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Bees are thought to be strict users of carbohydrates as metabolic fuel for flight.

Many insects, however, have the ability to oxidize the amino acid proline at a

high rate, which is a unique feature of this group of animals. The presence of

proline in the haemolymph of bees and in the nectar of plants led to the

hypothesis that plants may produce proline as a metabolic reward for pollina-

tors. We investigated flight muscle metabolism of hymenopteran species using

high-resolution respirometry performed on permeabilized muscle fibres. The

muscle fibres of the honeybee, Apis mellifera, do not have a detectable capacity

to oxidize proline, as those from the migratory locust, Locusta migratoria, used

here as an outgroup representative. The closely related bumblebee, Bombus
impatiens, can oxidize proline alone and more than doubles its respiratory

capacity when proline is combined with carbohydrate-derived substrates.

A distant wasp species, Vespula vulgaris, exhibits the same metabolic pheno-

type as the bumblebee, suggesting that proline oxidation is common in

hymenopterans. Using a combination of mitochondrial substrates and inhibi-

tors, we further show that in B. impatiens, proline oxidation provides reducing

equivalents and electrons directly to the electron transport system. Together,

these findings demonstrate that some bee and wasp species can greatly

enhance the oxidation of carbohydrates using proline as fuel for flight.
1. Introduction
Animals can power cellular metabolism with carbohydrates, lipids or proteins.

The relative importance of these various fuels does not only depend on the

intensity of energy metabolism (reviewed by Weber [1]), but also on ecological

requirements and dietary opportunities shaped by evolutionary mechanisms.

In insects, such diversity in metabolic fuel use and muscle cell phenotypes

has been well characterized during flight [2], a strictly aerobic activity [3].

Species that perform long-term flights have been exemplified by the migratory

locust (Locusta migratoria), whose muscles use carbohydrates during the initial

phase of flight and lipids to sustain activity [4]. By contrast, some blood-feeding

insects use the amino acid proline as their main fuel even though most animals

avoid relying on proteins. This unique strategy has been well documented in

the tsetse fly [5,6], whereas other species such as the honeybee (Apis mellifera)

are thought to have become exclusive carbohydrate users, probably because

of the high intensity of hovering flight and dietary specialization [7]. The honey-

bee has become the poster child for all bees, a group estimated at over 20 000

species [8]. Multiple lines of evidence support the idea that A. mellifera only

fuels flight with carbohydrates as indicated by its respiratory quotient of 1

(ratio of CO2 produced to O2 consumed) measured during flight [9,10]. Respiro-

metry studies conducted on other bee species also support the notion that

carbohydrates are used as the primary fuel [7,11]. Studies conducted at the

muscle tissue level clearly show that the metabolic phenotype of A. mellifera
is geared towards the oxidation of carbohydrates and cannot use lipids [3,12].

Such metabolic organization has become the blueprint for studies investigating

energy metabolism in this group of animals [13–16].
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Figure 1. Energy metabolism pathways of the flight muscle of hymenopteran species such as the bumblebee Bombus impatiens and the wasp Vespula vulgaris. AAT,
alanine aminotransferase; ETS, electron transfer system; GPDH, glycerol-3-phosphate dehydrogenase; MDH, malate dehydrogenase; ME, malic enzyme; ProDH, proline
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The ability of the honeybee to use proline has been

investigated, given the substantial concentration of this amino

acid in haemolymph and in honey [17–21]. Several studies

measuring changes in thoracic or haemolymph proline content

of A. mellifera have concluded that the contribution of this amino

acid is minimal [22,23]. Similarly, in A. mellifera drones, some

proline may be oxidized, but the amount is negligible compared

with carbohydrates [17]. The activity of enzymes involved in

proline oxidation is too low in A. mellifera to use it at a high

rate [12]. In contrast, a recent study indicates that proline

may be an important mitochondrial substrate in A. mellifera
[24]. Some plant studies indicate that flower nectar contains a

substantial amount of proline, and that it is actively produced

by the plant rather than contamination from pollen [25]. Proline

can have multiple functional roles in plants against abiotic stress

such as drought or high salinity [26,27], but its use as a metabolic

fuel by pollinators has been proposed [28].

