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Abstract

Direct comparison of human diseases with model phenotypes allows exploration of key areas of 

human biology which are often inaccessible for practical or ethical reasons. We review recent 

developments in comparative evolutionary approaches for finding models for genetic disease, 

including high-throughput generation of gene/phenotype relationship data, the linking of 

orthologous genes and phenotypes across species, and statistical methods for linking human 

diseases to model phenotypes.

 INTRODUCTION

In a natural extension of the traditional model organism approach, new data sources and 

techniques are allowing connections to be drawn between human and model systems, even 

when phenotypes don’t obviously match. As organisms diverge over evolutionary time, the 

relationship between genes and the phenotypes they encode often also diverge. Many novel 

phenotypes arise from repurposed gene networks, rather than novel genes [1 and 2], while, 

conversely, molecular networks can lose their associations with conserved phenotypes [3]. 

Such complexity gives rise to a wealth of potential model systems, each capable of 

providing useful insights into human disease.

Such comparative evolutionary approaches to study human disease are rooted in the 

traditional use of experimental and genetic data from diverse organisms to explore 

mechanisms of human genetics. However, new methods for discovering relevant organismal 

models for human disease are being developed, most notably methods drawing on computer 

science and evolutionary analyses to incorporate the growing wealth of genetic and 

phenotypic data in increasingly diverse species.

Here, we review recent advances in using semantic, genetic, and evolutionary information in 

both model and non-model organisms to rationally identify the genetic underpinnings of 

human disease. Figure 1 introduces a general framework that categorizes elements of 
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comparative approaches. Typical approaches include identifying relationships between genes 

and phenotypes in a model organism via forward and/or reverse genetics, followed by 

comparison to human disease via gene orthology, phenotype similarity, or a combination of 

both. The different components have all been touched by an ever-increasing emphasis on 

high-throughput methods. Using the framework in Figure 1, we categorize the major 

approaches taken by researchers, and illustrate these approaches with several examples of 

how the new methods are applied to the study of human diseases.

 GENERATING DATA WITH FORWARD AND REVERSE GENETICS

High-throughput identification of mutant phenotypes and their underlying genetics often 

provide the raw material for human disease model identification. The comparative approach 

often begins with a genetic screen in a model system to identify relevant pathways and 

genes. Genetic screens are traditionally divided into reverse genetics, which perturbs specific 

genes and looks for phenotypic effects, and forward genetics, which identifies phenotypes of 

interest and then uncovers their genetic basis. Generation of mutants by both approaches, 

and the corresponding large-scale identification of phenotypes, has been revolutionized by 

use of high-throughput sequencing, synthetic biology techniques, and image analysis.

In particular, over the last decade, reverse genetics has been scaled up by high-throughput 

knockdowns, especially RNAi screens and comprehensive gene knockout collections in 

model species that span the tree of life [4, 5, 6, 7 and 8]. More recently, CRISPR screens, 

which are potentially amenable to any organism of interest, have been used to create 

libraries of human cell line knockouts [9 and 10], allowing reverse genetics to be applied to 

human systems; phenotypic analysis of the resulting CRISPR libraries now seems to be the 

bottleneck. At least on the single gene level, a group of methods termed “Deep Mutational 

Scanning” allows the systematic switching of, for instance, every codon in an open reading 

frame to every other codon in search of phenotype-causing substitutions [11*, 12 and 13].

Similar gains in throughput are now being seen in forward genetics screens as well. Often, 

forward genetic screens introduce untargeted mutations into a genome, and then identify 

lines with phenotypes of interest before screening for mutations. Recent efforts have utilized 

high-throughput sequencing to make this approach feasible in mammals [14] and on much 

larger scales than in previous generations [15]. Other methods utilize the diversity of natural 

populations as a basis for phenotypic screening [16* and 17]. Platforms in yeast, plants, 

worms, and fruit flies now exist to record quantitative data on multiple levels, including 

morphology, metabolism, transcription, and translation [16*, 18, 19, 20 and 21]. Combining 

these measurements make it possible not only to uncover the biology of model systems, but 

also to screen human genes and candidate disease alleles in a model system background, a 

method that Jasper Rine and colleagues termed “surrogate genetics” [22 and 23*]. Although 

model organisms will remain a mainstay of human disease genetics, the advent of these 

novel molecular tools has raised the possibility of high-throughput screens of genotype/

phenotype relations in any organism of interest, blurring the lines between model and non-

model organism. Importantly, the advances in both forward and reverse genetics have 

produced hundreds of thousands of gene-phenotype associations across multiple organisms 
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[24, 25, 26 and 27], providing deep datasets that now make computational analyses of new 

disease genes increasingly possible.

