($Other), and had to decide whether to accept or 

reject it in favor of a constant default prize of $50 for each. On each trial the subject saw one 

of the nine proposal types depicted in Figures 1B and 2C–D, with ±$1–$4 random jitter 

added to avoid habituation. All proposals included one payment below and one payment 

above the default, creating a choice between generous behavior (benefitting the other at a 

cost to oneself) and selfish behavior (benefitting oneself at a cost to another). Subjects 

indicated their decision using a four-point scale (1=Strong No, 2=No, 3=Yes, 4=Strong Yes), 

allowing us to measure both the choice and the value assigned to the proposal. Right-left 

orientation of the scale varied randomly from scan to scan to reduce motor-related 

confounds in neural response. Every decision was followed by an outcome phase, during 

which the decision made by the subject was implemented with 60% probability and reversed 

with 40% probability. Subjects were told about the 40% probability of choice reversal, and 

that their partner knew their choices might be reversed, but were encouraged to simply 

choose the option they most preferred, since their choice made it more likely to occur (see 

Supplementary Materials for instructions). At the end of the experiment one trial was 

randomly selected and its outcome implemented. As shown below, the reversal mechanism 

allows us to test the extent to which different choices may be decision mistakes, while not 

changing incentives to pick the best option.

 Average choices are relatively selfish

Subjects made generous choices—maximizing their partner’s payoff ($Other) at a cost to 

their own ($Self)—in 21% ±18 (mean ± SD) of trials, sacrificing $3.73 ± 4.64 per trial and 

giving $8.31 ± 6.86. This level of giving is comparable to other studies of anonymous 

altruism (Engel, 2011), but also suggests that subjects in general behaved relatively selfishly. 

There was considerable individual variation in generosity, ranging from 0%–61% generous 

choices and $0-$22.37 given to the partner. This variation is useful for exploring individual 

differences, as we do below.

 Computational model

The model is a multi-attribute extension of the standard DDM (Ratcliff and McKoon, 2008; 

Smith and Ratcliff, 2004). On every trial the choice is based on a dynamically evolving 

stochastic relative decision value (RDV) signal that provides an estimate of the desirability 

of the proposed prize ($Self, $Other) relative to the default prize ($50, $50). The signal 

starts at zero, remaining there for an amount of non-decision time capturing processing and 

motor delays, given by the parameter NDT. Afterwards, it accumulates stochastically at time 

t according to the difference equation
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where $Self and $Other are the proposed prizes for self and other, wself and wother are 

constant weights, and εt denotes white Gaussian noise that is identically and independently 

distributed with standard deviation σ. A choice is made the first time the RDV crosses one of 

two pre-specified barriers. The proposal is accepted if the positive barrier is crossed first and 

rejected if the negative barrier is crossed first. RT equals the sum of the NDT and crossing 

time t. Building on previous work with time-limited decisions (Churchland et al., 2008; 

Cisek et al., 2009; Milosavljevic et al., 2010), we allow for the possibility of collapsing 

barriers, although the model includes fixed barriers as a special case. The upper barrier is 

described by the equation

where b > 0 is a parameter denoting the initial height of the barrier, d ≥ 0 is a parameter 

denoting its exponential rate of decay, and t is measured from the end of the non-decision 

period. The lower barrier is symmetric, so that Bt= −B̄t. Without loss of generality, we 

assume that σ = 0.1, since the model is invariant to affine transformations of the parameters 

(Ratcliff and McKoon, 2008). The model has five free parameters: NDT, wself, wother, b and 

d.

Figure 1C illustrates the model. The relative value of the proposal is given by V = wself 

($self – $50) + wother ($Other – $50). When V is positive the optimal choice is to accept the 

proposal and otherwise to reject it. The decision problem is complicated if V is measured 

with noise at every instant during the decision phase, especially if the amount of noise is 

high. The DDM algorithm provides an elegant solution to this problem: by dynamically 

integrating the instantaneous noisy value measures, RDV generates a posterior estimate of 

the log-likelihood ratio that the optimal choice is to accept (Bogacz et al., 2006; Gold and 

Shadlen, 2002). The barriers define a rule for how large this posterior estimate has to 

become to make a decision. The barriers collapse over time to allow choices to occur in a 

reasonable timeframe even for trials with low RDV where the signal moves away from zero 

very slowly.

Several aspects of the model are worth highlighting. First, although choices and RTs are 

inherently stochastic, the model makes quantitative predictions about how different 

parameters and proposal amounts affect their distribution. Second, the size of the weights 

wself and wother, as well as the barrier location, affects the quality and speed of choices, a 

phenomenon known as the speed-accuracy tradeoff (Bogacz et al., 2010). This implies that 

mistakes are possible: individuals sometimes act selfishly or altruistically despite their 

underlying preferences. When the barriers are initially high and decay slowly (b large and d 
small), decisions are slower but made more accurately. Finally, the relationship of wself to 

wother plays a critical role. If wself = wother, the model predicts that $Self and $Other 
influence choices, RTs, and errors symmetrically. In contrast, if wself> wother, changes in 
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$Self have a stronger impact on choices and RTs, and errors are distributed asymmetrically, 

such that they more frequently involve excessive generosity (more on this below).