The capacity of insect flight muscles to use proline has been

initially described in the blood-feeding tsetse fly [5,6,29], and

more recently in mosquitoes [30–32], but it is not phylo-

genetically constrained to dipterans. Other groups of insects

such as beetles display the ability to oxidize proline in combi-

nation with carbohydrates [33–38]. Therefore, capacity for

proline metabolism appears labile within insects and could

have played a significant role in the metabolic evolution of

this group of animals. Proline oxidation involves a few steps

catalysed by enzymes of the mitochondrial matrix before

integration in the tricarboxylic acid cycle (TCA; figure 1). Initial

accounts in insects showed that proline acts as a carbon source to

replenish TCA cycle intermediates (defined as an anaplerotic

role), thereby allowing maximal flux through the TCA cycle

during the oxidation of carbohydrates [39–41], especially

important during the transition from rest to flight [42]. A wide

range of strategies is found across beetle species, with some

using proline as a co-substrate with carbohydrates and others

using proline nearly exclusively as a metabolic fuel [33].

The proposed hypothesis that proline may be used as a

metabolic reward for pollinating insects, combined with the
observation that proline is important to elicit maximal respir-

ation of bumblebee flight muscle [15], led us to investigate

proline metabolism in hymenopterans. The goals of this study

were (i) to determine if hymenopterans can oxidize proline in

flight muscles and if this ability varies across species and

(ii) to assess if proline acts in a strictly anaplerotic role to

assist carbohydrate oxidation or if it can be oxidized alone.

To achieve these goals, we have conducted high-resolution

respirometry measurements on isolated flight muscle from

four different species: the honeybee A. mellifera, the closely

related bumblebee Bombus impatiens, the distantly related

yellow-jacket wasp Vespula vulgaris and the migratory locust

L. migratoria as an outgroup species.
2. Methods
(a) Insects
Mature adult bumblebees (B. impatiens), honeybees (A. mellifera)

and yellow-jacket wasps (V. vulgaris) were captured on the

University of Ottawa campus on the day of each experiment.

Migratory locusts (L. migratoria) were used as outgroup species

and obtained from a captive colony maintained by Dr Jeff

Dawson (Carleton University, Ottawa, ON).

(b) Flight muscle fibres isolation and permeabilization
Individuals were placed at 48C for 15 min, and then weighed and

dissected to isolate the thorax. All further manipulations were

performed on ice. Flight muscle fibres were isolated in an

ice-cold preservation buffer (BIOPS [43], containing 10 mM Ca-

EGTA buffer, 0.1 mM free calcium, 20 mM imidazole, 20 mM

taurine, 50 mM K-2-(N-morpholino)ethanesulfonic acid (MES),

0.5 mM Dithiothreitol (DTT), 6.56 mM MgCl2, 5.77 mM ATP,

15 mM phosphocreatine, pH 7.1). Between 1 and 2 mg of

muscle fibre were weighed after removing excess buffer by

dabbing fibres on a dry Petri dish and immediately placed

in 100 ml of respiration buffer (mitochondrial respiration

medium, MIR05 [43], containing 0.5 mM EGTA, 3 mM MgCl2,

60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM
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HEPES, 110 mM sucrose and 1 g l21 of fatty acid-free bovine

serum albumin, pH 7.1 at 308C) before transfer to the respiro-

meter chamber. During preliminary experiments, we tested

other conditions for chemical permeabilization that did

not improve respiration rates and, therefore, conducted all

experiments using mechanical permeabilization only.

