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Abstract

Purpose—An image filter designed for reconstructing cerebrovascular trees from MR images is 

described. Current imaging techniques capture major cerebral vessels reliably, but often fail to 

detect small vessels, whose contrast is suppressed due to limited resolution, slow blood flow rate, 

and distortions around bifurcations or non-vascular structures. An incomplete view of 

angioarchitecture limits the information available to physicians.

Methods—A novel Hessian-based filter for contrast-enhancement in MR angiography and 

venography for blood vessel reconstruction without introducing dangling segments is presented. 

We quantify filter performance with receiver-operating-characteristic and dice-similarity-
coefficient analysis. Total extracted vascular length, number-of-segments, volume, surface-to-

distance, and positional error are calculated for validation.

Results—Reconstruction of cerebrovascular trees from MR images of six volunteers show that 

the new filter renders more complete representations of subject-specific cerebrovascular networks. 

Validation with phantom models shows the filter correctly detects blood vessels across all length 

scales without failing at bifurcations or distorting diameters.

Conclusion—The novel filter can potentially improve the diagnosis of cerebrovascular diseases 

by delivering metrics and anatomy of the vasculature. It also facilitates the automated analysis of 

large datasets by computing biometrics free of operator subjectivity. The high quality 

reconstruction enables computational mesh generation for subject-specific hemodynamic 

simulations.
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Introduction

Medical imaging is a common technique for non-invasive diagnosis of cerebrovascular 

diseases (CVD), which constitute the fourth leading cause of death in the United States (1). 

Magnetic resonance imaging (MRI) enables physicians to diagnose CVDs which often have 

no apparent symptoms. Crisp images also provide data for treatment planning (2). In raw 

magnetic resonance angiography (MRA) and venography (MRV), anatomical structures 

including gray and white matter overlap with the patient's cerebral vasculature hindering 

blood vessel detection. Small vessels like communicating arteries in the Circle of Willis are 

often invisible in raw MRA images due to their relatively weak contrast compared to 

stronger signals from larger arteries, such as the middle cerebral artery (MCA). Therefore, a 

method of separating different components of the MR signal without missing portions of the 

vessel network is needed. A vesselness filter is a digital image processing procedure for 

vessel contrast enhancement that aims at accentuating blood vessel contrast while 

eliminating other structures from the image.

In addition to vessel filtering for diagnosis, there is also a growing need for patient-specific 

vasculature reconstructions for computational fluid dynamics (CFD) studies. Researchers 

and physicians are beginning to demonstrate the benefits of cerebral hemodynamic 

simulations to acquire a more profound understanding of why CVDs occur, better plan 

endovascular interventions such as bypass surgery (3,4), or assess aneurysm (5) and 

arteriovenous malformation rupture risk (6). All CFD studies require subject-specific 

computational meshes delineating local features such as the carotid bifurcation (7–10), or 

extending to larger portions of the arterial tree, such as the Circle of Willis (11–13).

Numerous prior studies presented excellent Hessian-based filters for vessel segmentation 

(14-20). Eigenvalues of the Hessian matrices of the image intensity map can guide automatic 

algorithms to track network centerlines. Sato (14) proposed an algorithm based on 

experimental analysis of ideal tubes. The Frangi filter (15,16) has three adjustable 

parameters to select the best tradeoff between noise elimination and shape sensitivity. Erdt 

(17,18) developed a purely analytical function for fully automatic reconstruction.

All Hessian-based filters discussed so far amplify the contrast between tubular objects and 

their surroundings, thus enhancing elongated blood vessels while suppressing other 

anatomical features and noise. However, the eigenvalues of the Hessian experience sign 

changes in addition to wide variations in magnitude at bifurcations. This situation often 

causes existing filters to erroneously eliminate bifurcations, introducing dangling segments 

in the reconstructed network. The Shikata filter (19,20) is able to preserve network 

connectivity by also enhancing the contrast from plate or blob-like shapes, which favors 

bifurcations. Unfortunately, Shikata's improvement for bifurcations has the unwanted side 

effect of suppressing neighboring segments in the vicinity as pointed out by Drechsler (21). 

This filter behavior is undesirable because closeness of bifurcations to other branches 

frequently occurs in the pial network of the cerebral cortex. It would be ideal to design a 

novel filter, which accentuates tubular shapes, while maintaining network connectivity in 

bifurcations without losing neighboring segments. Accordingly, our proposed algorithm 

aims to achieve the following three objectives:
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• Enhance the contrast of blood vessels across the entire spectrum of length 

scales from the internal carotid artery or superior sagittal sinus down to the 

pial network.

• Suppress the intensity of non-vascular tissues and reduce noise in the 

image.

• Preserve the connectivity of the reconstructed cerebrovascular network 

especially at bifurcations without creating dangling segments or 

suppressing neighboring branches.