 The model accurately predicts out-of-sample choice and RT

We used a maximum likelihood method based on simulated likelihood functions to estimate 

the best-fitting parameters of the model in a randomly-selected half of the data. We used 

these parameters to test the fit between model predictions and observed data on the other 

half, separately for each subject (see Methods for details). Model predictions capture inter-

individual differences in mean donations (mean Pearson’s r49= .94, P < .0001) and RTs (r49 

= .96, P < .0001) quite well (Figure 2A, B). The model also captures intra-individual 

differences in acceptance rates (mean r = .88, one-sample t50 = 45.05, P < .0001; Figure 2C) 

and in RTs (mean r = .53, one-sample t50 = 11.79, P < .0001; Figure 2D) across different 

trial types.

Although this suggests that the model described above fits well, Figure 2C indicates that the 

fit for choice behavior (though not RT) was poorer when the proposal involved a sacrifice 

for the subject (i.e., $Self amounts below the default). To investigate this issue, we fit a 

variant of the model that allows the parameters to depend on whether $Self is more or less 

than $Other. This alternative model is motivated by previous behavioral work showing that 

the value placed on $Self and $Other can depend on whether the self is coming out ahead or 

behind (Charness and Rabin, 2002; Engelmann and Strobel, 2004; Fehr and Schmidt, 1999). 

As detailed in the Supplemental Materials, this analysis improves the fit to observed choice 

behavior when $Self < $Other, an effect that derives from a higher weight wself, a lower 

weight wother, and a higher threshold parameter. However, because there are no qualitative 

differences in the analyses reported below when using the more complex model, for 

simplicity the rest of the analyses utilize the simpler version.

 Estimated model parameters in the full dataset

Having demonstrated that the model accurately predicts out-of-sample choices and RTs, we 

next examine the best-fitting parameter values using the full dataset (see Table 1). Several 

results are worth highlighting. First, the average NDT (868ms) is larger than that usually 

found for DDMs (Milosavljevic et al., 2010; Ratcliff and McKoon, 2008). We attribute this 

to the additional time subjects may have needed to determine the payoffs on each trial and 

translate that into a graded response. Second, both wself and wother are significantly larger 

than zero on average (both P < .003) and wself is considerably larger than wother (paired-t50 = 

10.83, P < .001) Third, we find substantial individual variation in the best-fitting values for 

all five parameters, which is useful for the individual difference analyses described below.

 vmPFC responses encode an integrated value signal at decision

The model suggests that an integrated value signal is used to make choices. We provide 

neural evidence of such a signal by estimating a general linear model to identify regions in 

which BOLD responses correlate positively with the value assigned to proposals at the time 

of decision, measured by the four-point response scale (1 = Strong-No to 4 = Strong-Yes). 

Several regions satisfy this property, including a region of vmPFC (P < .05, whole-brain 
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corrected [WBC]; Figure 3A; Table S3) that encodes stimulus values at the time of decision 

in a wide range of tasks (Clithero and Rangel, 2013; Kable and Glimcher, 2007).

 Neural representations of $Self and $Other

Our model assumes that the overall value assigned to the proposal (and used by the DDM 

comparator algorithm to generate a choice) is constructed from information about the 

independent attributes $Self and $Other. We show that there are neural signals consistent 

with representation of these two quantities, using a second model to look for areas in which 

BOLD responses correlate positively with either $Self or $Other separately (i.e., inputs to 

the integrated value signal), as well as regions that reflect both (i.e., overall values).

$Self correlates with BOLD responses in a distributed set of regions (Figure 3B, Table S4), 

including vmPFC (P < .05, WBC) and the ventral striatum (P < .05, WBC). $Other 
correlates with BOLD responses in a distinct and more circumscribed set of regions (Figure 

3C, Table S4), including right temporoparietal junction (rTPJ), precuneus (both P < .05, 

WBC), and vmPFC (P = .004 SVC). To determine the specificity of these responses, we 

looked for regions in which the effect for $Self is stronger than for $Other, and vice versa. 

Regions responding more strongly to $Self include the ventral striatum (P < .05, SVC), 

vmPFC, and areas of visual and somatosensory cortex (P < .05, WBC). No regions respond 

more strongly to $Other at our omnibus threshold, although we observe such specificity in 

the right TPJ at a more liberal threshold (P < .005, uncorrected). A conjunction analysis 

(Table S4) shows a region of vmPFC (Figure 3D) responding significantly to both $Self and 

$Other (P < .05, SVC). This area also overlaps fully the vmPFC area correlating with overall 

preference, supporting the idea that it may represent an area where separate attributes are 

combined into an integrated value signal.

Together, the behavioral and neural results are consistent with the hypothesis that both $Self 
and $Other, quantities required by the computational model, are independently represented 

in the brain. The results also support the idea that the vmPFC combines information about 

$Self and $Other into an overall value, and that choices are made by integrating the proposal 

values using an algorithm that is well captured by the DDM. These results motivate the 

second part of the paper, in which we use the best-fitting computational model to derive and 

test several implications of the theory.

