Skip to main content
. 2016 Jul 6;5:e14093. doi: 10.7554/eLife.14093

Figure 6. Key parameters controlling phyllotaxis phenotypes in the stochastic model.

Phyllotaxis sequences were simulated for a range of values of each parameter β, E, Γ. Each point in the graph corresponds to a particular triplet of parameter values and represents the average value over 60 simulated sequences for this triplet. (A) Global amount of perturbation π as a function of the new control parameter ΓP=ΓβE. (B) Divergence angle α as a function of the control parameter Γ of the classical model on the Fibonacci branch. (C) Divergence angle α as a function of the new control parameter ΓD=Γ1β1/6E1/2 on the Fibonacci branch (here, we assume s = 3, see Appendix 1—figure 6 for more details). (D) Plastochron T as a function of control parameter of the classical model Γ. (E) Plastochron T as a function of the new control parameter ΓD. (F) Parastichy modes (i,j) identified in simulated sequences as a function of ΓD. Modes (i,j) are represented by a point i+j. The main modes (1,2), (2,3) … correspond to well marked steps. (Figure 5—source data 1)

DOI: http://dx.doi.org/10.7554/eLife.14093.013

Figure 6.

Figure 6—figure supplement 1. New control parameter ΓD for divergence angle and plastochrons.

Figure 6—figure supplement 1.

Each graph is made up of points that correspond to different values of the parameters Γ,β,E of the stochastic model. Left column: different trials to define a control parameter for divergence angles α. Right column: different tries to define a control parameter for the plastochrons. For the parameter ΓD=Γ1(β1/3E)1/2, both clouds of points collapse on a single curve (we assume here that s = 3, see Appendix 1—figure 6 for more details).