This paper is organized as follows. First, MRA/MRV image acquisition parameters for 

vessel detection are presented. We then introduce a novel multi-scale composite filter (MCF) 

algorithm and its implementation. We compare its performance against previous algorithms 

in two phantom studies as well as in six human subject data sets. Finally, we discuss findings 

and indicate future research directions.

Methods

MR images were acquired from healthy volunteers to demonstrate the ability to create 

subject-specific reconstructions of their cerebral vasculature automatically. Although the 

methodology can be applied to any number of images, data and results for only six 

volunteers are presented to discuss performance metrics in detail. Moreover, filter 

performance was analyzed statistically in two additional phantom studies.

Image Acquisition

Six healthy human subjects with no known cerebral vascular disease were recruited and 

underwent MR imaging on a General Electric 3T MR750 scanner using a 32 channel phased 

array coil (Nova Medical, Inc., Wilmington, MA). MR angiograms and venograms were 

acquired under Institutional Review Board approval at our institution. Before the scan, 

stability pads were provided to reduce motion artifacts. No motion artifacts affecting the 

scan were observed in all six cases. For MR angiography, a 3D TOF pulse sequence was 

used with the following parameters: TR=26ms, TE=3.4ms, NEX=1, Flip Angle=18°, 

acceleration factor=2, number of slab=4, magnetization transfer=on, matrix 

size=512×512×408, voxel size=0.39×0.39×0.3mm3, scan time=30min.

MR venography was performed using a 2D INHANCE pulse sequence with the following 

imaging parameters: TR=18.5ms, TE=5.65ms, NEX=1, Flip Angle=8°, matrix 

size=512×248×512, voxel size=0.47×0.8×0.47mm3, scan time=15min. Automatic rigid 

coregistration with a one-plus-one evolutionary optimizer of the MRA and MRV was 

performed with the final voxel size of 0.39×0.39×0.3mm3. The MRA and MRV captured 

major branches of the cerebral arterial and venous systems, respectively.

Vesselness Filters

We first processed all angiograms and venograms with our MATLAB implementation of 

existing Hessian-based filters including Sato (14), Frangi (15,16), Erdt (17,18), and Shikata 

(19, 20). The mathematical background for each filter is given in Supporting Material. All 
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filter functions use the raw 3D image intensity map I(x, y, z) as input, where x,y,z represent 

the spatial coordinates. The Hessian matrix, H̃(x, y, z, σ) of the image measures the 

curvature of the intensity at each voxel. Construction of Hessian matrices involved 

computations of gradients and second order derivatives, which are functions of voxel 

spacing in each direction, ∂x, ∂y, ∂z. To reduce noise in derivatives, Gaussian filtering was 

performed on the raw image as given in Eq. 1. Noise in directional derivatives around 

arteries shown in Supporting Fig. S1 is best suppressed by Gaussian filtering with its 

variance (σ-parameter) equal or close to the vessel diameter. Therefore, vesselness filters 

sensitive to different diameter ranges should use corresponding σ-values. The human 

cerebral vasculature covers multiple length scales from the 5mm range in the carotid to 

about 200μm in pial arteries. To address the need for multi-scale smoothing, multiple runs of 

Gaussian filtering with different σ-values was performed. Different Gaussian σ-settings 

produced distinct intensity maps, Ĩ(x, y, z, σ). Hessian matrices, H̃(x, y, z, σ), for each scale 

were computed as in Eq. 2. Furthermore, the three eigenvalues λ̃
1, λ̃

2, λ3̃, of each Hessian 

matrix H̰(x, y, z, σ), were calculated for each voxel. Supporting table S1 shows the range of 

eigenvalues characterizing different geometrical shapes. For example, an ideal cylinder has 

λ̃
1 = 0, λ̃2 < 0, λ̃3 < 0. The eigenvalues permit the calculation of the image enhancement 

response f(x, y, z, σ, λ̃) for each of the five Hessian based filter algorithms. Each image 

filtered with a different σ-value leads to a different f-map. The final enhanced image 

intensity If(x, y, z) is assembled by selecting the highest voxel values among the different f-
maps in Eq. 3. By electing locally the scale σ which achieves the maximum f-value, the 

filtered image benefits from the optimal contrast enhancement in each voxel. For example, a 

map of the corresponding σ-values that optimally maximized intensity in an axial image 

projection is shown in Supporting Fig. S2.

Eq.1

Eq.2

Eq.3

Specifically, for MRA we chose fixed parameter settings, σ = {1, 2, 3, 4, 5mm}. This range 

spans the relevant length scale of the human arterial tree. It is worth noting that Gaussian σ-

settings are not adjustable parameters, because physiological diameter ranges do not vary 
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significantly between subjects. The recommended range gives optimal results in all human 

MRA we performed. In MRV, a fixed range of σ = {1, 2, 3, 4, 5, 6, 7, 8mm} was used. A 

wider range than for arteries was needed to cover the larger dimensions of veins.