 Implication 1: RTs are longer for generous choices, particularly for more selfish 
individuals

Our computational model has the advantage that it provides a theory of the relationship 

between choices and RTs. This is of particular interest because differences in RT when 

choosing to act selfishly or generously have been used in several studies to make inferences 

about the relative automaticity of pro-social behavior (Piovesan and Wengstrom, 2009; Rand 

et al., 2012). Simulations from the individual models reveal two interesting predictions. 

First, in the domain of best-fitting parameters for our subjects, the model predicts that on 

average RTs are longer for trials that result in a generous (G) choice compared to trials 

resulting in a selfish (S) choice (predicted RTG = 2,269, predicted RTS = 2,074, paired-t50 = 

9.37, P < .0001; Figure 4A). Second, it predicts that this RT difference is bigger for more 
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selfish subjects (correlation between predicted generosity and difference in G vs. S RTs r49 = 

−.89, P < .0001; Figure 4B). The observed data displayed both patterns. On average, G 

choices were significantly slower than S choices (RTG = 2,300 ms ± 310, RTS = 2,131 ms 

± 280, paired t43 = 4.97, P < 0.0001; Figure 4C), and the more generous the individual, the 

smaller this difference (r42 = −.60, P < .001, Fig. 4D).

 Implication 2: Neural response in valuation and comparison regions is higher for 
generous choices

Our computational model suggests a neural corollary of differences in RT: regions whose 

activity scales with computation in the comparison process should have higher responses 

during G compared to S choices (predicted comparator response, arbitrary units: CompG = 

69.68 ± 27.97, S choice = 65.76 ± 27.62, paired-t50 = 6.43, P < .0001, see Methods for 

details). To see why, note that the predicted area-under-the-curve of the accumulator process 

is larger on longer trials, and that inputs into this process must also be sustained until the 

process terminates at a decision barrier. This prediction is important, since many studies of 

altruism have observed differential response during pro-social choices in regions like the 

vmPFC and TPJ and interpreted it as evidence that such choices are rewarding (Zaki and 

Mitchell, 2011), or that they require the inhibition of selfish impulses by the TPJ (Strombach 

et al., 2015). In contrast, our model suggests that such differences could be a straightforward 

by-product of the integration and comparison process.

To test this prediction, we first defined two independent ROIs shown in previous research to 

have differential response during G choices: 1) a value-modulated vmPFC region (Figure 

5A) based on the set of voxels that correlated significantly with stated preference at the time 

of choice (P < .0001, uncorrected); and 2) a generosity-related TPJ region (Figure 5B) based 

on an 8-mm sphere around the peak coordinates of a recent study reporting greater activation 

in the TPJ when subjects chose generously (Strombach et al., 2015). In both regions, we 

replicate the pattern of higher response on G vs. S choices (both P < .02). Critically, 

however, we also find that differential BOLD on G vs. S choices correlates positively with 

predicted differences in accumulator response in both regions (both r42 > .46, P < .001). 

Moreover, accounting for predicted accumulator differences reduces to non-significance the 

differential generosity-related response in both vmPFC (P = .92) and TPJ (P = .91). In 

contrast, response in occipital and motor cortices (which show value modulation but are 

unlikely to perform value integration and comparison) bear little resemblance to predictions 

of the model (Figure S2).

 Implication 3: Relationships between model parameters and generosity

In order to understand the impact on generosity of variation in the different parameters, we 

simulate model predictions for our task for a wide range of parameter combinations (see 

Methods for details). For each parameter combination, we calculate the average generosity 

(i.e., the average amount of money given to the other over all trials by choosing generously). 

Then, we use multiple regression to measure the independent influence of the five model 

parameters on variation in average simulated generosity. In the regression, all parameters are 

normalized by their mean and standard deviation in order to assess their influence on a 

common scale. As illustrated in Figure 6A–B, we find the expected association between 
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average generosity and both wSelf (β= −4.86, P < .0001) and wOther (β = 9.26, P < .0001). 

Intriguingly, the simulations also reveal that a lower starting threshold (β = −.141, P = .

0001), and a faster collapse rate (β = .21, P < .0001) increase generosity. That is, individuals 

with less stringent barriers tend, under the model, to make more G choices, holding wSelf 

and wOther constant. Based on the results below, we attribute this shift to an increase in 

choice errors for individuals with less stringent decision-criteria, leading to less accurate 

(and in this case, generosity prone) behavior. The model predicts no relationship with NDTs 

(P = .79).

We use a similar regression to see if the same relation is evident in the observed data. As 

with the simulated data, the fitted parameters were z-scored to assess their influence on a 

common scale. Consistent with model predictions, we find that average observed generosity 

correlates negatively with wSelf (β = −3.11 ± .28, P < .0001) and positively with wOther (β = 

6.47 ± .29, P < .0001). Also as predicted, observed generosity correlates negatively with the 

height of the decision threshold (β = −1.51 ± .41, P = .0006) and positively with the rate at 

which the threshold collapses toward zero (β = 1.08 ± .37, P = .006). The NDT parameter is 

non-significant, as expected.