(c) High-resolution respiration rate
Oxygen consumption and the respiration rate of thorax muscle

fibres were measured using a high-resolution respirometer

(Oxygraph-2 k, Oroborosw Instruments, Innsbruck, Austria). The

muscle fibres were placed in 2 ml of MIR05 in respirometer

chambers, and O2 was added to reach a concentration of approxi-

mately 350 nmol O2 ml21. Additional experiments showed that

respiration rates remained unaffected by O2 concentration in the

range of 500 and 150 nmol ml21. Therefore, chambers were

reoxygenated when reaching 150 nmol O2 ml21. All assays were

conducted at 378C, selected as a representative of thoracic tempera-

ture of the studied hymenopteran species in flight (A. mellifera [44],

B. impatiens [16], V. vulgaris [45]). Electrodes were calibrated daily,

and background rates were assessed every two weeks [46]. Sub-

strates and inhibitors were added successively with Hamilton

syringes following different protocols (see next paragraph), and

concentrations used were based on [47] or adjusted to saturating

levels during preliminary experiments. Respiration rate of permea-

bilized fibres was measured following addition of substrates for

complex I of the electron transport system (ETS), pyruvate

(5 mM) and malate (2 mM), plus ADP (2.5 mM). Complex II was

stimulated by addition of succinate (10 mM). Proline was added

at a concentration of 10 mM, and the concentrations of the other

substrates tested were 16 mM for glycerol-3-phosphate (G3P)

and 0.1 mM for palmitoylcarnitine (PC). Mitochondrial membrane

integrity was verified by the addition of cytochrome c (10 mM).

Statistical analyses showed that respiration rates did not differ

between samples that responded or not to cytochrome c, and,

therefore, all samples were combined for further analysis. The con-

centrations of inhibitors were 0.5 mM for rotenone (Rot), 15 mM for

malonic acid (Mna) and 2.5 mM for antimycin A (Ama).

(d) Respiration rate measurements: substrates and
inhibitors protocols

To test differences in proline oxidation capacities among species

(B. impatiens, n ¼ 13; A. mellifera, n ¼ 11; V. vulgaris, n ¼ 11,

L. migratoria, n ¼ 6), we stimulated respiration associated with

complex I by adding pyruvate, malate and ADP. We then assessed

the subsequent oxidation of proline, followed by succinate, the

substrate for complex II. We then sequentially inhibited complex

I, II and III by adding the specific inhibitors rotenone (Rot—

complex I), malonic acid (Mna—complex II) and antimycin A

(Ama—complex III). Muscle fibre respiration rates are within the

range reported for other insect species [48,49], reflecting a similar

yield of functional mitochondria as commonly found with such

preparation [50].

To identify the relative contribution of substrates and the points

of entry of reducing equivalents in the ETS, we further character-

ized mitochondrial metabolism in B. impatiens (n ¼ 8 for each

protocol) by contrasting respiration rates obtained when (i) proline

alone was present, (ii) after stimulating complex I (pyruvateþ
malateþ ADP) and II (succinate), (iii) after stimulating complex I

and adding proline, and (iv) by stimulating complex I and II first,

before adding proline. These protocols were followed by sequential

addition of inhibitors of complex I, II and III (Rot, Mna, Ama,

respectively), to determine respiration rates independent of each

complex. We also assessed the capacity of B. impatiens muscle

fibres to oxidize PC, and tested if G3P can enhance respiration in

the presence of substrates eliciting maximal respiration (pyruvate,

malate, ADP and proline).
(e) Calculations and statistical analyses
Respiration rates (pmol O2 s21 mg21) obtained for each substrate

or inhibitor added were calculated using the Oroboros DATLAB

software (see electronic supplementary material, figure S1 for

traces). To take into account variation in fibre preparation, quad-

ruplicate measurements were performed for each individual and

averaged to represent individual data. Mean values and standard

errors for each substrate or inhibitor are reported. Also, all data

were analysed and normalized to maximal respiration with all

substrates present. This allowed comparing relative changes in

respiration rate associated with each substrate while controlling

for variation in maximal respiration rate between preparations

and species. Results were essentially the same, and therefore,

only absolute values are reported, except figure 3 that reports

relative respiration rate associated with proline.

Interspecific differences and the effects of sequential addition

of substrates and inhibitors on respiration rates were tested using

two-way ANOVA for repeated measures, using SIGMAPLOT v. 12

software. Pairwise comparisons with adjustments for multiple

comparisons (Holm–Sidak method) were conducted to detect

further differences between species and substrates or inhibitors.

