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Abstract

 Purpose—MYC is a critical driver oncogene in many cancers, and its deregulation in the 

forms of translocation and overexpression has been implicated in lymphomagenesis and 

progression of diffuse large B-cell lymphoma (DLBCL). The MYC mutational profile and its roles 

in DLBCL are unknown. This study aims to determine the spectrum of MYC mutations in a large 

group of DLBCL patients, and to evaluate the clinical significance of MYC mutations in DLBCL 

patients treated with R-CHOP immunochemotherapy.
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 Experimental Design—We identified MYC mutations in 750 DLBCL patients using Sanger 

sequencing and evaluated the prognostic significance in 602 R-CHOP-treated patients.

 Results—The frequency of MYC mutations was 33.3% at the DNA level (mutations in either 

the coding sequence or the untranslated regions), and 16.1% at the protein level (nonsynonymous 

mutations). Most of the nonsynonymous mutations correlated with better survival outcomes; in 

contrast, T58 and F138 mutations (which were associated with MYC rearrangements), as well as 

several mutations occurred at the 3´ untranslated region, correlated with significantly worse 

survival outcomes. However, these mutations occurred infrequently (only in approximately 2% of 

DLBCL). A germline single nucleotide polymorphism encoding the Myc-N11S variant (observed 

in 6.5% of the study cohort) was associated with significantly better patient survival, and resulted 

in reduced tumorigenecity in mouse xenografts.

 Conclusions—Various types of MYC gene mutations are present in DLBCL and show 

different impact on Myc function and clinical outcomes. Unlike MYC gene translocations and 

overexpression, most MYC gene mutations may not have a role in driving lymphomagenesis.
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 INTRODUCTION

MYC is a proto-oncogene encoding the Myc protein, a transcription factor critical for cell 

proliferation, metabolism, differentiation, apoptosis, microenvironment remodeling and 

immune responses. MYC-IGH chromosomal rearrangement, resulted from aberrant class-

switch recombination during germinal center (GC) reaction and leading to Myc 

overexpression, underlies the pathogenesis of Burkitt lymphoma, and the poorer prognosis 

of ∼10% of diffuse large B-cell lymphoma (DLBCL) associated with MYC translocation 

(1). Paradoxically, Myc overexpression is also a potent inducer of apoptosis through the 

modulation of both p53-dependent and p53-independent pathways, including the activation 

of TP53, ARF, CD95/FAS, and BAX, and the inhibition of BCL2, BCLX, and CFLAR/FLIP 
(2). Therefore, in tumors deregulation of MYC is often concomitant with other 

abnormalities (e.g., Bcl-2 overexpression) that cooperate with Myc during tumor onset, 

progression and chemoresistance (3–5).

In addition to MYC rearrangement, MYC mutation is another form of genetic abnormality 

found in Burkitt lymphoma. Multiple nonsynonymous mutations in the coding sequence 

(CDS) of the MYC gene have been found in approximately 40–70% of Burkitt lymphoma 

leading to a mutated Myc protein with amino acid changes (6–9). These Myc mutations 

cluster in the Myc transactivation domain with hotspots in the Myc box I (MBI) motif (44–

63aa, Figure 1A), and have been proposed to have a role in lymphomagenesis by enhancing 

the oncogenicity of Myc (9–12). Functional studies indicated that Myc T58 mutants had 

increased transforming ability, increased Myc stability, and decreased proapoptotic ability, 

owing to alterations in posttranslational modifications of Myc. In contrast, S62 mutations, 

which are also frequent in the MBI motif and are associated with increased Myc expression, 

lead to decreased transforming ability without affecting apoptosis (10,13–17); the F138C 

Xu-Monette et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mutation in the Myc box II (MBII) motif (128–143aa) decreases both transformation and 

apoptosis (18); and deletion of residues 188–199 in the Myc box III (MBIII) motif correlates 

with increased response to apoptosis and decreased tumorigenic ability in vivo (19). 

Moreover, somatic mutations exist in noncoding MYC exon I (5´ untranslated region [UTR]) 

(20,21) and within intron 1 near the exon 1 boundary (22), which may represent another 

pathogenic mechanism by deregulating MYC expression (20). For example, in Burkitt 

lymphoma, mutations at the 3´ border of MYC exon I remove a block to transcriptional 

elongation (23), and in multiple myeloma, mutations in the MYC internal ribosome entry 

segment lead to enhanced translation initiation (24).

DLBCL also harbors MYC mutations, as shown by several studies (25–27). Sanger 

sequencing found DLBCL-specific MYC mutations (absent in GC-derived follicular 

lymphoma, pre-GC mantle-cell lymphoma, post-GC multiple myeloma and VH-mutated 

chronic lymphocytic leukemia as well as normal tissues) in the 5´UTR and CDS regions of 

the MYC gene harbored by 12 (32%) of 37 DLBCL patients; these mutations were proposed 

to originate from aberrant somatic hypermutation processes during DLBCL 

lymphomagenesis (25). Through next-generation sequencing, six of 111 DLBCL biopsies 

were found to have MYC mutations (26). However, the clinical relevance of MYC mutations 

in DLBCL has not been addressed.

To fill this knowledge gap, this study aims to profile the spectrum and frequency of MYC 
mutations in a large cohort of DLBCL patients, to study the functional consequences and to 

evaluate the prognostic significance of these MYC mutations.

 PATIENTS AND METHODS

 Patients

The study cohort consists of 750 patients with de novo DLBCL between 2000 and 2010 

according to the World Health Organization classification criteria as a part of the 

International DLBCL R-CHOP Consortium Program. Patients with transformed DLBCL, 

primary mediastinal, cutaneous, or central nervous system large B-cell lymphomas, or 

human immunodeficiency virus infection were excluded. Cell-of-origin classification by 

either gene expression profiling or immunohistochemical algorithms have been described 

previously (1,28). Survival analysis was performed for 602 patients treated with standard 

rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (i.e., R-CHOP) 

chemotherapy whose follow-up data were available, randomly divided into a training set (n 

= 368) and a validation set (n = 234). At last follow-up, 208 of the 602 patients had died. 

The rest (394) patients were censored and had a median follow-up time of 54 months (range, 

3–187 months). This study was conducted in accordance with the Declaration of Helsinki 

and was approved either as minimal to no risk or as exempt from review by the Institutional 

Review Boards of all participating centers.

The clinicopathologic features of the patients with or without mutations at the time of 

presentation were compared using the Fisher’s exact test. Overall survival (OS) was 

calculated from the date of diagnosis to the date of death from any cause or last follow-up. 

Progression-free survival (PFS) was calculated from the date of diagnosis to the date of 
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disease progression, disease relapse, or death from any cause. Patients who were alive or had 

no disease progression were censored at the last follow-up. Survival analysis was performed 

using the Kaplan–Meier method with GraphPad Prism 6, and survival was compared 

between groups using the log-rank test. Multivariate survival analysis was performed using 

the Cox proportional hazards regression model with SPSS statistics software (version 19.0; 

IBM Corporation). All differences with P ≤ 0.05 were considered statistically significant 

(4,28–30).