 Implication 4: Errors are more likely to involve generous choices

Because choices are stochastic, the model suggests that some may be errors (i.e., a decision 

in which the option with the higher relative value is not chosen: Bernheim and Rangel, 

2005). We use the simulated data to investigate how decision mistakes change with variation 

in the model parameters, and how this affects generosity. Multivariate regression analyses on 

the theoretical data, where mistakes can be identified precisely on every trial, show that error 

rates decrease with wSelf (β = −.05, P < .0001) and wOther (β = −.014, P < .0001), and 

increase with more liberal barrier parameters for b (β = −.04, P < .0001) and d (β =.05, P < .

0001). We also assess the relationship between model parameters and the relative percentage 

of trials that result in generous errors (mistakenly choosing to give to the other) vs. selfish 
errors (mistakenly choosing to keep more money). This assesses whether different 

parameters increase generosity by increasing errors. As shown in Figure 6C, wSelf (β = .026, 

P < .0001) and wOther (β = −.047, P < .0001) influence the relative balance toward generous 

errors in opposite ways. Increasing the height of the barrier decreases the bias toward 

generous errors (b: β = −.008, P < .0001; d: β = +.01, P < .0001; Figure 6D), while NDT has 

no effect (β = −.0001, P = .89).

We next use the individually-fitted weights wSelf and wOther to define the “true” relative 

value of each proposal, which allows us to estimate the proportion of observed G and S 

choices for each subject that might reasonably be assumed to be errors. This analysis 

suggests that G choices were significantly more likely to be errors (M = 49% ± 38%) than S 

choices (M = 10% ± 21%, paired-t50 = 5.45, P < .0001).

We carry out a further test of this prediction, using outcome period BOLD responses, based 

on the following logic. The model suggests that a proposal’s true value should become 

increasingly clear to the decision circuitry as the amount of accumulated evidence increases 

over time, because random fluctuations in the signal will tend to cancel out. If subjects 

continue to accumulate evidence about the proposal even after making a choice (i.e., 
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“double-checking” whether they have made an error), then these signals should be quite 

clean by the time the subject sees the outcome of his choice. If this increased clarity leads a 

subject to realize at some point after making his choice that it was a mistake, having that 

mistake overturned during the outcome period (yielding the unchosen but ultimately 

preferred option) should be perceived as “good news” (i.e. relief), whereas having it 

implemented should be experienced as “bad news” (i.e. disappointment). If the original 

choice is actually correct, then reversal of this choice should be perceived negatively. The 

model thus predicts that reversal of S choices (which simulations suggest are generally likely 

to be correct) should be associated with negative affect and lower response in brain regions 

coding for the utility of an outcome, relative to non-reversal. In contrast, because G choices 

more likely reflect choice errors, reversing them should be more likely to evoke positive 

affect and greater neural response compared to implementation. Finally, the response in 

utility-coding areas to reversing a G choice should increase, across subjects, with the model-

estimated likelihood that G choices are mistakes.

We tested these predictions by computing the difference between response in the vmPFC to 

reversal vs. implementation of G or S choices, controlling both for the strength of preference 

at the time of decision, and for actual outcomes received (i.e. the amounts $Self and $Other 
resulting from choice combined with the random implementation, see GLM 1 in Methods 

for details). Consistent with predictions, vmPFC response to reversal vs. implementation 

was significantly higher after G compared to S choices (P = .02, SVC, Figure 7A). Also as 

predicted by the model, the difference in response in this region correlated positively with 

the estimated excess rate of mistakes for G over S choices (r39 = .43, P = .004, Figure 7B).

 Discussion

We have proposed a neurocomputational model of altruistic choice that builds on behavioral, 

neural and computational work in non-social domains (Basten et al., 2010; Bogacz et al., 

2010; Hare et al., 2011; Heekeren et al., 2008; Ratcliff and McKoon, 2008). In the model, 

decisions result from the stochastic accumulation of a relative value signal that linearly 

weights information about payoffs for self and other. Despite its simplicity, the model has 

considerable explanatory power. It accounts for differences in average levels of altruism and 

RTs within and across subjects, as well as for neural signals encoded in vmPFC, TPJ and 

striatum at the time of choice. Our results provide insight into the common processes at 

work in altruistic choice and simple non-social decisions, shed light on some of the neural 

mechanisms specifically involved in the computation of social value, and provide novel 

insights into the nature of altruistic behavior.

 Simple vs. social decision-making

A growing body of work suggests that in simple non-social choices the vmPFC receives 

information from regions computing information about different stimulus attributes (Basten 

et al., 2010; Hare et al., 2009; Kable and Glimcher, 2007; Lim et al., 2013), and combines it 

into a relative value signal (Hare et al., 2009; Kable and Glimcher, 2007). This signal is then 

dynamically integrated in comparator regions using algorithms with properties similar to the 

DDM (Basten et al., 2010; Hare et al., 2011; Hunt et al., 2012). BOLD responses in our 
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study suggest a similar neural architecture for social choice: we observed attribute-coding 

regions like the striatum and TPJ (which correlated with $Self and $Other, respectively), as 

well as a vmPFC region that represented $Self and $Other simultaneously and encoded the 

overall value of a choice.