For the relative respiration rate associated with proline presented

in figure 3, statistical results reported were obtained from a

two-way ANOVA for repeated measures conducted on all data

normalized for maximal respiration. Further analysis on the

bumblebee B. impatiens data used one-way ANOVA for repeated

measures and Holm–Sidak post hoc test adjusted for multiple com-

parisons. All data were tested for normality and homoscedasticity,

and the level of significance was set at p , 0.05.
3. Results
(a) Interspecific differences in proline oxidation
The sequential addition of substrates and inhibitors showed

marked differences in the rates of oxygen consumption

among species (figure 2). A two-way ANOVA with repea-

ted measures showed an interaction between substrate

and species (substrate: F5,185 ¼ 225.0, p , 0.001; species:

F3,185 ¼ 9.5, p , 0.001; substrate � species: F15,185 ¼ 3.8, p ,

0.001). Pairwise comparisons first showed that the rates

measured after stimulation of complex I using pyruvate þ
malate did not differ among the four species (range: 75.0+
15.2–124.6+20.7 pmol O2 s21 mg21, 0.312 , p , 0.991); note

that the rates obtained before the addition of ADP were mini-

mal (5.86+18.7 pmol O2 s21 mg21). The addition of proline

increased the respiration rate in bumblebees and yellow-

jacket wasps ( p , 0.001), and the respiration rate

did not differ between them (291.7+41.7 and 256.5+37.3;

p ¼ 0.979). Proline did not increase the respiration rate in the

honeybee or locust ( p ¼ 0.275 and p ¼ 0.931, respectively),

and both species did not differ in respiration rate in the pres-

ence of this substrate ( p ¼ 0.09). The relative contribution of

proline to flight muscle fibre maximal respiration capacity, cal-

culated as the increase in rate owing to proline addition

divided by the maximal respiration rate with all substrates pre-

sent, corresponds to 52+4% and 48+2% in the bumblebee

B. impatiens and the wasp V. vulgaris, respectively, but proline

shows no significant contribution in the honeybee A. mellifera
and locust L. migratoria (figure 3). The addition of succinate,

the specific substrate for complex II, did not further increase

the respiration rate in bumblebees and wasps ( p ¼ 0.51 and

p ¼ 0.87, respectively). By contrast, succinate increased the

respiration rate in honeybees by 40% ( p ¼ 0.038), but the

increase in locusts was not detected as significant ( p ¼ 0.139).
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In the presence of all substrates, bumblebees and wasps had

higher respiration rates than locusts ( p ¼ 0.006 and p ¼ 0.010,

respectively), but honeybees could not be distinguished from

other species.

The addition of inhibitors further shows the differences in

mitochondrial metabolism among species. All species had a

decreased respiration rate when complex I inhibitor, rote-

none, was added ( p , 0.01; figure 2). Moreover, the pair of

species B. impatiens/V. vulgaris differed from A. mellifera/

L. migratoria in the presence of rotenone ( p , 0.005), indicat-

ing a large difference in complex I-independent respiration.

The respiration rate obtained in the presence of rotenone

was 50% and 43% of maximal respiration in B. impatiens
and V. vulgaris, respectively, whereas only 26% and 32% of

maximal respiration in A. mellifera and L. migratoria. The sub-

sequent addition of complex II inhibitor, malonate, decreased

respiration in all species ( p , 0.05) that all showed the same

low oxygen flux (0.176 , p , 0.774), ranging from 6% to 12%

of maximal respiration rates. Finally, the addition of complex

III inhibitor, antimycin A, did not further decrease respiration

in all species (0.080 , p , 0.904), where all species had simi-

lar values except L. migratoria that had lower respiration than

bumblebees ( p ¼ 0.021).