 Gene Expression Profiling

For patients in the training set, total RNAs extracted from formalin-fixed, paraffin-embedded 

tissues were subjected to gene expression profiling (GEP) using the Affymetrix GeneChip 

Human Genome U133 Plus 2.0 as previously described (28). Totally 350 patients in the 

training sets have GEP achieved and the CEL files have been deposited in the National 

Center for Biotechnology Information Gene Expression Omnibus repository (GSE31312). 

Normalized microarray data underwent univariate analysis using a t-test to identify genes 

that were differentially expressed between various groups. The P values obtained by 

multiple t-tests were corrected for false discovery rates using the beta-uniform mixture 

method.

The mRNA expression levels of selected genes of interest were also compared between 

DLBCL groups by unpaired t-tests using GraphPad Software.

 Detection of MYC Mutations and Rearrangements, Assessment of Myc Expression, and 
Functional Studies of Myc Mutants in vitro and in vivo

Details of Sanger sequencing for MYC gene (in all patients), functional studies of Myc 

mutants in vitro and in vivo , fluorescence in situ hybridization for MYC rearrangement 

detection (successful in 455 patients), and Myc expression evaluation by 

immunohistochemistry (successful in 556 patients) performed on tissue microarrays using 

formalin-fixed, paraffin-embedded samples are in the supplementary documents or have 

been described previously (1,4,29,31).

 RESULTS

 MYC Gene Resequencing Results Overview

The MYC gene variants found in the 750 patients were predominantly single-nucleotide 

substitutions of the canonical MYC sequence. The single nucleotide variations (SNVs) from 

the MYC reference sequence (NG_007161.1) (wild-type [WT] MYC) were herein referred 

as either germline single nucleotide polymorphisms (SNPs, variations in the dbSNP database 

[Build 132]), or somatic mutations (MUT, the rest of SNVs). Fourteen SNPs were found in 

the MYC CDS. Of these, two SNPs were most prevalent: rs4645959 (32A>G) which results 

in Myc-11S protein, and rs2070582 (693G>A) which is synonymous (Figure 1B). After 

exclusion of SNPs, MYC gene mutations were found in 250 DLBCL patients (33.3% of the 

DLBCL cohort), mainly in the 5´UTR and CDS regions (Supplementary Table S1); 

mutations in the 3´UTR were much less frequent. Mutations at the splicing sites were rare (n 

= 2). Most (71.4%) of the mutations were heterozygous.
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Compared with the other nine genes we sequenced, MYC showed an elevated mutation rate 

in the 5´UTR although the mutation rate was significantly lower than that of BCL6 5´UTR 

(Figure 1C). Compared with MYC SNP variants, MYC mutations were predominated by 

C>T and G>A transitions, thus had a higher transition/transversion ratio than the MYC SNP 

variants (10.1 versus 4.9, Figure 1D).

 Mutations in the MYC Coding Sequence

 Mutation Profile—Among the 750 DLBCL patients, 254 point mutation events 

(Supplementary Table S1) were found in the MYC CDS region harbored by 161 patients 

(21.5% of the DLBCL cohort). However, 39% of these CDS mutations were synonymous 

mutations, and nonsynonymous mutations resulting in mutated Myc proteins (MUT-Myc) 

were found in only 121 patients (16.1% of the DLBCL cohort), 75% of which were 

heterozygous.

Most of these nonsynonymous mutations were missense mutations (Figure 1E). According 

to the in silico functional prediction models, 77% of the missense and nonsense mutations 

had the potential to affect Myc function.

These nonsynonymous mutations were scattered throughout the 439 codons of Myc with 

one to four occurrences of each mutation (Figure 1F). The frequency of hotspot mutations 

within or near MBI, for example T58 mutations found in four DLBCL patients, was much 

lower than that found in Burkitt lymphoma (8,14), and there was another mutation cluster 

near MBII extending to residue 185. F138 mutations were found in four DLBCL patients 

including two patients carried concurrent T58A mutations.

 Impact of Nonsynonymous MYC Mutations and SNPs on Patient Survival—
No clinical parameters significantly differed between the MUT-Myc and WT-Myc groups of 

the training set, except that MUT-Myc patients with germinal center B-cell–like (GCB) 

DLBCL had significantly higher frequency of primary nodal (versus extranodal) origin 

(Table 1). Molecularly, the MUT-Myc group compared with the WT-Myc group had 

significantly higher frequencies of MYC 5´UTR mutations (P < 0.0001), CD10 (P = 0.0052) 

and PI3K expression (P = 0.048), but less frequently nuclear p52 expression (P = 0.0044). 

Moreover, MUT-Myc patients with GCB-DLBCL more frequently had MYC 
rearrangements (36.8% versus 11.7% in the WT-Myc group, P = 0.011) and less frequently 

expressed CD30, whereas MUT-Myc patients with activated B-cell–like (ABC) DLBCL 

more frequently had BCL6 rearrangements (68.8% versus 36.8%, P = 0.015) and p63 

expression (Supplementary Table S2).

Compared with the WT-Myc group, the MUT-Myc group showed trends toward better OS (P 
= 0.08) and PFS (P = 0.05), and patients with nonsynonymous SNPs had significantly better 

OS (P = 0.015, Figure 2A) and PFS (P = 0.01). When analyzed in GCB-DLBCL and ABC-

DLBCL separately, the better survival of MUT-Myc and SNP-Myc groups than the WT-Myc 
group remained significant or with border-line P values, except that MUT-Myc ABC-

DLBCL versus WT-Myc ABC-DLBCL had only slightly better OS [P = 0.43] and PFS [P = 

0.44]) (Supplementary Figure S1A–B). Trends for better survival rates were also associated 

with Myc SNVs (mutations or SNPs) in the validation set (Figure 2B). Between 
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homozygous and heterozygous mutations or SNPs, no significant difference in patient 

survival was observed (Supplementary Figure S1C–D). Patients with the Myc-11S germline 

variant had significantly better survival than those with the canonical WT-Myc-11N in the 

entire (combined training and validation) cohort (Figure 2C). Lists of discovered Myc 

mutations and SNPs and the associated GEP accession codes and clinical outcomes are 

shown in Supplementary Table S3.

However, multivariate survival analysis including clinical parameters and Myc mutation and 

expression status indicated that Myc protein expression levels but not Myc mutation status 

independently predicted poorer OS and PFS, although the presence of Myc mutations 

trended toward conferring better OS (hazard ratio [HR]: 0.61; P = 0.11) and PFS (HR: 0.57; 

P = 0.057) (Supplementary Table S4).

 Prognostic Impact and Heterogeneity of Myc Mutations—Among the R-CHOP-

treated patients for survival analysis (n=602), missense mutations at T58, S62, S67, P79, 

R83, F138, A141, P164, S175 and A185 occurred in at least two patients. We found these 

recurrent Myc mutations (defined as n ≥ 2 occurred at a same AA) were associated with 

differential patient survival independently of Myc expression. Mutations at T58 and F138, 

which have been correlated with increased Myc stability, gain-of-function and reduced 

response to apoptosis in vitro (13,14,18) , had relative high occurrence in our cohort 

compared with other mutations, were all overexpressed, and were associated with 

significantly poor survival (Figure 2C). In contrast, group of other recurrent mutations (S62, 

S67, P79, R83, A141, S175 and A185 mutations) was associated with significantly better 

survival than WT-Myc (Figure 2C). Among these mutations, S62 mutations have been 

associated with impaired transforming ability and normal apoptosis function in vitro and in 
vivo (15,16) . According to the in silico functional prediction models, all the mutations at 

these recurrent spots except those at P79 had functional impact.