 FINDING MODELS THROUGH PHENOTYPE COMPARISON

Traditionally, non-human models of disease are often identified by the direct comparison of 

a model organism phenotype with traits of a human disease. However, such comparisons 

have historically relied only on the expertise of researchers, and tended to make use of 

organism-specific language to describe phenotypes. The development of ontologies, formal 

hierarchies of descriptive annotations [28, 29 and 30], now allows researchers to find new 

human disease models by directly searching for homologous phenotypes using phenotype 

ontologies, an approach easily scalable to large phenotypic datasets. Multiple ontologies [31, 

32 and 33] have been developed, enabling systematic analyses of phenotypes in a way that is 

descriptive, robust, programmatically accessible, and extensible across species. Notably, 

major organismal databases now use ontologies to describe phenotypes, e.g. as for the Worm 

[34], Human [35], and Mammalian [36] Phenotype Ontologies.

Formal ontologies allow phenotype databases to be cross referenced, much as researchers 

might search for homologous sequences across organisms. This functionality can 

significantly improve the throughput and sensitivity of the comparative approach, and can be 

used to identify disease models based on phenotypic qualities alone. As one such example, 

PhenomeNET [37], for instance, employs the Phenotype and Trait Ontology (PATO) 

developed by Gkoutos and colleagues, and was used to suggest novel genes involved in the 

Tetralogy of Fallot, a congenital heart defect. Other algorithms have also made use of 

phenotype annotations to facilitate the discovery of candidate disease genes [38**, 39, 40, 

41 and 42].

 FINDING MODELS THROUGH GENETIC COMPARISON

Just as phenotype ontologies can be used to identify disease models based on phenotypes 

alone, appropriate models can also be selected using orthologs [43] of human disease genes 

identified in model organisms (Figure 1). Although this approach is limited by its reliance 

on a priori knowledge of the genetic basis of a disease, the basic step of determining gene 

orthology between organisms of interest still forms the core of most comparative studies. 

This is because orthologs, which are separated historically only by speciation events, tend to 

be more closely related in function than paralogs [44–46], which result from shared 

ancestral gene duplications and can often partition an ancestral function, or take on whole 

new functions [47, 48 and 49].

New methods for inferring orthologs, and new databases for storing this information are 

proliferating. As of 2015, there are at least 37 different orthology databases using a variety 

of algorithms, reviewed in detail by Sonnhammer et al. 2014 [50**]. In spite of this 

tremendous focus of community effort, benchmarking suggests that no one method 

outperforms all others, with methods differing in their precise definition of “orthology” as 

well as in their tendency to favor either precision or recall for discovery of correct orthologs 

[51 and 52]. Meta-analyses that compare and compile information from different algorithms 

McWhite et al. Page 3

Curr Opin Genet Dev. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and databases are therefore expected to significantly improve performance [53 and 54]. 

Another promising direction is to use information about the species phylogeny to 

probabilistically inform gene tree inference [55, 56 and 57]. When the gene of interest for a 

disease has not yet been identified, computational strategies now exist for prioritizing 

potential candidate genes, as we discuss next, but even these methods usually require 

knowledge of orthologs as a starting point.

 STATISTICALLY ASSOCIATING GENES AND DISEASES

The methods described above either rely on prior information about the genetic nature of a 

human disease, or on a clear phenotypic similarity between organisms. However, phenotypes 

arising from conserved genetic pathways may have diverged so far that their homology is 

unrecognizable. A number of methods have been developed to derive useful information 

from such cases, as well as to facilitate the synthesis of data from multiple species (Figure 

2). These methods have the added benefits of identifying both novel human disease genes 

and appropriate model systems for studying those genes. A common principle of these 

methods is to group genes together by some criterion that reports on function (“statistical 

association”). These groupings then enable the statistical inference of novel disease-

associated genes. Methods vary in way that they group genes and associate them with 

phenotypes (Figure 2). Below, we highlight some of the most common methods, and some 

recent innovations in this area.