(b) Mitochondrial metabolism of bumblebee flight
muscle

The importance of proline as a substrate for bumblebee flight

muscle is further demonstrated by contrasting oxidation of

other substrates, such as pyruvate þmalate (complex I) or suc-

cinate (complex II) with proline (figure 4). Respiration rates

obtained using pyruvate þmalate did not differ between

the different protocols tested ( p . 0.05) and ranged from

145.3+13.9 to 160.5+15.8 pmol O2 s21 mg21. The addition

of proline enhanced bumblebee muscle respiration rate by

more than twofold to reach values over 300 pmol O2 s21 mg21

(figure 4c), with no further increase after addition of succinate

(figure 2). By comparison, the addition of succinate, a specific

substrate for complex II, led to a smaller increase in respiration
rate, corresponding to about 1.5-fold increase from complex I

(figure 4b,d). Moreover, once complex I and complex II were

stimulated using pyruvate þmalate and succinate, the

addition of proline increased respiration values to more than

300 pmol O2 s21 mg21 (figure 4d), the same rate observed

when complex I and proline were tested alone (figure 4c).

The effect of inhibitors differed in the presence of proline,

except with the inhibitor of complex III, antimycin A that

lowered respiration rates to 20 pmol O2 s21 mg21 or less in

all cases (figure 4). In the absence of proline (figure 4b), the

complex I inhibitor rotenone reduced respiration by 75%

( p , 0.001), and addition of malonate (complex II inhibitor)

further reduced respiration by 18% of maximal respiration

( p , 0.001). The addition of antimycin A did not further

decrease respiration ( p ¼ 0.636). In the presence of proline

(figure 4a), rotenone reduced respiration by 21% ( p , 0.005),

and addition of malonate further reduced respiration by 46%

of the maximal respiration ( p , 0.001). The addition of antimy-

cin A reduced the respiration rate by another 24%, but the rate

obtained could not be distinguished from the rate with malo-

nate ( p ¼ 0.093). When proline was added in the presence of

succinate (figure 4d ), rotenone inhibited respiration by 41%

( p , 0.001), malonate by an additional 52% ( p , 0.001) and

antimycin A did not further decrease respiration ( p ¼ 0.638).

Finally, we assessed the capacity of bumblebee muscle to oxi-

dize fatty acids using PC as a substrate and found no increase in

respiration from routine respiration (electronic supplementary

material, figure S2). The contribution of G3P to fibre respiration

was also tested to assess if maximal respiration capacity of the

fibre was achieved. The addition of G3P did not increase respir-

ation in the presence of pyruvate þmalate and proline

(electronic supplementary material, figure S2; p¼ 0.856).
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4. Discussion
(a) Proline metabolism in hymenopterans
Bees are thought to be strict users of carbohydrates as meta-

bolic fuel for flight. This study shows that the isolated flight

muscle of the honeybee A. mellifera appears to use carbo-

hydrates exclusively to power mitochondrial metabolism, but

that a species of its sister group, the bumblebee B. impatiens,
exhibits a large potential for ATP production via proline oxi-

dation. Moreover, the capacity to oxidize this amino acid

may be an important metabolic feature of hymenopterans as

a group, because the more distant species of wasp, V. vulgaris,
exhibits the same mitochondrial phenotype as the bumblebee.

These findings support the hypothesis that some hymenop-

teran pollinators can use proline from nectar as a metabolic

reward [28], although capacity for proline metabolism is a

diverse phenotype among bee species. This study also shows

that using the honeybee, A. mellifera, to exemplify the metabolic

physiology of hymenopteran muscle in general can be mislead-

ing. The second part of this work characterizes the

mitochondrial physiology of B. impatiens and shows that pro-

line more than doubles mitochondrial oxygen consumption,

compared with carbohydrate oxidation alone. Proline is also

oxidized alone and its metabolism supplies electrons directly

to the ETS.

The current results on nectar-feeding hymenopteran species

emphasize that proline metabolism is not strictly associated with
a protein-rich diet. The use of proline as a fuel to power flight was

initially associated with the protein-rich meal of blood-sucking

insects such as the tsetse fly [5,6] and more recently mosquitoes

[30–32]. However, the capacity to use proline is also clearly

associated with another important physiological role: enhancing

the oxidation of carbohydrates. This observation is not only sup-

ported by our experiments on hymenopterans, but also by

previous work on dipterans [39–41] as well as coleopterans

[33–38]. Proline is used as a single or combined fuel in many

groups of insects and, therefore, should be considered an

important metabolic feature for this class of animals.