 Neural and psychological bases of pro-social decision-making

Although several studies have shown that the TPJ plays a role in empathic and altruistic 

decision-making (Decety and Jackson, 2006; Hare et al., 2010; Morishima et al., 2012; Saxe 

and Powell, 2006) its precise computational nature remains poorly understood. Our findings 

show that, at least during altruistic choice, signals in this area may reflect computations 

related to others’ interests. This signal differs from two popular alternative accounts of TPJ 

function: that it represents the beliefs of others (Saxe and Powell, 2006) or that it allows 

attention to be shifted away from the self (Scholz et al., 2009). Neither theory appears to 

fully explain the pattern of TPJ response in our task. Although computations about belief 

might be used to determine how another person would value the proposal, it is not clear why 

this representation would appear selectively for higher rather than lower amounts of $Other. 
Similarly, if attentional shifts help to incorporate others’ rewards into the value signal, they 

should be equally important for both gains and losses (relative to the default). This predicts a 

correlation with the absolute value of $Other vs. the default, rather than the positive linear 

response observed here. Tasks observing belief representation or attentional reorienting in 

TPJ typically examine these processes in an evaluation-free context. We speculate that the 

explicit use of attention or belief representations to construct value representations may 

produce the pattern of results here. Future work will be needed to determine whether such 

differences can help to integrate the current findings with previous literature.

The specific processes tapped by our task may also explain why we do not find other areas 

often implicated in prosociality, such as the anterior insula. While this region contributes to a 

variety of cognitive and affective functions (Kurth et al., 2010), studies implicating insula in 

social decision-making typically involve a strong component of negative affect, such as the 

pain and suffering of a victim (Singer, 2006; Singer et al., 2004). These considerations may 

play a more limited role in our task, which likely involves more abstract representation of 

costs and benefits. Exploring how different task features influence the specific neural and 

psychological processes deployed during altruistic decisions represents an important avenue 

for research.

 Model implications

Several implications of the model showcase the value of computational approaches, and 

provide novel insights into the nature of pro-social behavior. First, consistent with the data, 

model simulations predict that generous decisions are made more slowly, but that this 

slowdown is less pronounced in more generous subjects. This observation has direct 

relevance for a literature that has made the case for dual-process models of social decision-

making based on RT differences between generous and selfish choices (Piovesan and 

Wengstrom, 2009; Rand et al., 2012; Tinghog et al., 2013). Our results suggest caution in 

interpreting these RT differences, by showing how they can arise without requiring 

competition between “fast and automatic” and “slow and deliberative” systems. In our 
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model, generous choices are made more slowly if the relative weight placed on the self is 

higher, but more quickly if weights on others’ payoffs are higher.

This could help to reconcile some of the apparently contradictory results in this literature. 

Different contexts can evoke dramatically different levels of altruistic or pro-social behavior 

(Engel, 2011). Studies observing faster RTs for more generous or cooperative choices (Rand 

et al., 2012) may establish contexts in which, for a variety of reasons, the needs of others are 

weighted more highly, while studies observing slower RTs (Piovesan and Wengstrom, 2009) 

may prime subjects toward reduced consideration of others. Note, however, that our results 

do not undermine the general validity of dual-process frameworks. Indeed, in some respects, 

our model can be interpreted as involving dual processes with respect to valuing self- and 

other-interests, but suggests that RT data should be used carefully and in conjunction with 
more formal computational models to derive and test predictions.

Second, the model has similar implications for the interpretation of neural response. It 

predicts that for subjects with a bias toward the self (i.e., almost everyone), brain areas 

whose activity scales with computations in the accumulation and comparison process will 

have greater response on trials resulting in generous choice. We find this pattern in both the 

TPJ and vmPFC, and show that it can be accounted for by the neurocomputational model. 

These results urge caution in interpreting generosity-specific activation in TPJ as inhibition 

of selfish impulses (Strombach et al., 2015), or in concluding from activation differences in 

vmPFC that choosing generously is rewarding (Strombach et al., 2015; Zaki and Mitchell, 

2011). A simple neurocomputational model with identical parameters on every trial 

reproduces these differences without requiring that choosing generously specifically involve 

either self-control or a special reward value.

A third implication of the model concerns the relationship between individual differences in 

generosity and specific model parameters. Not surprisingly, generosity increases with the 

weight to other and decreases with the weight to self. More surprisingly, generosity also 

increases with less stringent barriers (i.e., lower starting threshold and a faster collapse rate). 

Thus, systematic differences in altruistic behavior may not reflect different underlying 

preferences (i.e. weights on self and other), but simply alterations in the amount of noise in 

the decision process. This observation has important implications for the large body of social 

decision-making literature that has used manipulations that might influence barrier height 

and response caution, such as time pressure (Rand et al., 2012), cognitive load (Cornelissen 

et al., 2011), or even electrical brain stimulation (Ruff et al., 2013). The results of these 

studies are often assumed to support a role of self-control in increasing (or decreasing) 

consideration of others’ welfare. Our results point to an alternative interpretation, and 

suggest that greater attention should be paid to the precise mechanism of action through 

which different manipulations influence generosity.

The observation that noise can induce systematic shifts in choice without systematic shifts in 

preferences leads to the final implication of our model: that a significant fraction of generous 

choices may be decision mistakes. Results from the outcome period in our study suggest that 

people track these errors, and may feel relieved when the consequences of such errors are 

avoided due to external contingencies. This insight has profound implications for our 
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understanding of both basic decision-making and pro-sociality. It adds to other work on 

impure altruism (Andreoni, 1990; Andreoni and Bernheim, 2009), suggesting that any single 

generous act can result from many processes that have little to do with the true value we 

assign to others’ welfare.