Nonsense, frame-shift and splicing mutations leading to a truncated Myc protein or 

substantial amino acid changes were also found associated with significantly better survival 

than WT-Myc (Figure 2C). The rest of MUT-Myc which have not been functionally 

characterized in the literature were still associated with significantly better OS in combined 

training and validation sets (Figure 2D) but not PFS (P = 0.15) compared with the WT-Myc 
cases.

 Prognostic impact of Wild-type and Mutated Myc Overexpression—Myc 

expression levels were significantly lower in the SNP-Myc group compared with the WT-
Myc and MUT-Myc groups (Figure 2E). There was no significant difference in Myc levels 

between the overall MUT-Myc and WT-Myc groups, but we did observe a higher mean level 

of Myc expression in the MUT-Myc GCB-DLBCL group compared with the WT-Myc GCB-

DLBCL group in the training set only (P = 0.047).

High expression level of the canonical Myc (i.e., WT-Myc-11N) correlated with 

significantly poorer patient survival; Figure 2F shows the OS curve in overall DLBCL using 

a 70% cutoff for Mychigh, i.e., ≥70% of tumor cells staining positive on 

immunohistochemistry analysis (30). This adverse prognostic effect was significant in both 
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GCB-DLBCL (P=0.0019) and ABC-DLBCL (P=0.039) (Figures not shown). In contrast, 

high level of the Myc-11S germline variant showed trends toward conferring better survival 

(Figure 2G). Myc overexpression did not have significant prognostic effect in the overall 

MUT-Myc group (for OS, P = 0.22). After the exclusion of patients with T58 and F138 

mutants, which were all expressed at high levels and correlated with significantly poorer 

survival (Figure 2C), patients with high expression levels of non-T58/F138 MUT-Myc did 

not have significantly poorer survival with those with low MUT-Myc expression levels (P = 

0.62 in overall DLBCL, Figure 2H; P = 0.97 in GCB-DLBCL and P = 0.99 in ABC-

DLBCL, Supplementary Figure S1E–F), but significantly better overall survival than 

patients with overexpressed WT-Myc (P = 0.031 in overall DLBCL). Breaking down into 

different types of MUT-Myc in Figures 2C–D, analysis showed similar results: expression 

levels of MUT-Myc with recurrent non-T58/F138 mutations (Figure 2I), nonsense, frame-

shift, or splicing mutations (Figure 2J), or other uncharacterized Myc mutations (Figure 2K) 

did not show prognostic effects. Patients with high expression levels of these Myc mutants 

showed significant or trends for better survival than those with overexpressed WT-Myc 

(Figures 2F, I–L).

 Prognostic Analysis in the Presence or Absence of MYC Rearrangement—
Since approximately 27.3% of the MUT-Myc group had MYC rearrangements (significantly 

higher compared with the 10% of the WT-Myc group, P = 0.00094, Supplementary Table 

S2) which has been shown as a significant adverse prognostic factor, we compared the 

survival outcomes of the WT-Myc and MUT-Myc groups within the MYC rearranged 

(MYC-R+) and MYC non-rearranged (MYC-R−) DLBCL patients separately. In both the 

training and validation sets, the MUT-Myc group showed trends toward better survival 

outcomes compared with the WT-Myc group only in the absence of MYC rearrangements 

(i.e., MUT-Myc/MYC-R− versus WT-Myc/MYC-R− but not MUT-Myc/MYC-R+ versus 
WT-Myc/MYC-R+, Supplementary Figure S1G–J). MYC rearrangements correlated with 

significant poorer prognosis in both WT-Myc and MUT-Myc GCB-DLBCL groups 

(Supplementary Figure S1K–L, MYC-R+ versus MYC-R−). Among the 13 MUT-Myc/
MYC-R+ cases, 4 cases had T58 and/or F138 mutations (totally only five T58/F138-MUT-
Myc cases had MYC rearrangement status available) with significantly poorer survival. 

After excluding these cases from the MUT-Myc/MYC-R+ group, there were still no 

significant difference in survival outcomes between the MUT-Myc/MYC-R+ and WT-Myc/
MYC-R+ groups. Comparison of Myc expression levels between the MUT-Myc, WT-Myc, 

and SNP-Myc groups within the MYC-R− and MYC-R+ subsets are shown in 

Supplementary Figure S2A–C.

 Mutations in the Untranslated Regions

 5´UTR mutations—Compared with the MYC CDS and 3´UTR, the MYC 5´UTR had a 

higher mutation rate in our cohort (Supplementary Table S1), with the mutations distributed 

widely starting from the 9th nucleotide of the first exon (Figure 3A).

MYC-5´UTR mutations harbored by 139 (19.8%) of the DLBCL cohort were associated 

with MYC-CDS mutations, Bcl-6 expression, a lower complete remission rate 

(Supplementary Table S5, Table 1), and differential prognostic impact in the training (no 
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impact) and validation (significantly poorer PFS) cohorts (Figures 3B–C). Multivariate 

survival analysis indicated that MYC-5´UTR mutation was not a significant prognostic 

factor. However, in patients without MYC rearrangements, MYC-5´UTR mutations trended 

toward conferring poorer OS in the training set and poorer PFS in the validation cohort 

(Figures 3D–E).

 3´UTR mutations—Compared with mutations in the MYC CDS and 5´UTR, MYC-3

´UTR mutations (Figure 3F) were less frequent (Supplementary Table S1) occurring in 5.8% 

of DLBCL patients. Half of these mutations occurred in the microRNA targeting sites 

according to TargetScan. However, MYC-3´UTR mutation status did not correlate with Myc 

expression levels (Supplementary Table S5). These mutations, the affected microRNA 

targeting sites, and associated clinical outcomes are listed in Supplementary Table S6.

The MUT-MYC-3´UTR group had a higher proportion of men than the WT-MYC-3´UTR 
group (Table 1). The overall MUT-MYC-3´UTR group did not have significantly poorer 

survival than patients with WT-MYC-3´UTR in the training and validation sets (Figures 3G–

H). However, multivariate survival analysis adjusting clinical parameters indicated that 

MYC-3´UTR mutation was an independent prognostic factor for poorer OS (HR: 2.23; P = 

0.024) but not PFS (HR: 1.85; P = 0.079) (Supplementary Table S4). MYC-3´UTR 

mutations were found recurrently at *2G, *22C, *83G, *345C and *368C which were 

associated with significant poorer survival than WT-MYC-3´UTR (Figures 3I–J), although 

these mutations were not concurrent with MYC rearrangements.

