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ABSTRACT: A novel HIV protease inhibitor was designed
using a morpholine core as the aspartate binding group. Analysis
of the crystal structure of the initial lead bound to HIV protease
enabled optimization of enzyme potency and antiviral activity.
This afforded a series of potent orally bioavailable inhibitors of
which MK-8718 was identified as a compound with a favorable
overall profile.
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HIV protease is an aspartyl protease that catalyzes the proteolytic
cleavage of polypeptide precursors into mature enzymes and
structural proteins that are essential components of HIV.1

Inhibition of HIV protease prevents conversion of HIV particles
into their mature infectious form and is an important approach
for therapeutic intervention in HIV infection.2 HIV protease
inhibitors (PIs) have played a crucial role as a therapy for the
treatment of HIV.3,4 However, challenges still remain for these
molecules in the form of strict dosing regimens, high pill burden,
significant side effects, and the occurrence of resistant strains.5 In
addition, HIV PIs have traditionally suffered from poor
pharmacokinetic properties, including poor oral absorption and
low metabolic stability.6,7

The first crystal structures of inhibitors bound to HIV protease
were reported 25 years ago.8,9 Since then, structure based design
has played a key role in the development of new inhibitors.10 A
crucial structural feature of the majority of HIV PIs is the
presence of a hydroxyl group that forms a hydrogen bond with
the carboxylic acid functionalities of the catalytic Asp-25 and
Asp-25′ residues in the enzyme active site.11 We were interested
in pursuing analogues of inhibitors where an amine, instead of a
hydroxyl group, forms the key interaction with the Asp-25 and
Asp-25′ acidic residues of the enzyme.12 This type of inhibitor
was attractive to us due to the potential improvement in physical
properties offered by the polar amine functionality.

The starting point for the design of our compounds were the
pyrrolidine-type inhibitors such as 1 (Figure 1) reported by

Coburn et al.13 Although these molecules offered improved
solubility over their hydroxyl counterparts, the pyrrolidine
functionality introduced a number of undesirable off target
activities, which may be attributed to the presence of a basic
pyrrolidine nitrogen.14 This prompted us to consider designing a
new core that would maintain the solubility enhancing amine
functionality, while reducing the basicity of the nitrogen, with the
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Figure 1. Pyrrolidine based inhibitor 1 and proposed morpholine based
inhibitor 2.
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goal of reducing off target activity. To this end, we felt a
morpholine core offered a number of attractive properties. First,
the inductively electron withdrawing effect of the oxygen lowers
the pKa of the nitrogen; second the core provides access to a
number of vectors, which could be used to append substituents
to fill the remaining pockets of HIV protease.15 Our initial design
was the truncated analogue 2 shown in Figure 1. It was
envisioned that 2 would have sufficient affinity for the enzyme to
enable a crystal structure of the inhibitor bound to the enzyme to
be solved. This in turn could be used to design in the remaining
functionality required to produce a potent inhibitor.
Synthesis of 2 began with commercially available aldehyde 3 as

outlined in Scheme 1. Homologation and subsequent olefin

reduction afforded aldehyde 4. Reductive amination followed by
debenzylation afforded primary amine 5. Coupling of succinate
ester 616 with amine 5 afforded amide 7, which was deprotected
to yield desired product 2 as a mixture of diastereoisomers.
Although morpholine 2 was shown to be a modest inhibitor of