 Experimental Procedures

 Participants

Male volunteers (N = 122) were recruited in pairs from the Caltech community. Half were 

active participants who completed the scanning task. The other subjects participated 

passively as described below. All were right-handed, healthy, had normal/corrected-to-

normal vision, were free of psychiatric/neurological conditions, and did not report taking 

any medications that might interfere with fMRI. All participants received a show-up fee of 

$30 as well as $0-$100 in additional earnings, depending on the outcome of a randomly 

chosen experimental trial. We excluded data from ten scanning subjects due to excessive 

head motion or technical difficulties during scanning (remaining 51 subjects: 18–35 years of 

age, mean 22.3). Caltech’s Internal Review Board approved all procedures. Subjects 

provided informed consent prior to participation.

 Task

Each participant in a pair arrived separately to the lab and waited in a private area where he 

received instructions. We randomly designated one participant as the active participant (AP), 

who completed the tasks described below. We designated the other as the passive partner 

(PP) who, after receiving instructions, waited in a separate room for the study duration. The 

PP’s presence created a real and non-deceptive social context for the AP.

The AP made 180 real decisions in a modified Dictator Game. On each trial he chose 

between a proposed pair of monetary prizes to himself and his partner and a constant default 

prize-pair of $50 to both (Figure 1A). Proposed prizes varied from $10 to $100 and were 

drawn from one of the nine pairs shown in Figure 1B. Each pair appeared 20 times, 

randomly intermixed across trials, and divided evenly across four scanner runs (5 instances/

run). To minimize habituation and repetition effects, proposal amounts were randomly 

jittered by $1–$4, with the exception that amounts above $100 were always jittered 

downwards. The side of the screen on which $Self appeared was counterbalanced across 

subjects but was constant throughout the task.

All prize-pairs included one payment below and one payment above the default, and thus 

involved a choice between generous behavior (benefitting the other at a cost to oneself) and 

selfish behavior (benefitting oneself at a cost to the other). After presentation of the 

proposal, subjects had up to four seconds to indicate their choice using a 4-point scale 

(Strong No, No, Yes, Strong Yes). This allowed us to simultaneously measure both their 

decision and the relative value of the proposed payment at the time of choice. The direction 

of increasing preference (right-to-left or left-to-right) varied on each scan. If the subject 

failed to respond within 4 s, both individuals received $0 for that trial. Although this time 

limit could be considered a form of time pressure, pilot testing with free response times 
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suggested that a relative minority of choices (14%) took longer than four seconds and that 

other basic properties of choice and RT were similar to the current study.

The task also included a second component designed both to increase the anonymity of 

choices and allow us to test a prediction made by the DDM about the possibility of decision 

mistakes. After a random delay of 2–4 s following response, the subject’s choice was 

implemented probabilistically: in 60% of trials he received his chosen option, while in 40% 

his choice was reversed and he received the alternative non-chosen option. This reversal 

meant that while it was always in his best interest to choose according to his true 

preferences, his partner could never be sure about the actual choice made. APs were 

informed that the PPs were aware of the probabilistic implementation. The 40% reversal rate 

was necessary to test key predictions of the model, but raises the concern that it alters 

decision computations. Pilot testing with only 10% choice reversals yielded nearly identical 

behavioral results, suggesting this is not likely an issue.

 Behavioral definition of generosity

We label specific decisions as Generous (G) if the AP gave up money to help the PP (i.e., 

accepting $Self < $50 or rejecting $Self > $50), and as Selfish (S) otherwise. Subject-level 

generosity was measured by the average amount of money per trial that a subject gave to the 

PP by choosing generously. Alternative measures of generosity (such as money sacrificed) 

led to similar results.

 Model estimation

We use maximum likelihood to estimate the value of the free parameters that provide the 

best fit to the observed choice and RT data, separately for each AP. For assessing the 

goodness-of-fit of the model, we estimate these parameters separately for half of the trials 

and test the accuracy of predictions in the other half of the data. For testing model 

implications, we use the full set of trials for each AP to fit the parameters. Fitting was done 

in several steps.

First, we ran 1000 simulations of the DDM to compute the likelihood function over observed 

choices (Yes/No) and RT bins separately for each proposal-pair used in the experiment and 

each possible combination of parameters. RT bins were specified in 250-ms increments from 

0 to 4 s, and included one additional bin for non-responses (simulations in which the RDV 

failed to cross a barrier within the 4-sec time limit). The combination of parameters used 

covers a grid determined by the cross-product of the following sets: wSelf = wOther = [−.045, 

−.003, −.0015, 0, .0015, .0003, .0045, .006, .0075, .009, .0105, .012, .0135], NDT = [.3, .5, .

7, .9, 1.1, 1.3], B = [.04, .06, .08, .1, .12, .14, .16, .18, .2, .22, .24, .26, .28, .3, .32] and b = 

[0, .00005, .0001, .00025, .0005, .00075, .001, .005]. The range of the grid was chosen by 

trial-and-error so that no more than 10% of subjects fell on a boundary edge for any 

parameter, while keeping the total number of parameter combinations low to minimize 

exploding computational costs.