The final scalar field If(x, y, z) reflects the intensity map of the enhanced image with multi-

scale Gaussian filtering for each of the five filter algorithms. Some filters also have 

adjustable parameters as summarized in Supporting table S2. The mathematical background 

of a novel multi-scale composite filter (MCF) is presented next.

Multi-scale Composite Filter Function (MCF)

We discovered that gap creation in vesselness filters can be avoided by suitable combination 

of contrast enhancement of the Frangi algorithm with the bifurcation treatment of the 

Shikata algorithm. The novel multi-scale composite filter (MCF) has two stages as given in 

Eqs. 4 and Eqs. 5. Hessian matrices for each length scale, H̃(x, y, z, σ) are generated from 

smoothed intensity maps Ĩ(x, y, z, σ). For each voxel, its three eigenvalues are calculated and 

ordered by magnitude |λ̃1| ≤ |λ̃2| ≤ |λ̃3|.

Step 1 uses the auxiliary scalar function, C1, which is computed from the eigenvalues of the 

Hessian H̃(x, y, z, σ) according to a modification of the Frangi algorithm (15,16). For each 

scale, the C1 value at each voxel is normalized with respect to the maximum intensity in the 

entire image as given by the maximum norm in Eqs. 4. Again, the maximum intensity 

among the different length scales is selected for each voxel. Thus, C1 filtering produces a 

new normalized intensity map IC1 (x, y, z).

To preserve bifurcations without cutting off segments, step 2 applies a modified Shikata 

procedure onto the normalized intensity map IC1 (x, y, z). After a second pass of multiscale 

smoothing identical to step 1, the second largest eigenvalue exhibits consistent magnitude 

along a connected network, while the smallest eigenvalue often experiences sign changes as 

discussed in Shikata et al (19,20). Accordingly, the auxiliary scalar function, C2, uses only 

the second largest eigenvalue λ͌
2 of Hessians, H͌(x, y, z, σ), derived from the C1-filtered 

normalized intensity map I͌C1 (x, y, z, σ). Moreover, positive second eigenvalues, λ͌2 > 0, 

mark dark objects which cannot be blood vessels in MRA. Therefore, we set the final 

intensity to zero whenever λ͌
2 > 0 as indicated in Eqs. 5. Furthermore, we add an additional 

inequality λ͌
1/λ͌ < 0.25. If the inequality holds, the filter response is set to zero to suppress 

plate-like structures. We found in all case studies that the two inequality constraints do not 

induce speckle artifacts.

Step 1:
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Eq.4

Step 2:

Eq.5

For each length scale, the sequential application of C1 and C2 filter components produces a 

final scalar value at each voxel. The length scale leading to the highest intensity is selected 

for the final intensity IMCF for each voxel. The three dimensional matrix of maxima, 

obtained perhaps with different σ for each voxel, gives the vessel enhanced intensity image. 

The novel filter also has three adjustable parameters (a, b, c) to allow for filter tuning.

Note that both the local C1 and C2 functions are normalized with highest intensity found in 

the entire image. Normalization also ensures that the relative contributions from the two 

auxiliary functions are commensurate.

The value of the scalar IMCF at each voxel signifies the probability that it belongs to the 

vascular network. At vessel centerlines, the IMCF values assume a local maximum. The 

centerline of the vascular network is the locus of extrema in the IMCF map. The centerline 

trajectories form three dimensional space curves that trace the subject's vascular trees.

Computational Mesh Generation and Validation

Filtered images were processed to create logically connected networks for vectorized display 

or computational purposes. We applied the filters and the segmentation process to the human 

data for reconstructing computational meshes representing subject-specific cerebral vascular 

trees. Subject-specific computational meshes are needed for individualized high quality 

visualization of the angioarchitecture (27), solid mechanic injury simulations (28) or 

hemodynamic CFD simulations (29,30). The workflow for subject-specific automatic mesh 

generation is depicted in Fig. 1.

First, we create a distance map between the vessel centerlines and the vessel surface, where 

a zero level set corresponds to the vessel walls. The fast marching algorithm with cutoff 
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threshold (intensity threshold=0.01) was used to create a binary mask of the connected 

vascular tree (22). The binary mask delineates a connected domain. An active contour 

procedure is used to calculate the geodesic level of each interior point, in which the 

computed levels measure the distances of a point to the vessel wall, whose outer edges are 

assigned a zero level (23). With the entire image domain now parameterized in terms of wall 

distance, the marching cubes algorithm retrieves smooth physical coordinates of the vessel 

walls (40). Note that physical coordinates for the surface obtained by marching cubes is not 

limited to the original discrete voxel grid spacing. Optionally, isolated dangling surfaces that 

are not connected to the main arterial tree can be discarded. This situation typically affects 

external surface arteries. Because of the special attention to preserving connectivity with the 

C2 filter, dangling segments do not occur in the territory of the main cerebral arteries.