 Gene Expression Profiling Analysis

 Comparisons between WT-Myc and MUT-Myc—By supervised clustering analysis, 

no genes showed significantly differential expression between the MUT-Myc and WT-Myc 
groups (overall cohort or only Mychigh subcohort), or between MUT-MYC-5´/3´UTR and 

WT-MYC-5´/3´UTR groups. Individual analysis of particular mutation types showed 

differential expressed genes involved in proliferation, metabolism and apoptosis 

(Supplementary Figure S2D–G, Supplementary Table S7), but the significance of these 

analyses was hindered by small numbers and the heterogeneity of the MUT-Myc cases likely 

because some patients carried multiple mutations. Notably these signatures included genes 

involved in Ras/Rho GTPase signaling which interacts with the Myc T58 residue (10,13) 

and can cooperate with Myc during tumorigenesis (32).

 Comparisons between WT- or MUT- Mychigh and Myclow—We further identified 

the GEP signatures of Myc overexpression (Mychigh GEP signatures) in the WT-Myc and 

MUT-Myc groups separately, and compared these GEP signatures (Figures 4A–D, Table 2). 

Differentially expressed genes were shown between WT-Mychigh and WT-Myclow in overall 

DLBCL, GCB-DLBCL, and ABC-DLBCL, and between MUT-Mychigh and MUT-Myclow 

in overall DLBCL and GCB-DLBCL but not in ABC-DLBCL even with a high false 

discovery rate (FDR) threshold of 0.50. These GEP signatures include MYC, some genes 

which have important oncogenic roles in transformation by Myc (for example, CDCA7L, 
UVBL2, MKI67IP, NOP16, MINA, and DDX18), and genes which regulate MYC/Myc (for 

example, PRKDC, PURB, SKP2, NME2, CSNK2A2, APEX1, and AIMP2).
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All the WT-Mychigh and MUT-Mychigh GEP signatures are characterized by strong 

proliferation and growth signatures (especially for WT-Mychigh ABC-DLBCL) resembling 

those identified by previous studies (33,34). However, MUT-Mychigh GEP signatures also 

included downregulation of CCND2 (cyclin D2) and JUND in overall DLBCL, and 

downregulation of CCND1 (cyclin D1) and TAF13 RNA polymerase II whereas 

upregulation of COMMD5 (which negatively regulates cell cycle transition and 

proliferation) in GCB-DLBCL. In contrast, in WT-Mychigh GCB-DLBCL (versus WT-

Myclow GCB-DLBCL), CDKN1B (inhibitor of cell cycle progression) and ANKRD12 
(which inhibit transactivation) were downregulated. STAT3 was significantly upregulated in 

WT-Mychigh DLBCL but downregulated in MUT-Mychigh GCB-DLBCL.

Expression of apoptotic genes also showed differences between WT-Mychigh and MUT-

Mychigh GEP signatures. Proapoptotic HRK was significantly upregulated in MUT-Mychigh 

but not in WT-Mychigh DLBCL, which instead had upregulation of PDCD5 (which promotes 

p53-mediated apoptosis) (in DLBCL and GCB-DLBCL), BID, and GNL3 (which stabilize 

MDM2) (in ABC-DLBCL). Other upregulated genes having roles in regulating the p53 

pathway included EEF1E1, HINT1, PRKDC, CHEK1, YWHAG, DNAJA3, HIVEP1, 
PSME3, MTA1, CSNK2A2, AIMP2, USP7, and PHF1 in WT-Mychigh ABC-DLBCL, 

EIF5A in WT-Mychigh GCB-DLBCL, APITD1 in WT-Mychigh DLBCL, and FBXO11 in 

MUT-Mychigh DLBCL. In contrast, In MUT-Mychigh GCB-DLBCL, proapoptotic RASSF4 
and DAPK1 were downregulated compared with MUT-Myclow GCB-DLBCL.

Moreover, in WT-Mychigh ABC-DLBCL (versus WT-Myclow ABC-DLBCL), several T-cell 

marker genes (CD4, GIMAP1, TRA@, and FOXP3) were downregulated but C1QBP 
(which inhibits the complement subcomponent C1) was upregulated. NCR3LG1 (which 

triggers natural killer cell activation) was upregulated in WT-Mychigh (versus WT-Myclow) 

GCB-DLBCL. In MUT-Mychigh GCB-DLBCL, MS4A2 (FCER1B, important for mast cell 

responses) was upregulated whereas IL18BP (which encodes an inhibitor of the 

proinflammatory cytokine IL18) was downregulated. Other potentially important signatures 

included downregulation of IL10RA, TNFRSF25, MIR155HG and ATXN1 whereas 

upregulation of EXOSC2 (components of the RNA exosome complex), HSPD1 and 

SMARCA4 in WT-Mychigh GCB-DLBCL, upregulation of LYN, PIK3R2 and EXOSC8 
whereas downregulation of FYN in WT-Mychigh ABC-DLBCL, and downregulation of 

IL6ST and FYB whereas upregulation of BACH2, MAP3K4, RITA1 and ZBED3 in MUT-

Mychigh GCB-DLBCL. GAS5 and MIR17HG were upregulated in both WT-Mychigh and 

MUT-Mychigh versus Myclow DLBCL.

 Comparisons between WT-Myc and MUT-Myc groups Using Unpaired t Test
—By unpaired t test, the MUT-Myc group compared with the WT-Myc group had 

significantly (P < 0.05) higher levels of MDM2, TP63, CD10/MME and CD22, and 

significantly lower levels of CD44, ICAM1, JAK3, STAT3, STAT5A, TNFSF13B/BAFF, 
CTLA4 and ICOS mRNA, as well as subtle changes in HLA, PMAIP1/NOXA, TP53, 
CDKN2A, BCL2, BCL2L11/BIM (which mediates the proapoptotic function of Myc 

(17,35)), BID, CHUK/IKK1, IKBKB, NFKBIA and NFKBIZ expression, but not in 

MIR17HG (which mediates the oncogenic function of Myc (36)), E2F1 and EZH2 levels 

(Supplementary Figures S3–S4). Genes encoding regulators of Myc degradation/stability 
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according to the literature, such as FBXW7, SKP1/2, PIN1, GSK3, PP2A subunits (13), did 

not show significantly differential expression between the MUT-Myc and WT-Myc groups. 

Nonetheless, the MUT-Myc group had significant lower FBXW9 expression compared with 

both WT-Myclow and WT-Mychigh groups.

 Comparison of Protein Expression Levels between WT-Myc and MUT-Myc groups Using 
Unpaired t Test

The MUT-Myc group compared with the WT-Myc group had significantly increased CD10 

and decreased nuclear p52 levels. Expression of p53, Ki-67, pAKT, c-Rel, Bcl-2 and p63 

levels may also be affected by Myc mutation status (Supplementary Figure S5).