 Phylogenetic profiles

Genes with linked function tend to have similar patterns of presence/absence across species, 

and this presence/absence vector is termed a “phylogenetic profile” (Figure 2A). 

Phylogenetic profiling allows the search for candidate genes which may have co-evolved 

with the disease-linked gene, and be involved in the same disease-causing process. Inferring 

gene functions by their phylogenetic profile, as proposed by Pellegrini et al. 1999, is not new 

[58, 59 and 60], however, these methods are increasingly being applied to the genetics of 

human disease [61**]. Recent improvements to this technique, such as using orthologous 

groups of genes, weighting by species divergence, and ancestral state inference, have 

increased the power of phylogenetic profiling methods, and by extension their application to 

candidate gene discovery [62**, 63**, 64 and 65]. As one recent example, Dey and 

colleagues applied phylogenetic profiling to discover genes involved in ciliary and 

centrosomal defects [62**].

 Gene set overlap approaches

Gene set overlap methods determine if two groups of phenotype-associated genes in 

different species significantly share (orthologous) members (Figure 2B). These methods 

employ a statistical model to test the significance (commonly, the hypergeometric 

probability) of two phenotype-associated groupings from two species sharing a set of 

orthologous genes. This has proven to be an effective approach for identifying extremely 

divergent model phenotypes which employ the same genetic pathways involved in human 

diseases [27 and 66], such as, for example, the identification of a plant model of human 

Waardenburg syndrome [66]. Because these phenotypes employ orthologous genetic 

McWhite et al. Page 4

Curr Opin Genet Dev. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanisms, they have been termed “phenologs” [66]. The original approach inferred 

pairwise phenologs [66], but has been subsequently improved upon by extension to multiple 

species [27]. The success of this extension indicates an important fact: more comparative 

data means more inferential power for discovering novel genes associated with human 

disease.

Involvement in a particular phenotype is not the only way to classify genes in overlap-based 

studies. Korcsmáros et al. 2011 used pathway annotations in model species to predict more 

complete, integrated human signaling pathways [67]. Increasingly, multiple sources of data 

are being combined in databases [68 and 69*] that allow comprehensive comparison of 

overlap between gene sets.

 Network approaches

Gene network-based approaches use networks to provide statistical frameworks for inferring 

new gene functions or disease associations. A network is first built from interactions 

between genes (or their encoded proteins); in a comparative gene-discovery framework, 

these interactions may be experimentally derived from multiple species. The resulting 

network can then be used to propagate information from genes (network nodes) whose 

function is known, to genes of unknown function (Figure 2C, [70]), using the interactions 

(network edges) to functionally annotate new genes [71, 72]. In principle, edges in the 

network can incorporate interaction data gleaned from any data source or species, and are 

therefore often a preferred method of generating consensus annotations. Many kinds of 

functional annotations can be propagated and therefore predicted, including new gene 

annotations [73] and disease gene associations, such as might arise from genome-wide 

association scans, e.g. as shown for Crohn’s disease using the human gene network 

HumanNet [71]. There are many methods used for information propagation (reviewed in 

depth in Wang and Marcotte 2010 [70]). Networks have also been constructed from genetic 

interactions, as might be gleaned from, for instance, double deletion screens (74), and used 

to find new genetic modifiers [75**]. Many gene networks are now available online that 

combine evidence from different interaction types, enabling the use of network-based 

inferences in most major model organisms [76, 77, 78*, 79 and 80**].

In one particularly interesting recent application of gene networks, the networks are not just 

used for candidate gene prioritization or annotation. Vidal and colleagues have suggested 

that disease phenotypes can be viewed as disruptions between interacting genes within the 

network structure (“edgetics”) [81, 82 and 83**], suggesting a wider use for gene networks 

in human disease research in guiding the disruption of only some, but not all, of a given 

gene’s interactions to affect a specific biological outcome.

 RECENT APPLICATIONS

In reviewing the methods above, we have focused on the discovery of novel genes associated 

with human disease. One ultimate goal of these studies is to identify novel therapeutic 

agents that ameliorate the disease, which can be a challenge even when the target is known. 