Why some species of hymenopterans use proline as a

metabolic fuel to power flight may be explained by the

unique properties of this amino acid. First, compared with

other animals, insects can store fuels at high concentrations

in their haemolymph [51]. Carbohydrates are found in high

concentration largely owing to the presence of the non-

reducing disaccharide trehalose. Insects are also distinct in

the high level of free circulating amino acids, where proline

is predominant in many species [17,52–57]. The high solubi-

lity of proline makes it a readily available fuel in the flight

muscle and haemolymph, and does not necessitate any

specific carrier protein [1,33]. Proline can also serve as a

carbon shuttling molecule between lipid reserves in the

fat body and flight muscle [33,58,59]. Its partial oxidation

producing alanine yields 0.52 mol of ATP per gram, making

it much more similar to lipids (0.65 mol ATP g21) than
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carbohydrates (0.18 mol ATP g21) in terms of packing

energy [33]. Additionally, proline partial oxidation is osmoti-

cally neutral and free of nitrogen waste products. Clearly, the

potential of proline as metabolic fuel in insects has many

advantages beyond simple dietary opportunities.

Proline oxidation is common in insects, but how this prop-

erty evolved is not understood. Our results on hymenopterans

show that two species belonging to sister groups have opposite

phenotypes, where the honeybee has no appreciable capacity

to oxidize proline on its own or in combination with carbo-

hydrates, whereas the bumblebee and the more distant wasp

exhibit an impressive and equal ability to metabolize proline

and carbohydrates. Other accounts on bee species also suggest

little or no contribution of proline to mitochondrial metabolism

[11,22,23], including another bumblebee species [60]. The ulti-

mate evolutionary causes for these interspecific differences and

the proximate mechanisms underlying them remain to be

elucidated.

A recent study suggests that proline may increase honeybee

mitochondrial respiration by up to threefold [24], which is in

direct contrast with our findings and the multiple lines of evi-

dence supporting that proline may not be an important

metabolic fuel in A. mellifera [9,10,12,17,22,23]. However, the

interpretation of the results obtained by Campbell et al. [24]

presents some difficulties. First, it is possible that isolated mito-

chondria and permeabilized muscle fibre preparations show

different functional properties as reported in vertebrates [61].

A recent study on mosquitoes does not support this possibility

as the two preparations responded similarly to various sub-

strates, including proline [48]. Second, pyruvate and proline

concentrations in the Campbell et al. study were approximately

10-fold lower than normally used for isolated mitochondria in

insects [48,60]. The impact of working with such subsaturating

conditions is that pyruvate-stimulated respiration could be

well underestimated and that fold changes in respiration

could vary widely given a typical Michaelis–Menten kinetic

function. Lastly, the results of Campbell et al., cannot be used

to distinguish if proline simply plays an anaplerotic role by

increasing TCA cycle intermediates to oxidize pyruvate at

high rates, as suggested for other bees [7,60], or if proline is a

substantial oxidative substrate. As shown in another bee

species, the oxidation of pyruvate at its highest rate is achieved

by combining it with anaplerotic substrates that increase TCA

cycle intermediates, regardless of whether it was malate, gluta-

mate or proline [60]. To truly address if proline is a major

oxidative fuel or mainly an anaplerotic substrate, as well as

to determine the points of entry in the ETS, a combination of

substrates and inhibitors will have to be used as in [48] and

our study. Further work is clearly needed, but the current bal-

ance of evidence suggests that proline contributes little to

energy production capacity in A. mellifera, as supported by

our results on permeabilized muscle fibres.
(b) Flight muscle metabolic properties
Permeabilized muscle fibres enabled the investigation of the

fundamental metabolic properties of the flight muscle of the

bumblebee B. impatiens. Bumblebee permeabilized fibres con-

firm their inability to oxidize fatty acids. This feature relates to

the diet of bees and likely to their high metabolic rate. This has

been previously documented in the honeybee and a bumble-

bee species based on the low activity of enzymes involved in

lipid catabolism [12], as well as orchid bee species where
muscle homogenate cannot oxidize PC [7]. This lack of

capacity for fatty acid oxidation is probably a generalized

feature of bees and possibly hymenopterans as a group.