 Functional Studies of MYC Mutations and SNPs

We made MYC expression constructs for three mutants (S159R, G160S, and P164L) and 

two germline variants including N11S and P57S (by SNP rs28933407), and introduced them 

into MYC-null Rat1a fibroblasts. We first determined the expression of Myc in Rat1a cells 

and found that all three mutants and the germline variant N11S resulted in lower Myc 

protein levels, whereas P57S variant had higher Myc expression, in line with a previous 

report (P57S was considered as a Myc mutant) (17) (Figure 4E). We seeded 5×104 cells in 6-

well plates and 72 h later, adherent cells were enumerated. Cells with Myc-P57S grew 

fastest and cells with WT-Myc grew modestly faster than did the controls with the parental 

vector (Figure 4F). Cells with Myc-N11S and Myc-P164L proliferated at similar rates as 

WT-Myc, yet cells with Myc-S159R and Myc-G160S had a significantly slower rate than 

WT-Myc. We next asked whether any of the mutations altered the well-known ability of 

Myc overexpression to sensitize cells to apoptosis induced by serum withdrawal. Cells 

expressing WT and N11S Myc were sensitized to serum withdrawal-induced apoptosis, 

while cells with P57S, S159R, G160S and P164L Myc showed apoptosis resistance (Figure 

4G). In anchorage-independent colony formation assay, Myc-P57S greatly enhanced the 

transformation ability compared to WT-Myc, consistent with the previous report (17); 

however, N11S, S159R, G160S and P164L Myc had compromised transformation ability 

compared with WT-Myc (Figure 4H). To further assess the tumorigenesis of these Myc 

mutants in vivo, xenograft in nude mice was applied. Rat1a cells stably expressing WT-Myc 

or its mutants were subcutaneously implanted to 8 weeks old male nude mice (10 

implantation each). Eighteen days post inoculation, significant tumors were visible in mice 

injected with cells expressing P57S, WT, and P164L Myc with different tumor volumes; 

cells with G160S, S159R and N11S were able form tumors at day 27, 27 and 39 respectively 

compared to cells with the parental vector (Figure 4I). Tumorigenesis effect (P57S >WT 

>P164L >G160S >S159R >N11S, Figure 4I) was more correlated with Myc expression 

levels (P57S >WT >P164S >G160S >S159R and N11S, Figure 4E) than colony formation 

(P57S >WT >S159R >G160S >N11S >P164L, Figure 4H), cell proliferation (P57S >WT, 

P164L, and N11S >G160S >S159R, Figure 4F), or apoptosis (WT >N11S >S159R >P164L, 

G160S, and S159R, Figure 4G). Nonetheless, these data suggest that a substantial number of 

MYC CDS mutations are of “loss-of-function” rather than “gain-of-function”.
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 DISCUSSION

In 750 de novo DLBCL patients, we found somatic mutations either in the MYC CDS or 

UTR in 33.3% of DLBCL patients; 71.4% of these mutations were heterozygous. 

Nonsynonymous mutations were found in 16.1% of DLBCL patients. The mutation 

frequency in DLBCL by previous studies was 32% for MYC exon 1 and 2 areas by Sanger 

sequencing, 6.3% for MYC-CDS by next generation sequencing (25,26), and 29% for BCL2 
nonsynonymous mutation by RNA-seq and Sanger sequencing methods (37). We 

acknowledge the limitation of our data lacking paired normal DNA for each patient, and the 

potential false mutations due to sample and sequencing limitations. However, the frequency 

(6.5%) of the Myc-11S germline variant found in our cohort was comparable to the 7.2% 

and 8.1% by two previous studies (38) (38,39). Myc-N11S was associated with better 

survival in our cohort, and was controversially associated with, or not associated with breast 

cancer risk by the two previous studies.

Supplementary Table S8 and Figures 4J–K summarize the major findings by this study. The 

effects of Myc mutations on Myc stability, function, and apoptosis have been inconsistent in 

previous studies (8,13). Contrary to the notion that tumor-derived MYC mutations are 

associated with gain-of-function (10,12) and poorer clinical outcomes, our study showed 

that most Myc mutants (resulted from nonsynonymous MYC-CDS mutations), carried by 

approximately 6% to 15% (i.e., the frequencies for group 2 and 3 mutations in Figure 2C 

and all non-T58/F138 mutants in Figures 2C–D) of DLBCL patients, were often associated 

with better patient survival compared with WT-Myc (NG_007161.1), regardless of Myc 

expression levels. This correlation and functional study results may suggest that many Myc 

mutations attenuated Myc oncogenic function, potentially due to functional changes or 

haploinsufficiency effects (40). Attenuated pro-apoptosis function may paly roles in 

tumorigenesis (17,18,41). Moreover, identified Mychigh GEP signatures may suggest that to 

a certain extent, there were differences in tumor survival, proliferation, and 

microenvironment between the WT-Myc and MUT-Myc groups.

In contrast, T58 mutations, which are frequent in BL and have gain-of-function in vitro and 

in vivo (13), were associated with significantly poorer survival than other DLBCL patients. 

However, the occurrence was low in DLBCL (0.8% of the training set, and 0.5% of the 

combined training and validation cohorts) and associated with MYC rearrangement (an 

independent prognostic factor for adverse survival). In addition, the recurrent MYC-3´UTR 

mutations in 1.3% of DLBCL patients were associated with significant poorer survival than 

WT-MYC-3´UTR. TargetScan indicated that *22C, *83G, *345C of MYC-3´UTR are 

targeted by miR-196b, miR-33b, and miR-429, respectively. Intriguingly, 3´UTR mutations 

were not associated with Myc overexpression, suggesting the presence of MYC suppression 

by multiple microRNAs (42) and posttranslational regulations, and that the molecular 

mechanisms underlying the adverse prognostic impact of these 3´UTR mutations may not be 

simply Myc activation due to the disruption of microRNA-mediated MYC suppression. GEP 

analysis showed that TNRC6B; which plays important roles in microRNA-mediated 

suppression, was significantly downregulated in patients harboring recurrent MYC-3´UTR 

mutations. In addition, MAGEA2/MAGEA2B and ZNF415 which inhibit p53 transcription 
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activities were upregulated, and RAD1 which plays a role in DNA repair was downregulated 

(Supplementary Table S7).

In this study, MYC mutations were not associated with TP53 mutations which increase 

genomic instability. It has been proposed that MYC mutations originated from aberrant 

somatic hypermutation initiated by activation-induced cytidine deaminase (AID) (25). In the 

present study, the following features of MYC mutations resemble those of AID activities, 

which may support this origin hypothesis: (a) the predominance of single nucleotide 

mutations; (b) the elevated transition/transversion mutation ratios compared with SNP 

variants (Figure 1D) (25); (c) the high to low mutation rate ranged from the 5´UTR, CDS, to 

3´UTR, consistent with the AID action pattern (Figure 4J); (d) the association between CDS 

and 5´UTR mutations; (e) the higher frequency of MYC mutations in MYC and BCL6 
rearranged cases (MYC rearrangement is thought to be mediated by AID activities (43)) 

(supplemental Table S2); and (f) the elevated mutation rate in the MYC 5´UTR compared 

with other genes we sequenced concurrently (except BCL6 5´UTR) (Figure 1C) (25,44–46). 