Second, for each subject we identified the parameter combination that minimized the 

negative log-likelihood (NLL) of the selected trials observed for that subject, based on 
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likelihoods generated from the simulated data. If more than one parameter combination 

resulted in the same minimal NLL, one was randomly selected as the solution.

 Model simulations—To assess model fits to behavior, we used half of each subject’s 

responses (randomly selected) to find the best-fitting parameters, and simulated 1000 runs of 

the other half of trials seen by that individual. We then compared observed and simulated 

values for the average amount given to the partner, average RT on G and S choice trials, and 

average choices and RTs for particular proposals.

We also simulated data from the best-fitting parameters for all trials in each subject, to 

explore other model implications. First, we predicted overall response in the accumulator 

(Implication 2 and Figure 6). We speculated based on prior research (Basten et al., 2010) 

that several brain regions may contribute to this computation, and explored the implications 

of this architecture for understanding behavioral and neural correlates of generosity. We 

follow Basten et al. (2010) in defining accumulator response for each trial as Σt |RDVt|, and 

estimate it separately for G and S choices (see GLM 3 below). Second, we explored how 

individual variation in model parameters affects generosity (Implication 3). Finally, we used 

simulations to understand the role of choice errors in producing altruistic behavior 

(Implication 4 and Figure 7).

 fMRI

fMRI data was acquired and preprocessed using standard procedures (see Supplemental 

Experimental Procedures for details). Using this data we estimated three different general 

linear models (GLMs) of BOLD response.

 GLM 1—The first GLM served two purposes: 1) to identify regions associated with the 

overall decision value of the proposal behaviorally expressed at the time of choice; and 2) to 

test the hypothesis that many generous choices should be considered errors, and thus be 

perceived as good news if they are reversed.

For each subject we estimated a GLM with AR(1) and the following regressors of interest: 

R1) A boxcar function for the choice period on all trials; R2) R1 modulated by the 

behaviorally expressed preference, ranging from 1 = Strong No to 4 = Strong Yes; R3) a 

boxcar function of 3 s duration for the outcome period; R4) R3 modulated by the outcome 

for self on each trial; R5) R3 modulated by the outcome for other on each trial; R6) R3 

modulated by a variable consisting of a 1 for every trial in which the subject chose 

generously but the choice was vetoed, a −1 for every trial in which the subject chose 

generously and the choice was implemented, and 0 otherwise (i.e. after a selfish choice); R7) 

R3 modulated by a variable similar to R6, but which was 1 for veto of selfish choices, −1 for 

implementation of selfish choices, and 0 otherwise. No orthogonalization was used, allowing 

regressors to compete fully for explained variance. All regressors of interest were convolved 

with the canonical form of the hemodynamic response. The model also included motion 

parameters and session constants as regressors of no interest. Missed response trials were 

excluded from analysis.
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We then computed second-level random effects contrasts with one-sample t-tests, using the 

single-subject parameter estimates to construct several contrasts. We used R2 to determine 

areas correlated with behaviorally expressed preference at the time of choice. We used R6 

and R7, and their difference, to explore activation related to choice reversal. Because 

outcomes for self and other are entered as modulators, R6 and R7 reflect differences in 

response over and above those associated purely with the amounts received when the 

outcome is revealed.

For inference purposes, we imposed a family-wise error cluster-corrected threshold of P < .

05 (based on Gaussian random field theory as implemented in SPM5). We also report results 

surviving small-volume correction within regions for which we had strong a priori 
hypotheses (see ROI definition below), including vmPFC and TPJ.

 GLM 2—This GLM identified regions in which activity correlates with proposed 

payments at the time of choice. It included the following regressors: R1) A boxcar function 

for the choice period on all trials; R2) R1 modulated by $Self on each trial; R3) R1 

modulated by $Other on each trial; R4) a 3 s boxcar function for the outcome period; R5) R4 

modulated by the outcome for self on each trial; R6) R4 modulated by the outcome for other 

on each trial. All other details are as in GLM 1. Using GLM 2, we calculated three single-

subject parametric contrasts: R2 vs. zero, R3 vs zero, and R2 vs R3.

 GLM 3—We used GLM 3 to test predictions about comparator differences on G vs. S 

choice trials. It included the following regressors: R1) A boxcar function for the choice 

period on trials when the subject chose selfishly; R2) R1 modulated by the behaviorally 

expressed preference at the time of choice; R3) A boxcar function for the choice period on 

trials when the subject chose generously; R4) R3 modulated by behavioral preference. R5-9 

were identical to R3-7 from GLM 1. The contrast R3 vs. R1 identified regions with 

differential response for G vs. to S choices.

Within two independently-defined ROIs in vmPFC and TPJ (see Figure 5), we calculated the 

average value of the contrast R3 – R1 for each subject, and regressed it on the model-

predicted difference in accumulator activity (BOLDG – S = β0 + β1*DDMG – S). This allowed 

us to determine if predicted accumulator differences were associated with BOLD differences 

on G vs. S choice trials, and whether differential generosity-related BOLD response (i.e., β0) 

remained significant after controlling for predicted accumulator differences.