The surface enclosing the arterial tree serves as input for unstructured mesh generation (25). 

Alternatively, parametric volumetric meshes (26) can be created with the help of centerline 

and diameter information. Coordinates of the centerline trajectory as well as corresponding 

vessel radii were tracked with the maximal inscribed spheres method (24). By using the fast 

marching algorithm with cutoff threshold, our method could eliminate the tendency to 

overestimate diameters in the maximal inscribed sphere method (39). With precise 

centerlines and radii, body-fitted smooth hexahedral computational meshes of the entire 

arterial trees were generated (33). Venous trees were created similarly from MRV data.

Validation

Volume, number of segments, as well as total length of the reconstructed arterial and venous 

trees are used as metrics for quantitative comparison of the filter performance. A segment is 

defined as a cylindrical connection between two adjacent centerline points. For further 

validation, we created two phantoms and rigorously tested filter performance in detecting 

blood vessel, connectivity at bifurcations, and diameter reconstruction against a ground truth 

reference.

Results

Image enhancement of MRA and MRV data from healthy volunteers

All filters were custom-coded in MATLAB on an Intel Xeon CPU E5645(x00040)2.40 GHz 

computer. The CPU time for existing filters is approximately 60s. The sequential 

implementation of the MCF consumes less than twice the CPU time. The top row of Fig. 2 

shows an axial, sagittal, and coronal view of the original MRA image acquired from the first 

of the six volunteers. Each view is a maximum intensity projection displayed with its 

maximum and minimum filter response as the contrast window. The middle cerebral arteries 

(MCA) and external cerebral arteries appear the brightest. The sagittal view also depicts the 

major branches of the anterior (ACA) and posterior cerebral artery (PCA) territories. The 

Circle of Willis (COW) can only be seen partially in the coronal view. The thin anterior 

communicating (ACOM) and posterior communicating arteries (PCOM) are barely visible in 

the original MRA as highlighted in the magnified view in Fig. 2 with arrows indicating their 

usual anatomical position. In general, smaller arteries, particularly in the ACA and PCA 

territory, are hard to discern in the raw image.
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The images in Fig. 2A to 2D display axial, sagittal and coronal views produced by Sato, 

Frangi, Shikata and Erdt filters, respectively. The Sato filter in Fig. 2A suppresses noise and 

soft tissues, while enhancing blood vessels as seen most clearly in the coronal view. The 

Frangi algorithm offers tunable control. Its application with parameters, a=0.5, b=0.5, 

c=0.05, in Fig. 2B sharpens vessels better than the Sato filtered image. Structures not 

belonging to the cerebrovascular network such as gray and white matter are successfully 

suppressed in the Shikata filter as shown in Fig. 2C. The Erdt filter, which has previously 

been successful in computed tomography images, did not improve the vascular network 

contrast substantially as depicted in Fig. 2D.

Results for the novel MCF with parameters, a=0.5, b=0.5, c=0.05, are shown in Fig. 2E. 

These parameters can easily be set in the MATLAB implementation and gave the best results 

in all six case studies. The MCF clearly produces the brightest outline of arterial trees. The 

magnified view of the COW also clearly depicts the PCOMs, which are entirely missed in 

the raw images, and are hardly discernable in prior vesselness filters. This result 

demonstrates that MCF not merely sharpens vessel contrast, but more importantly crisply 

delineates small vessels whose signals are too faint to be seen with prior filtered or raw 

images. MCF is also able to reconstruct a good portion of the cortical surface network, 

which consists of small bifurcating pial arteries that are entirely missed in all existing filter 

techniques. The bright and crisp delineation of arterial trees show that the vessel intensity is 

enhanced for all diameters ranging from the large carotid arteries down to small pial vessels 

of about 400μm in diameter. The novel MCF also preserves the contrast around bifurcations, 

which is an essential feature for maintaining network connectivity without introducing 

dangling segments.

Statistical analysis of filter performance

To systematically evaluate the performance of the filters and to quantify the advantage of the 

novel MCF, we conducted receiver operating characteristic (ROC) analysis, dice similarity 
coefficient analysis, surface distance errors, and positional offsets with two artificially 

generated image phantoms. For the ROC analysis, thresholds, Ithreshold, covering the entire 

range between zero and unity were chosen, and the number of correctly detected voxel 

belonging to vessels were counted. We also counted false positives, which is equal to voxels 

erroneously assigned to vessels. High threshold levels decreased the number of false 

positives, but miss many vessels. In general, there is a trade-off between specificity 

(avoidance of false positives) and recognition rate (fraction of detected vessels). The 

phantoms offer exact vessel coordinates and diameters as ground truth reference for 

objectively evaluating filter performance.