MYC translocation break-points in DLBCL may have affected the mutation rate in 5´UTR 

and CDS (47,48). The predominance of heterozygous instead of homozygous mutations 

suggested that most mutations happen during or after the translocation event. Moreover, the 

association between MUT-5´UTR and Bcl-6 expression, and between MYC-CDS mutation 

and BCL6 rearrangement in ABC-DLBCL (Supplementary Table S2 and Supplementary 

Table S5), as well as the high transition/transversion ratio of MYC mutations may suggest 

that genome instability caused by Bcl-6 expression (49), and loss of protective high-fidelity 

repair (50) may be additional mutation mechanisms during lymphomagenesis. As most 

MYC-CDS and MYC-5´UTR mutations did not appear to adversely impact prognosis, our 

results suggest that most MYC mutations were just passenger mutations acquired during 

tumorigenesis driven by other oncogenic mechanism. This may also explain why the ABC 

subtype (post-GC) having high AID expression (43) also had MYC mutations (with a lower 

frequency than the GCB subtype, Table 1) which did not show significant prognostic effect 

or Mychigh GEP signatures. These MYC mutations might be insufficient for tumor onset, 

and occurred either during GC reaction or concurrently with other post-GC transforming 

events.

In summary, MYC mutations are also present in DLBCL (in addition to Burkitt lymphoma) 

and have differential functional and clinical effects. Particular mutations such as T58/F138 

mutations and some MYC-3´UTR mutations, were found in approximately 2% of DLBCL 

cases and associated with significantly poorer prognosis. In contrast with these infrequent 

mutations which may have roles in lymphomagenesis, most MYC-CDS mutations (in 

approximately 15% of DLBCL) were associated with better clinical outcomes compared 

with the canonical WT-Myc-11N and probably passenger mutations during 

lymphomagenesis. The Myc-N11S germline variant (in 6.5% of DLBCL) was also 

associated with better clinical outcomes compared with the canonical WT-Myc-11N. This 

study provides knowledge of MYC mutations and variations in DLBCL, supports the 

oncogenic role of the canonical WT-Myc, and has important clinical and therapeutic 

implications.
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Refer to Web version on PubMed Central for supplementary material.

 Acknowledgments

ZYXM is the recipient of the Harold C. and Mary L. Daily Endowment Fellowship and Shannon Timmins 
Fellowship for Leukemia Research.

FUNDING SUPPORT

This study is supported by National Cancer Institute and National Institutes of Health grants (R01CA138688 and 
R01CA187415, YL and KHY). KHY is also supported by The University of Texas MD Anderson Cancer Center 
Institutional Research Grant Award, an MD Anderson Lymphoma Specialized Programs of Research Excellence 
(SPORE) Research Development Program Award, an MD Anderson Myeloma SPORE Research Developmental 
Program Award, MD Anderson Collaborative Research Funds with High-Throughput Molecular Diagnostics, 
Gilead Pharmaceutical and Roche Molecular Systems. The study is also partially supported by P50CA136411 and 
P50CA142509, and the MD Anderson Cancer Center Support Grant CA016672.

REFERENCES

1. Tzankov A, Xu-Monette ZY, Gerhard M, Visco C, Dirnhofer S, Gisin N, et al. Rearrangements of 
MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with 
rituximab-CHOP. Mod Pathol. 2014; 27:958–971. [PubMed: 24336156] 

2. Albihn A, Johnsen JI, Henriksson MA. MYC in oncogenesis and as a target for cancer therapies. 
Adv Cancer Res. 2010; 107:163–224. [PubMed: 20399964] 

3. Johnson NA, Slack GW, Savage KJ, Connors JM, Ben-Neriah S, Rogic S, et al. Concurrent 
expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus 
cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012; 30:3452–3459. 
[PubMed: 22851565] 

4. Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A, et al. MYC/BCL2 protein 
coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell 
lymphoma and demonstrates high-risk gene expression signatures: a report from The International 
DLBCL Rituximab-CHOP Consortium Program. Blood. 2013; 121:4021–4031. quiz 4250. 
[PubMed: 23449635] 

5. Horn H, Ziepert M, Becher C, Barth TF, Bernd HW, Feller AC, et al. MYC status in concert with 
BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 2013; 
121:2253–2263. [PubMed: 23335369] 

6. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, et al. Burkitt lymphoma 
pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012; 
490:116–120. [PubMed: 22885699] 

7. Love C, Sun Z, Jima D, Li G, Zhang J, Miles R, et al. The genetic landscape of mutations in Burkitt 
lymphoma. Nat Genet. 2012; 44:1321–1325. [PubMed: 23143597] 

8. Smith-Sorensen B, Hijmans EM, Beijersbergen RL, Bernards R. Functional analysis of Burkitt’s 
lymphoma mutant c-Myc proteins. J Biol Chem. 1996; 271:5513–5518. [PubMed: 8621409] 

9. Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I. Point mutations in the c-Myc 
transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat Genet. 
1993; 5:56–61. [PubMed: 8220424] 

10. Wasylishen AR, Chan-Seng-Yue M, Bros C, Dingar D, Tu WB, Kalkat M, et al. MYC 
phosphorylation at novel regulatory regions suppresses transforming activity. Cancer Res. 2013; 
73:6504–6515. [PubMed: 24030976] 

11. Yano T, Sander CA, Clark HM, Dolezal MV, Jaffe ES, Raffeld M. Clustered mutations in the 
second exon of the MYC gene in sporadic Burkitt’s lymphoma. Oncogene. 1993; 8:2741–2748. 
[PubMed: 8397370] 

Xu-Monette et al. Page 13

Clin Cancer Res. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Chakraborty AA, Scuoppo C, Dey S, Thomas LR, Lorey SL, Lowe SW, et al. A common 
functional consequence of tumor-derived mutations within c-MYC. Oncogene. 2015; 34:2406–
2409. [PubMed: 24998853] 

13. Hann SR. Role of post-translational modifications in regulating c-Myc proteolysis, transcriptional 
activity and biological function. Semin Cancer Biol. 2006; 16:288–302. [PubMed: 16938463] 

14. Bahram F, von der Lehr N, Cetinkaya C, Larsson LG. c-Myc hot spot mutations in lymphomas 
result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood. 2000; 
95:2104–2110. [PubMed: 10706881] 

15. Wang X, Cunningham M, Zhang X, Tokarz S, Laraway B, Troxell M, et al. Phosphorylation 
regulates c-Myc’s oncogenic activity in the mammary gland. Cancer Res. 2011; 71:925–936. 
[PubMed: 21266350] 

16. Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR. Site-specific modulation of 
c-Myc cotransformation by residues phosphorylated in vivo. Oncogene. 1994; 9:59–70. [PubMed: 
8302604] 

17. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, et al. Evasion of 
the p53 tumour surveillance network by tumour-derived MYC mutants. Nature. 2005; 436:807–
811. [PubMed: 16094360] 

18. Kuttler F, Ame P, Clark H, Haughey C, Mougin C, Cahn JY, et al. c-myc box II mutations in 
Burkitt’s lymphoma-derived alleles reduce cell-transformation activity and lower response to 
broad apoptotic stimuli. Oncogene. 2001; 20:6084–6094. [PubMed: 11593416] 

19. Herbst A, Hemann MT, Tworkowski KA, Salghetti SE, Lowe SW, Tansey WP. A conserved 
element in Myc that negatively regulates its proapoptotic activity. EMBO Rep. 2005; 6:177–183. 
[PubMed: 15678160] 