Insect mitochondria have been shown to be impermeable to

many TCA cycle intermediates [62], which led to the use of pro-

line to increase TCA cycle intermediates, also referred to as a

‘sparker’ metabolite in several studies conducted on insects

and viewed mostly as an NAD-linked substrate [7,49,63,64].

Proline is indeed an important metabolite used to replenish

TCA cycle intermediates and maintain the potential for pyru-

vate oxidation ([7,39–41,65], and possibly [24]). In such a

scenario, proline metabolism maintains metabolites of the

TCA cycle and the oxygen consumed by the mitochondria

would be largely NAD-linked. Our results show that addition

of proline alone induces cellular respiration, which is sub-

sequently only minimally inhibited by the complex I

inhibitor rotenone (figure 4a). Moreover, adding proline fol-

lowing stimulation of respiration by pyruvate (þ malate) in

the presence of ADP more than doubles the respiration rate,

but inhibition of complex I only reduces respiration by less

than 50% (figure 4c). The addition of complex II inhibitor malo-

nate shuts down oxygen consumption in all protocols tested

through its direct effect on the electron transfer system, but poss-

ibly combined to the backing up of metabolites of the TCA cycle

and affecting proline dehydrogenase by mass action. In bumble-

bees, the role of proline is more than simply an NAD-linked

substrate contributing to anaplerotic reaction to maintain path-

way intermediates. It is also a metabolic fuel as demonstrated

by the occurrence of partial or complete oxidation of proline at

a high rate.

The addition of proline to mitochondria oxidizing pyruvate

showed a greater increase in respiration than the addition of com-

plex II substrate succinate (figure 4b,c). In fact, the addition of

proline following stimulation of both complex I and II shows a

further increase in respiration rate (figure 4d). This result is

likely explained by electron convergence at the Q-junction

(ubiquinone; figure 1). The enhanced respiration following com-

plex I and II maximal respiration is typical of the contribution

of other enzymes reducing ubiquinone (Q oxidoreductase), a

property that has been described for proline dehydrogenase in

a variety of organisms [66–69] and recently described in the dip-

terans Drosophila melanogaster [70] and Aedes aegypti [48]. Another

Q oxidoreductase that is typically active in insects is the G3P

dehydrogenase, an enzyme located on the outer face of the

inner mitochondrial membrane. The addition of proline is remi-

niscent of the response of insect mitochondria to G3P that elicits

maximal mitochondrial respiration [49,60]. Moreover, we show

that the ETS reaches its maximal flux capacity when using pro-

line as G3P cannot further increase respiration (electronic

supplementary material, figure S2). Finally, mitochondrial res-

piration when pyruvate (þmalate) and proline are combined is

more than the sum of respiration rates obtained with substrates

used individually. Together, these findings indicate that pro-

line enhances pyruvate oxidation and provides reducing

equivalents to the ETS of B. impatiens mitochondria (figure 1).

In conclusion, the use of proline as a metabolic fuel by flight

muscles can greatly enhance carbohydrate oxidation in bee and

wasp species. The metabolic properties found in B. impatiens
show the potential to use proline as single fuel, at a lower

rate or as co-substrate with carbohydrates at much higher

rates. These findings suggest the possible role of proline as

alternate fuel to support muscle metabolism from resting con-

ditions to the high rate of energy production required during
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flight. This phenotype, however, appears diverse even

among bee species. The diverse ability to oxidize proline in

hymenopterans could be explained by the predictability of

carbohydrates sources, where species with honey stores may

have lost this phenotype and favoured strict carbohydrate oxi-

dation. Alternatively, proline oxidation may be associated with

the mobilization of fuel stored in the fat bodies, which cannot

be oxidized directly as fatty acids but could be shuttled in the

form of proline [33,58,59]. This phenotype may be especially

important during periods when dietary carbohydrates are

unavailable, such as early spring or overwintering. The impor-

tance of proline as fuel for flight in vivo will need to be clarified

in this group of insects, as well as how and why this trait

evolved in hymenopterans.
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