We briefly highlight three recent studies that use the methods outlined above to identify 

novel drugs that target cancers, neurodegenerative diseases, and parasites (Figure 3).
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One of the predictions of the original phenolog study [66] was a yeast gene set that models 

vertebrate angiogenesis, a key dependency of tumor growth. Cha et al. 2012 [84**] used 

prior information about gene-drug genetic interactions between the yeast pathway and a 

variety of small compounds [85] to prioritize drugs that might block blood vessel growth. 

They identified thiabendazole (TBZ) as a candidate angiogenesis inhibitor, and found that 

not only did it indeed prevent vascularization in Xenopus embryos, but it disrupted pre-

existing immature vasculature and slowed fibrosarcoma tumor growth in a mouse model, 

making it the first such vascular disrupting agent with FDA approval for human use (here, 

for its antifungal activity). TBZ illustrates that guilt-by-association approaches can be 

predictive, even between yeast and vertebrates.

Yeast are especially useful for high-throughput drug and genetic screens, as shown by recent 

work on the protein α-synuclein. This protein is associated with Parkinson's disease and 

related neurodegenerative diseases, termed synucleinopathies [86]. Susan Lindquist and 

colleagues used drug screens to identify compounds that inhibited aggregation of the protein 

α-synuclein exogenously expressed in yeast [87]. They identified a class of compounds 

called N-Aryl Benzimidazoles (NABs) that inhibit α-synuclein aggregation in yeast cells 

and animal neurons [88]. They further utilized the genetic tractability of yeast to identify 

pathways affected by α-synuclein [89**], suggesting potential new therapeutic avenues for 

synucleinopathies.

Whereas these two comparative approaches were applied to understand human genetic 

disease, the same approaches can also inform on infectious disease. Chan et al. 2014 [90**] 

used planarians, a model platyhelminth worm, to identify the target of the drug praziquantel 

(PZQ), which kills schistosomes, the pathogenic platyhelminths that cause schistosomiasis, 

but whose molecular target is unknown. Remarkably, while PZQ kills schistosomes, it 

causes an axis-duplication phenotype in planarians. This axis duplication phenotype, unlike 

death, can be explored using RNAi screens, readily applied in planarians. Using this method, 

Chan et al. identified the cellular basis of the axis duplication phenotype and also identified 

novel gene targets, as well as new compounds that phenocopy the effect PZQ and are 

therefore candidate anti-schistosomal agents.

 OUTLOOK FOR THE FUTURE

We have touched on recent work using comparative approaches to relate human phenotypes 

to those in model organisms. We expect opportunities for connecting human genetics with 

the genetics of non-model organisms to increase considerably over the near time. In 

particular, data are increasingly available on human genetic variation, including familial 

inheritance, most recently across the Icelandic population 91], and increasingly provide a 

reference of human genetic variation for comparative approaches. It also seems a safe bet 

that the capacity for high-throughput CRISPR screens will dramatically increase known 

gene-phenotype associations from ever more diverse organisms, including non-traditional 

models. These developments will only increase in power and accuracy of comparative 

genomic approaches, and going forward, such methods will serve as a foundation to discover 

trends across life that point to the cause and treatment of human disease.
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Figure 1. 
Components of comparative methods for rationally identifying human disease genes. 

Silhouettes are from PhyloPic (URL: http://phylopic.org/).
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Figure 2. 
Components of statistical linking methods for rationally identifying human disease genes.
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Figure 3. 
Recent applications of statistical linking methods to identify and treat human disease. A. 
Cha et al. 2012 used overlap between vasculature genes and genes linked to antifungal 

sensitivity in yeast to identify TBZ as a novel vascular disrupting agent. TBZ disassembled 

vasculature in Xenopus embryos (top panels) and slowed human fibrosarcoma tumor growth 

in mice (bottom panels). Adapted from Cha et al. 2012 [84]. B. Tardiff et al. 2013 

overexpressed α-synuclein and screened for phenotype rescuing compounds. One such 

compound, NAB, in turn ameliorated neuronal proteinopathies in worm neurons. Adapted 
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from Tardiff et al. 2013 [88]. C. Chan et al. 2014 identified divergent phenotypes in 

planarians and schistosomes in response to the small molecule PZQ. Cav, voltage-gated 

calcium channel; Nav, voltage-gated sodium channel; HVA, high-voltage activated; LVA, 

low-voltage activated. Adapted from Chan et al. 2014 [90].
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