 ROI Definition—For use in small-volume corrections, as implemented in SPM5, we 

defined three a priori regions-of-interest: a vmPFC region associated with decision value, a 

vmPFC region associated outcome value, and bilateral TPJ. We defined decision-value 

related vmPFC using the conjunction of two recent meta-analyses on decision-related reward 

valuation (Bartra et al., 2013; Clithero and Rangel, 2013). Outcome-value related vmPFC 

was defined in a similar way, but based on meta-analysis results for value representations at 

outcome, which may preferentially activate more anterior vmPFC regions (Clithero and 

Rangel, 2013). The TPJ mask was defined anatomically using the WFU PickAtlas (http://

fmri.wfubmc.edu/software/PickAtlas), with a dilation of 3mm to ensure full coverage of the 

area. It included bilateral angular and superior temporal gyrus, posterior to y = −40 (1975 

Hutcherson et al. Page 15

Neuron. Author manuscript; available in PMC 2016 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fmri.wfubmc.edu/software/PickAtlas
http://fmri.wfubmc.edu/software/PickAtlas


voxels), a region encompassing activation peaks from several studies of Theory-of-Mind 

(Decety and Jackson, 2006; Saxe and Powell, 2006). All masks can be obtained from http://

www.rnl.caltech.edu/resources/index.html.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task design and model. A) The task consisted of a decision phase, in which subjects chose 

whether to accept the proposed payment-pair or a default of $50 to both individuals, and a 

subsequent outcome phase, in which subjects discovered if their choices had been 

implemented (60% of trials), or reversed, resulting in the non-chosen option (40% of trials). 

B) Proposed transfers used in the experiment describing $Self and $Other. The alternative 

was always a transfer of $50 to both subjects. X- and Y-axes represent distance from default 

offer. The filled area in each transfer is proportional to the percentage of pro-social choices 

across all subjects. C) In the DDM model, choices are made through the noisy accumulation 

of a relative value signal (RDV), based on a weighted sum of the amounts $Self and $Other 
available on each trial. A response occurs when this accumulated value signal crosses a 

threshold, with an RT equal to the total accumulated time + a non-decision time (NDT) to 

account for sensory and motor-related processes unrelated to the comparison process itself.
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Figure 2. 
Model fits to behavior. A) Model-predicted vs. observed average generosity across subjects. 

Dashed 45 degree line represents a perfect match. B) Model-predicted vs. observed overall 

response time (RT). C) Within-subject acceptance likelihood (mean ± SEM) and D) RT 

(mean ± SEM) for each of the 9 proposal-types. Observed behavior: grey bars. Predict 

behavior: blue circles.
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Figure 3. 
Neural responses vary parametrically with A) behavioral preference at the time of choice; B) 

$Self on each trial; and C) $Other on each trial. D) Conjunction of $Self and $Other in 

vmPFC. Bar plot (mean ± SEM) shown for illustrative purposes only. Activations displayed 

at P < .001, uncorrected.
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Figure 4. 
Model implications for RT differences. A) At the fitted parameters, the model predicts 

generous (G) choices should take longer than selfish (S) choices. B) The model predicts that 

overall generosity correlates negatively with RT differences on G vs. S choices. C) Observed 

RTs for G and S choices. D) Observed relationship between average generosity and G vs. S 

choice RT differences. Bars show mean RT ± SEM. ** P < .001
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Figure 5. 
Model implications for BOLD response (mean ± SEM) during generous (G) vs. selfish (S) 

choices. Independently defined regions in value-related vmPFC (A) and generosity-related 

TPJ (B) both show higher response on G choice trials. B) Individual variation in G vs. S 

choice BOLD response is accounted for by model-predicted comparator differences in both 

regions. *P=.02; **P=.008.
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Figure 6. 
Model implications for relation between different parameters of the model and behavior. A) 

Variation in generosity as weights for self and other vary, and B) as threshold starting height 

and collapse rate vary. C) Variation in likelihood that a generous choice is a mistake as a 

function of weights for self and other and D) threshold parameters. Dots represent the 

estimated parameter values for the 51 subjects who completed the fMRI study, jittered 

randomly by a small amount to allow visualization of subjects with overlapping values.
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Figure 7. 
Model implications for the likelihood that selfish (S) or generous (G) choices are errors. A) 

A vmPFC region implicated in coding outcome value responded more positively to reversal 

vs. receipt of G choices compared to S choices (P <. 05, SVC). Differential BOLD response 

in this region (mean ± SEM) is shown for illustrative purposes only. B) vmPFC response to 

reversal vs. receipt of G vs. S choices correlated with the DDM-predicted likelihood that a 

subject’s G choices were more likely to be errors than S choices (i.e. indexing the relief they 

should feel if those choices are overturned).
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Table 1

Parameters of the best-fitting DDM for each subject. wSelf and wOther represent weights applied to the value of 

$Self and $Other on each trial compared to the default. NDT: non-decision time. b and d: starting value and 

collapse rate of the decision threshold.

Parameter Mean SD Min Max

wSelf .006 .002 0 .0105

wOther .001 .0026 −.003 .009

NDT 868ms 241ms 300ms 1,300ms

b .23 .065 .08 .32

d .00046 .00022 0 .001
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