3D artificial tube network (lattice phantom)—The first phantom consists of a 

rectangular lattice of tubular objects embedded in a spherical domain to emulate a 

configuration of blood vessels embedded inside a brain image. Fig. 3 depicts the original 

phantom lattice, the filter responses and the ROC curves obtained for each filter. Fig. 3A 

shows that the Sato response loses signals in bifurcations and that it was unable to suppress 

the surrounding sphere. The Frangi filter in Fig. 3B suffers from artifacts at the intersection 

of the sphere with tubes. The quality of intensity enhancement achieved by the Shikata 
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procedure is poor as shown in Fig. 3C. The lattice structure detected by the Erdt filter in Fig. 

3D is severely distorted by the surrounding sphere. The image filtered by MCF in Fig. 3E 

renders the lattice with bright intensity. There is slight blurring where tubes and background 

intersect. The ROC curve confirms that the MCF filter has the best statistical performance 

with the analysis of area under the curve of 0.94. Moreover, for every threshold, the MCF 

curve is pareto-optimal, meaning that it has higher or equal true positives, for a given false 

positive level. The MCF also has the highest dice coefficient of 0.89 among all filters, 

including Frangi with 0.85, Sato with 0.82, Shikata with 0.75 and Erdt with 0.63.

We further analyzed the performance of all filters with respect to connectivity in this case 

study with ten bifurcations. The Sato and Frangi filters give faint signals for all bifurcations 

as seen in Fig. 3A and 3B. Moreover, the two filter algorithms introduce dark stripe artifacts 

close to bifurcations. The Shikata, Erdt and MCF filters have no stripe artifacts. We counted 

the number of correctly detected bifurcations as well as false positives with respect to 

different intensity thresholds that mark a cutoff above which a voxel is considered to belong 

to a blood vessel. We count a bifurcation as connected when all six neighboring voxels are 

categorized as members of blood vessels. This analysis summarized in Table 1 demonstrates 

that the MCF correctly labeled all ten bifurcations without any false positives for the 

selected intensity thresholds.

We further used the ground truth diameter information to measure the fidelity of diameter 

reconstruction. All tubes in the artificial tube network had a diameter of 5 voxels. Diameter 

reconstruction with the Sato filter results in average of 5.2 with standard deviation of 0.3, the 

Frangi filter with 5.1±0.2, the Shikata filter with 5.3±0.5, and the Erdt filter with 5.4±0.2. 

The MCF with 5.1±0.1 was closest to the correct value.

3D microcirculation (network phantom)—The second phantom establishes a more 

physiologically realistic ground truth scenario against which filter performances were 

evaluated. It consists of a 3D microcirculatory network overlapped with an oval shaped 

backdrop to resemble arterioles within a cerebral sulcus. Bifurcating trees and branches were 

generated by a constructive growth algorithm to emulate the topology of the cerebral 

microcirculation (34, 41). The MCF filter eliminates the background as shown in Fig. 4a. 

The other filters erroneously characterize the sulcus as blood vessels. This artifact is 

especially severe in the Shikata filter. The Frangi filter suppresses the background, but fails 

to amplify vessel intensity. The MCF filter correctly identifies all arterioles, and eliminates 

the backdrop as desired. The ROC curve in Fig. 4b also indicates that the MCF has the best 

statistical performance with an area under the curve of 0.81. The MCF excels over all other 

filter by detecting more or equal vessels at any false positive level, making the MCF pareto-
optimal. The dice coefficient similarity analysis of the MCF gives 0.73, Frangi with 0.68, 

Erdt with 0.64, Shikata with 0.62 and Sato with 0.56.

We further measured how many of the 114 bifurcations in the microcirculatory phantom 

were correctly detected by each filter. Using the same criteria introduced above, the number 

of correctly detected bifurcation connections are given in Table 1 for each filter. All filters 

lose some bifurcations in the smallest diameter range (d∼1 voxel). However, the MCF 

always surpasses other algorithms for all threshold levels without creating false positives.
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The microcirculatory network phantom also featured branches with thin diameters between 

one to three voxels, a dimension close to the theoretical image feature threshold. Results of 

the statistical analysis for three diameter ranges (1-3 voxels) are summarized in Fig. 4c. It 

demonstrates that all filters tend to overestimate the size of the thinnest branches (d=1 

voxel). For three voxels thick vessels (d=3 voxels), reconstruction with Sato filter gives a 

mean value of 2.5 voxels with standard deviation of 0.5 voxels, the Frangi filter 2.2±0.2, 

Shikata 3.1±0.3, and Erdt 3.3±0.5. The MCF gave 3.0±0.1, which is again the closest 

estimate. The bar graph in Fig. 4c also indicates that diameter reconstructions with Sato and 

Erdt filters have very large variance. The Frangi underestimates vessel diameters in the two 

and three voxel range. The diameter reconstruction of the Shikata response was limited to 

vessels outside the sulcus, since the filter wrongly recognizes the sulcus as a blood vessel, 

preventing diameter reconstruction of vessels in the interior of the domain. We also found 

that MCF overestimates vessels of one voxel in diameter by 10%, which is inevitable when 

using Gaussian smoothing.