20. Rabbitts TH, Forster A, Hamlyn P, Baer R. Effect of somatic mutation within translocated c-myc 
genes in Burkitt’s lymphoma. Nature. 1984; 309:592–597. [PubMed: 6547209] 

21. Taub R, Moulding C, Battey J, Murphy W, Vasicek T, Lenoir GM, et al. Activation and somatic 
mutation of the translocated c-myc gene in burkitt lymphoma cells. Cell. 1984; 36:339–348. 
[PubMed: 6319017] 

22. Yu BW, Ichinose I, Bonham MA, Zajac-Kaye M. Somatic mutations in c-myc intron I cluster in 
discrete domains that define protein binding sequences. J Biol Chem. 1993; 268:19586–19592. 
[PubMed: 8366102] 

23. Cesarman E, Dalla-Favera R, Bentley D, Groudine M. Mutations in the first exon are associated 
with altered transcription of c-myc in Burkitt lymphoma. Science. 1987; 238:1272–1275. 
[PubMed: 3685977] 

24. Chappell SA, LeQuesne JP, Paulin FE, deSchoolmeester ML, Stoneley M, Soutar RL, et al. A 
mutation in the c-myc-IRES leads to enhanced internal ribosome entry in multiple myeloma: a 
novel mechanism of oncogene de-regulation. Oncogene. 2000; 19:4437–4440. [PubMed: 
10980620] 

25. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R, et al. 
Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001; 
412:341–346. [PubMed: 11460166] 

26. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, et al. Analysis of the coding 
genome of diffuse large B-cell lymphoma. Nat.Genet. 2011; 43:830–837. [PubMed: 21804550] 

27. Zhang J, Jima D, Moffitt AB, Liu Q, Czader M, Hsi ED, et al. The genomic landscape of mantle 
cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. 
Blood. 2014; 123:2988–2996. [PubMed: 24682267] 

28. Visco C, Li Y, Xu-Monette ZY, Miranda RN, Green TM, Li Y, et al. Comprehensive gene 
expression profiling and immunohistochemical studies support application of immunophenotypic 
algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the 
International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia. 2012; 26:2103–
2113. [PubMed: 22437443] 

29. Visco C, Tzankov A, Xu-Monette ZY, Miranda RN, Tai YC, Li Y, et al. Patients with diffuse large 
B-cell lymphoma of germinal center origin with BCL2 translocations have poor outcome, 

Xu-Monette et al. Page 14

Clin Cancer Res. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



irrespective of MYC status: a report from an International DLBCL rituximab-CHOP Consortium 
Program Study. Haematologica. 2013; 98:255–263. [PubMed: 22929980] 

30. Xu-Monette ZY, Dabaja BS, Wang X, Tu M, Manyam GC, Tzankov A, et al. Clinical features, 
tumor biology and prognosis associated with MYC rearrangement and overexpression in diffuse 
large B-cell lymphoma patients treated with rituximab-CHOP. Mod Pathol. 2015; 28:1555–1573. 
[PubMed: 26541272] 

31. Xu-Monette ZY, Tu M, Jabbar KJ, Cao X, Tzankov A, Visco C, et al. Clinical and biological 
significance of de novo CD5+ diffuse large B-cell lymphoma in western countries. Oncotarget. 
2015; 6:5615–5633. [PubMed: 25760242] 

32. Boxer LM, Dang CV. Translocations involving c-myc and c-myc function. Oncogene. 2001; 
20:5595–5610. [PubMed: 11607812] 

33. Seitz V, Butzhammer P, Hirsch B, Hecht J, Gutgemann I, Ehlers A, et al. Deep sequencing of MYC 
DNA-binding sites in Burkitt lymphoma. PLoS One. 2011; 6:e26837. [PubMed: 22102868] 

34. Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN, et al. Expression analysis 
with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, 
signaling, and adhesion. Proc Natl Acad Sci U S A. 2000; 97:3260–3265. [PubMed: 10737792] 

35. Muthalagu N, Junttila MR, Wiese KE, Wolf E, Morton J, Bauer B, et al. BIM is the primary 
mediator of MYC-induced apoptosis in multiple solid tissues. Cell Rep. 2014; 8:1347–1353. 
[PubMed: 25176652] 

36. Li Y, Choi PS, Casey SC, Dill DL, Felsher DW. MYC through miR-17-92 suppresses specific 
target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell. 
2014; 26:262–272. [PubMed: 25117713] 

37. Schuetz JM, Johnson NA, Morin RD, Scott DW, Tan K, Ben-Nierah S, et al. BCL2 mutations in 
diffuse large B-cell lymphoma. Leukemia. 2012; 26:1383–1390. [PubMed: 22189900] 

38. Wirtenberger M, Hemminki K, Forsti A, Klaes R, Schmutzler RK, Grzybowska E, et al. c-MYC 
Asn11Ser is associated with increased risk for familial breast cancer. Int J Cancer. 2005; 117:638–
642. [PubMed: 15929079] 

39. Figueiredo JC, Knight JA, Cho S, Savas S, Onay UV, Briollais L, et al. Polymorphisms cMyc-
N11S and p27-V109G and breast cancer risk and prognosis. BMC Cancer. 2007; 7:99. [PubMed: 
17567920] 

40. Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH, White EL, et al. c-Myc is 
essential for vasculogenesis and angiogenesis during development and tumor progression. Genes 
& Development. 2002; 16:2530–2543. [PubMed: 12368264] 

41. Chang DW, Claassen GF, Hann SR, Cole MD. The c-Myc transactivation domain is a direct 
modulator of apoptotic versus proliferative signals. Mol Cell Biol. 2000; 20:4309–4319. [PubMed: 
10825194] 

42. Bueno MJ, Gomez de Cedron M, Gomez-Lopez G, Perez de Castro I, Di Lisio L, Montes-Moreno 
S, et al. Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. Blood. 
2011; 117:6255–6266. [PubMed: 21478429] 

43. Lenz G, Nagel I, Siebert R, Roschke AV, Sanger W, Wright GW, et al. Aberrant immunoglobulin 
class switch recombination and switch translocations in activated B cell-like diffuse large B cell 
lymphoma. J Exp Med. 2007; 204:633–643. [PubMed: 17353367] 

44. Robbiani DF, Bunting S, Feldhahn N, Bothmer A, Camps J, Deroubaix S, et al. AID produces 
DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal 
chromosome translocations. Mol Cell. 2009; 36:631–641. [PubMed: 19941823] 

45. Han L, Masani S, Yu K. Overlapping activation-induced cytidine deaminase hotspot motifs in Ig 
class-switch recombination. Proc Natl Acad Sci U S A. 2011; 108:11584–11589. [PubMed: 
21709240] 

46. Nussenzweig A, Nussenzweig MC. Origin of chromosomal translocations in lymphoid cancer. 
Cell. 2010; 141:27–38. [PubMed: 20371343] 

47. Pelicci PG, Knowles DM 2nd, Magrath I, Dalla-Favera R. Chromosomal breakpoints and structural 
alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc 
Natl Acad Sci U S A. 1986; 83:2984–2988. [PubMed: 3458257] 

Xu-Monette et al. Page 15

Clin Cancer Res. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



48. Murphy W, Sarid J, Taub R, Vasicek T, Battey J, Lenoir G, et al. A translocated human c-myc 
oncogene is altered in a conserved coding sequence. Proc Natl Acad Sci U S A. 1986; 83:2939–
2943. [PubMed: 3517879] 

49. Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies: the dark side of B-cell 
differentiation. Nat Rev Immunol. 2002; 2:920–932. [PubMed: 12461565] 

50. Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH, et al. Two levels of 
protection for the B cell genome during somatic hypermutation. Nature. 2008; 451:841–845. 
[PubMed: 18273020] 

Xu-Monette et al. Page 16

Clin Cancer Res. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Translational Relevance

MYC mutations in diffuse large B-cell lymphoma (DLBCL) are not as well studied as 

MYC translocations, another form of MYC genetic aberrations. This study fills in this 

knowledge gap by profiling MYC gene mutations and germline variations in a large 

group of DLBCL patients, and attempted to understand their impact on Myc function and 

clinical outcomes. We found a wide range of single nucleotide variations of MYC genes 

in DLBCL which correlated with different clinical outcomes. Mutations known to have 

gain-of-functions implicated in the pathogenesis of Burkitt lymphoma by previous 

studies were not frequent in DLBCL, whereas most MYC mutations were associated with 

better clinical outcomes. These results suggested that most MYC mutations in DLBCL 

were probably passenger mutations instead of driver mutations during lymphomagenesis. 

This study showed, for the first time, the clinical significance of MYC mutations in 

DLBCL, and supports the oncogenic role of MYC.
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Figure 1. 
Schematic illustration of the structure of MYC gene and Myc protein, and the composition 

and occurrence of MYC mutations. (A) Three MYC exons (top) are transcribed into an 

mRNA (middle) with untranslated regions (UTR) and the coding sequence (CDS), and then 

translated into the Myc protein with MYC box I (MBI, 44–63 aa) and MYC box II (MBII, 

128–143 aa) in the N-terminal domain (NTD), MYC box III (MBIII including A and B), 

nuclear localization sequence (NLS), and the basic helix-loop-helix leucine zipper motif (B-

HLH-LZ, 355–439 aa, involved in the dimerization with MAX and interacting with other 

HLH proteins) motif in the C-terminal domain (CTD). TAD indicates transactivation 

domain. (B) Occurrence of the SNPs (indicated in parentheses) in the 5´UTR, CDS and 3

´UTR found in the DLBCL cohort. The SNP nucleotide positions are according to the 

translation start site resulting in the canonical Myc protein (439 aa). (C) Comparison of the 

mutation rate of 10 genes we sequenced for the DLBCL cohort. (D) Patterns of the MYC 
variations (SNPs and somatic mutations) found in the DLBCL cohort. (E) Proportions of 

silent, missense, nonsense, frame-shift, and splicing mutations in the MYC CDS found in 

the DLBCL cohort. (F) Frequencies of missense and nonsense Myc mutations. Numbers in 

parentheses indicate occurrence in the DLBCL cohort.
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Figure 2. 
Impact of nonsynonymous Myc variants on patient survival. (A–B) Overall survival of 

patient groups with wild-type (WT), mutated (MUT) or polymorphic (SNP) Myc in the 

training and validation sets. (C–D) Different types of Myc variants were associated with 

differential prognosis. (E) Comparison of Myc expression levels between groups with WT-, 

MUT- or SNP-Myc. (F) Overexpression of WT-Myc-11N correlated with significantly 

poorer survival. (G–H) Expression of the Myc-11S variant and non-T58/F138 MUT-Myc 

did not impact survival significantly. (I–K) Expression of different types of MUT-Myc 

(group of recurrent non-T58/F138 mutants; frame-shift or nonsense mutants; and other 

MUT-Myc) did not impact survival significantly. (L) After exclusion of Myc mutants in 

Figures I–J, the MUT-Mychigh group continued to show better survival compared with the 

group with overexpressed WT-Myc-11N with a marginal P value.
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Figure 3. 
Mutations in the MYC untranslated regions (UTR). (A) Distribution of mutations in the 

MYC 5´UTR. The nucleotide positions shown before the parentheses are in relation to the 

translation start site for canonical Myc protein (439aa). Numbers in parentheses indicate 

occurrence frequency in our cohort. (B–C) MYC 5´UTR mutations did not correlate with 

survival in the training set, but did correlate with significantly poorer PFS in the validation 

set. (D–E) In patients without MYC rearrangements, MYC 5´UTR mutations trended toward 

conferring poorer OS in the training set and poorer PFS in the validation sets. (F) 
Distribution of mutations in the MYC 3´UTR. Numbers in parentheses indicate occurrence. 

Mutations disrupting the known microRNA targeting sites (according to TargetScan) are 

highlighted in red. (G–H) The overall MUT-MYC-3´UTR group did not show significant 

poorer survival in the training and validation sets. (I–J) 3´UTR mutations recurrently (n ≥ 2) 

occurred at *2G, *22C, *83G, *345C, and *368C were associated with significantly poorer 

survival.
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Figure 4. 
Gene expression profiling (GEP) analysis, and functional studies of Myc variants in Rat1a 

cells. (A) GEP signatures for high levels (≥ 70%) of Myc expression (Mychigh) in WT-Myc 
patients with germinal center B-cell–like (GCB) DLBCL (false discovery rate [FDR] < 

0.20). (B) GEP signatures for Mychigh in WT-Myc patients with activated B-cell–like (ABC) 

DLBCL (FDR < 0.05) with a cutoff of 1.65 for fold change of differential expression. (C) 

GEP signatures for Mychigh in MUT-Myc GCB-DLBCL patients (FDR < 0.20). (D) GEP 

signatures for Mychigh in overall MUT-Myc patients (FDR < 0.01). (E) Western blot analysis 

of expression of wild-type Myc and Myc variants in Rat1a cells transduced with retroviral 

vector expressing wild type Myc and Myc variants. (F) Cell proliferation analysis of wild-

type Myc and Myc variants. Cells with the parental vector were used as control. Error bars 

show SEM. (G) Cell apoptosis analysis of wild type Myc and Myc variants using serum 

withdrawal. (H) An anchorage-independent colon formation assay of wild-type Myc and 

Myc variants. (I) Tumorigenecity of cells expressing wild type Myc or its mutants. Note: 

Statistical analysis was performed using one-way ANOVA in (G) to (J) with * indicating 

significant difference (P ≤ 0.05) between wild type Myc and a Myc variant, or two-away 

ANOVA in (K) with α-φ indicating significant difference (P ≤ 0.05) between the marked two 

groups. (J) Schematic illustration for the possible mechanism of MYC mutation and 

rearrangement origin, i.e., the activities of activation-induced cytidine deaminase (AID), 
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which depend on MYC transcription activation and can affect up to ∼2kb downstream DNA 

from the transcription initiation site. Abbreviations: SHM, somatic hypermutation; UTR, 

untranslated region; P0, P1, P2, and P3 indicate multiple promoters of the MYC gene. (K) A 

hypothetical model for origin of MYC genetic lesions and effects on Myc expression, Myc 

function and clinical outcomes.
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