Surface distance error and positional offset: Surface distance errors and positional offset 

were further analyzed in the 3D microcirculation phantom. The phantom serves as an ideal 

reference, because the true diameter and coordinates of the original object were exactly 

known and could be compared objectively to filtered artifacts. We rigorously computed for 

each vascular segment the surface distance error (SDE) between the original network 

coordinates and the coordinates of the MCF segmented model. Fig. 4a also shows a color 

coded SDE map, according to which, surface distance error with MCF is less than 0.5% 

everywhere, which is an acceptable deviation. Fig. 4d provides the statistical analysis of the 

SDE, indicating that relative surface distance errors are largest in smallest vessels. Since one 

voxel thick vessels are equal to the imaging threshold, this error cannot be eliminated 

entirely. We also computed the probability density function as depicted in Fig. 4d.

Moreover, results of the analysis of positional offset due to imaging, filtering and 

segmentation are summarized in a color coded map in Fig. 4a. Here, the exact position of the 

centerlines in the ground truth network was subtracted from the locations of the segmented 

network. The norm of the difference was plotted for all segments, indicating that the largest 

offset occurs also at smaller vessels as expected. The positional error is always less than 

10μm as shown in Fig. 4d.

These two results demonstrate that the MCF and segmentation do not induce significant 

position or diameter errors. Deviations from the ground truth at the resolution level are 

minor and unavoidable.

Subject-Specific Computational Meshes from MRA and MRV

We also quantified filter performance using subject-specific image data in a sample group of 

six subjects. The workflow of Fig. 1 illustrates steps for generating three dimensional 

computational meshes from filtered images of six volunteers. The networks reconstructed 

with prior filters encompass only the COW and the initial segments of the ACA, MCA, and 

PCA (data not shown). The ACA territory is poorly reconstructed in all previous filters. By 

contrast, the MCF recognizes the arterial tree including a large portion of the pial network 
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while maintaining physiological network connectivity without dangling segments. Fig. 5 

shows the raw image data and the vessel enhanced intensity map, as well as reconstructed 

arterial and venous trees for six subjects. The reconstructed trees clearly delineate the 

subject-specific vascular topology. The cortical surfaces shown in Fig. 5 were reconstructed 

using the method introduced by Dale et al (32).

Quantification of filter performance with in vivo image data—Number of 

segments, length, and volume of the segmented vascular trees were used as metrics to assess 

filter performance. The size of the reconstructed vasculature was estimated by computing the 

number of segments, total length of segments and the volume enclosed by the surface mesh. 

Larger and longer trees indicate that a larger portion of the subjects' vascular network was 

reconstructed by the filter. All statistics are listed in Table 2, including total number of 

segments, arterial length, venous length, arterial volume, and venous volume.

On average, the MCF detects arterial trees with more than 6000 segments and a total length 

exceeding five meters. Statistics for each of the six individuals are summarized in the bar 

charts of Fig. 6 and the tabulation of Table 2. The number of segments and length of the 

arterial networks identified with MCF are at least three times more complete than the best of 

the prior filters. A similar advantage of three times the number of segments and three times 

of length is achieved in the venous trees. Moreover, the novel MCF successfully segmented 

on average three times larger arterial volumes with 6.09 mL. By comparison, Frangi filter 

only recovered a tree with 1.59 mL, Shikata filter with 1.32 mL, Sato filter with 1.20 mL, 

and Erdt filter with 0.62 mL. We also measured the volumes of the venous trees. The MRV 

captured major branches of the cerebral venous system, including the superficial and deep 

structures. The novel MCF detects 20.28 mL of the venous volume for subject 1. The Frangi 

filter gives a venous tree with only 4.83 mL, Erdt filter with 3.57 mL, Sato filter with 4.05 

mL, and Shikata filter with 3.52 mL. The MCF typically achieved three times higher volume 

recognition rate compared to other filters.

These metrics show that MCF surpasses all prior vesselness filters. The MCF also preserves 

network connectivity which greatly simplifies the labeling of vascular territories. Color 

coded ACA, MCA, and PCA territories for the six subjects are depicted in Fig. 5. The 

labeling shown here was done manually, but can readily be automated. The statistics of 

volume, surface area, mean diameter and segment number for each territory are summarized 

in Table 3. The data also show that the MCF diameter reconstruction of main arteries and 

pial vessels agree with values reported in the literature (35-37). The agreement supports the 

notion that the MCF segmentation procedure does not induce diameter artifacts.

Discussion

Automatic vessel segmentation aims at reconstructing the entire cerebral vascular tree from 

MR images by enhancing blood vessel contrast across multiple length scales. Prior 

vesselness filters often fail to detect small tortuous vessels close to bifurcations resulting in 

incomplete segmentation of vascular trees. The novel MCF preserves the connectivity by 

combining the advantages of two separate contrast enhancement functions C1 and C2. C1 

identifies tubular objects, while C2 magnifies vessel contrast without creating dangling 
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segments. The multi-scale composite filter optimizes the contrast of the cerebral 

angioarchitecture across all length scales. Normalization along with thresholded levelsets in 

the fast marching achieved reasonably accurate diameter reconstructions.

The computational time for the MCF is roughly twice than that of the previous filters with 

total CPU time under 99s. The computational time could be further accelerated with parallel 

processing and GPU computation (31). Filter performance in terms of contrast enhancement, 

connectivity, surface distance error and positional offset was quantified in phantom studies. 

In all cases, MCF achieved the best score outperforming all prior algorithms.

We also performed expert manual delineation of the Circle of Willis. The ground truth was 

established by a neurosurgeon with more than 20 years of experience. The manually traced 

trajectory of major arteries in the raw image was compared to automatically reconstructed 

centerlines of the MCF image. No significant positional offset could be detected between 

manual and automatic segmentation (data not shown). However, the surgeon failed to 

identify significant structures such as the left and right posterior communicating arteries 

(PCOM) due to extensive blur in the raw image. This can be seen in Fig. 2. On the other 

hand, the MCF image clearly depicted both PCOMs as shown with arrows in Fig 2E. A 

similar limitation of the expert manual delineation was observed when trying to trace pial 

arteries (data not shown). Weak contrast impeded manual delineation of pial vessels, which 

only came to light in the MCF enhanced image. Given the inability even to trace prominent 

arteries in the COW by hand, we chose not to proceed with further manual delineation as a 

test for filter performance. Moreover, the large number of more than 6000 segments in each 

subject poses a practical limit on manual segmentation by expert surgeons or radiologists.

We successfully segmented subject-specific arterial and venous trees from in vivo data 

acquired in healthy human volunteers. The novel filter segmented a three times larger 

portion of the arterial and venous trees than any previous filter. The MCF enables the fully 

automatic reconstruction of the cerebrovascular angioarchitecture without requiring user 

supervision or input. The reconstructed subject-specific computational meshes can be used 

for CFD simulations of blood flow in the entire arterial or venous tree (39).

Limitations

The quality of the reconstructed vessel networks depend on the resolution of the acquired 

images. In the imaging study, the cerebral microcirculation could not be visualized since it is 

well below the image resolution of current MR scanners. The reconstruction of the venous 

network also suffers from the limited image quality because of slower venous flow. Because 

a 2D INHANCE sequence was used to acquire MRV, inter-slice discontinuity may diminish 

the reformatted 3D image quality. This limitation could be eliminated by using partially 

overlapping slices (i.e., negative slice gap) at the expense of increased number of slices to 

cover the brain, or by a 3D pulse sequence at the cost of longer acquisition time. The 

original MRA image contained some signals coming from the veins; these were eliminated 

by subtracting segments from the arterial image that are also registered in the MRV.

Hsu et al. Page 12

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

A novel multi-scale composite filter utilizes the eigenvalues of the Hessian matrix to achieve 

blood vessel enhancement over all relevant length scales. Our results confirm the feasibility 

of generating subject-specific computational meshes, with sufficient detail to track the ACA, 

MCA, and PCA territories in individual subjects almost down to the level of the pial 

network. Enhanced images provide more complete information about the pial blood supply 

for physicians to assess the status of the patient's cerebrovascular angioarchitecture.

Moreover, our filtering process enhances both large and small vessels without compromising 

network connectivity. The MCF allows the fully automatic reconstruction of major portions 

of the cerebrovascular network for the generation of high quality subject-specific 

computational meshes. The proposed automatic image segmentation could also be useful for 

computer-aided reconstruction of vascular trees to extract biometrics associated with 

pathological conditions in large data sets without variations caused by operator subjectivity 

(38). The novel filter will enable future studies on hemodynamic simulations of blood flow 

through the subject-specific angioarchitecture. This technology will be useful in predicting 

the outcome of planned intervention such as bypass surgery, stenting, or coiling of 

aneurysms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow for automatic computational mesh generation of subject-specific vascular trees. 

First, raw MRA/MRV images are processed with vesselness filters for contrast enhancement 

of the cerebral vessel network. The filtered image crisply outlines the vasculature and is used 

as input for mesh generation. The fast marching algorithm with a cutoff threshold creates a 

connected domain in which geodesic levels are computed for each voxel with the zero level 

at the edges. The geodesic level map is then scanned by the marching cubes algorithm to 

extract physical coordinates of the zero level. This information is used to build a connected 

surface mesh enclosing the cerebral vasculature. We apply the maximal inscribed sphere 

algorithm onto the surface mesh to retrieve diameter and centerline information. Parametric 

hexahedral meshes can then be generated using the diameter and centerline for 

computational fluid dynamics studies.
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Figure 2. 
Maximum intensity projections of the raw MRA and five filter responses (A-E) in axial, 

sagittal, and coronal views as well as zoomed in detail around the circle of Willis. Top row. 

Raw MRA images. Filtered images from: A. Sato, B. Frangi, C. Shikata, D. Erdt, and E. 

Multi-scale composite filter (MCF). The MCF (frame E) crisply delineates the arterial tress 

down to the pial network and successfully suppresses non-vascular tissue signals and 

background noise. The magnified views in the right column show that the PCOMs are not 

detectable in the raw images (red arrows in top row). The MCF clearly depicts both PCOMs 

(red arrows in row E).
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Figure 3. 
Statistical analysis of filter performance in a 3D lattice phantom. Top left, raw phantom 

image representing a tubular network inside a spherical background. A. Sato filter response. 

B. Frangi filter response. C. Shikata filter response. D. Erdt filter response. E. Multi-scale 

composite filter (MCF) response. The presence of the backdrop introduces noise in all 

filters. Visual inspection shows that the MCF produces the sharpest delineation of the vessel 

lattice. The ROC analysis, summarized at the bottom, quantifies the performance of the five 

filters (A-E) by computing the ratio between true positives (voxels categorized as vessels in 

both raw and filtered images) and false positives (voxels not categorized as vessels in the 

raw image but identified as vessels in the filtered image). Continuous ROC curves track 

computed true positive and false positive ratio for every threshold level between zero and 

unity (0<Ithreshold<1). The MCF ROC curve (E) is pareto-optimal with respect to all prior 

filters at all threshold levels (A-D).
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Figure 4. 
Visual and quantitative comparison of filter performance in a 3D network phantom study. 

(Panel a. top-left). The phantom consists of a microvascular tree embedded in an oval object 

mimicking a cerebral sulcus. A. Sato filter response. B. Frangi filter response. C. Shikata 

filter response. D. Erdt filter response. E. Multi-scale composite filter (MCF) response. The 

sulcus raises the noise level and introduces false vessel positives in all filters. Surface 

distance error and positional offset were analyzed as ground truth comparison with further 

details given in Panel c. (Panel b). The entire range of possible thresholds, (0<Ithreshold<1), 
was evaluated to plot the ROC curve for each filter. The ROC curves show that the MCF has 

the best trade-off for true positives at any level of false positives for vessel characterization, 

hence the MCF is pareto-optimal.
(Panel c). Bar graph summarizes the quality of diameter reconstruction of filter (A-E). Dark 

gray bar with dot marks the true diameter (1, 2, and 3 voxels respectively). The MCF 

response (E) is closest to the ground truth diameters.

(Panel d). Top bar graphs show the surface difference error between ground truth and 

segmentation and the probability density functions of the surface distance error. The largest 

surface difference error is 5μm. Bottom right bar graphs show the positional offset between 

the ground truth and segmentation. The maximum positional offset is 10μm from the ground 

truth. This shows that imaging and segmentation do not introduce significant errors in vessel 

diameters and position.
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Figure 5. 
Reconstruction of the arterial and venous angioarchitecture from six subjects. First column. 

Superposition of raw MRA and MRV images. Second column. Superposition of filtered 

MRA and MRV images showing both the arterial and venous signal enhancement. Third 

column. Axial display of subject-specific arterial (red), venous (blue) and cortical surface 

meshes (grey). Fourth column. Arterial surface meshes labeled according to main territories, 

ACA (red), RMCA (purple), LMCA (yellow), PCA (green), and ICA (blue).
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Figure 6. 
Quantification of recognition rate of arterial and venous trees in numbers of segments, 

length, and total volume for six human subjects. The top bar graphs show the number of 

segments in the arterial and venous trees. MCF gives on average 6000 segments which is 

roughly three times the number found by the second best filter. The middle bar graphs show 

that the length of segmented arterial tree is about 5 meters, the venous trees measured 1.4 

meters. The MCF trees are 3-5 times longer than the existing filters. The bottom bar graphs 

show the volumes of the arterial and venous trees reconstructed for each subject with each 

filter (A-E). The volume segmentation gives 6.4 ml arterial tree and 21 ml in the venous tree. 

These volumes are three to five times higher in the MCF compared to previous filters. The 

MCF excels above other filters in all metrics including number of segments, length and 

volume.
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