HIV protease (11% inhibition at 1 μM), we decided to pursue a
crystal structure of 2 bound to the enzyme. Pleasingly, a crystal
structure was solved as depicted in Figure 2. It can be seen from
this structure that the morpholine nitrogen of 2 indeed forms the
desired key interactions with the Asp-25 and Asp-25′ acidic
residues of the enzyme. In addition, the (R)-stereochemistry at
the 2-position of the morpholine appeared to be preferred, and it
could be seen that the two aryl groups occupy the S1 and S3
regions of the enzyme. With this valuable information in hand,
we sought to improve the binding affinity by adding appropriate
substituents to occupy additional key pockets of the enzyme.
The design of our next generation inhibitor was inspired by

overlaying the enzyme bound conformation of our initial
morpholine based inhibitor 2 with that of inhibitor 8, containing
a P2 aryl substituent17 as shown in Figure 2. This analysis
suggested that incorporation of an aryl P2 substituent into our
morpholine based inhibitors could be beneficial for enzyme
affinity. In addition, it was evident that a substituent at the 5-
position of the morpholine could be used to reach out and
occupy the S1′ pocket of the enzyme. This led us to pursue
compound 9a.
Synthesis of 9a is depicted in Scheme 2 and began by reaction

of amino alcohol18 10 with (R)-epichlorohydrin, using reaction
conditions reported for the enantiomer,19 to give morpholine 11.
Swern oxidation of 11 afforded aldehyde 12. A subsequentWittig
reaction, followed by reduction, afforded aniline 13. Coupling of

acid 6 with aniline 13 afforded amide 14. Silyl deprotection to
afford 15, followed by carbamate formation and morpholine
deprotection afforded the desired compound 9a. Pleasingly, 9a
was shown to be a potent inhibitor of HIV protease (IC50 = 6
nM). In addition, the compound showed antiviral activity in a cell
based assay (IC95 = 202 nM). This promising activity encouraged
us to benchmark the pharmacokinetic profile of 9a, shown in
Table 1. The compound displayed moderate clearance in rat,
coupled with a short half-life, and low bioavailability. With these
results in hand and given our ability to introduce a P1′
substituent late in the synthesis, we decided to prepare analogues
to explore the impact of this substituent on potency and
pharmacokinetic properties. A subset of the analogues are shown
in Table 1. A variety of substituents were tolerated; however, the
trifluorethylcarbamate substituent present in 9i afforded a nice
balance of potency, clearance, and oral bioavailability.
Having identified an acceptable P1′ substituent, we decided to

see if additional potency or pharmacokinetic improvements
could be realized by optimizing the P2 substituent. A series of
analogues were designed and the requisite anilines necessary for
P2 SAR exploration were synthesized as shown in Scheme 3 and
Scheme 4. For the fluorophenyl P2 precursor shown in Scheme
3, Wittig reaction of aldehyde 12 afforded olefin 16. Subsequent
TBS deprotection gave alcohol 17. Carbamate formation
followed by reduction (nitro and olefin) afforded aniline 18.
For the pyridyl P2 precursors in Scheme 4, Seyferth−Gilbert

homologation21 of aldehyde 12 afforded alkyne 19. Sonagashira
coupling,22 followed by alkyne reduction gave anilines 20 and 21.
Cbz protection followed by TBS deprotection afforded alcohols
22 and 23. Carbamate formation followed by Cbz-deprotection
gave the desired anilines 24 and 25. As described in Scheme 7,

Scheme 1a

aReagents and conditions: (a) (i) Ph3PCHCHO, THF, 50 °C; (ii)
Pd/C, 30 psi H2, EtOAc, RT; (b) BnNH2, NaBH4, THF/MeOH, RT;
(ii) Pd/C, 50 psi H2, MeOH, RT; (c) NaHCO3, THF/H2O, 0 °C; (d)
TFA, Et3SiH, CH2Cl2, RT.

Figure 2.Overlay of the enzyme bound conformations of 2 (green) and
8 (magenta). The flaps have been cut away for optimum viewing. The 5-
position is marked with an *.
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anilines 18, 24, and 25 were coupled to commercially available
(S)-2-((methoxycarbonyl)amino)-3,3-diphenylpropa-noic acid

and (S)-2-((tert-butoxycarbonyl)amino)-3,3-diphenylpropanoic
acid using POCl3. Boc-deprotection gave final compounds 9k to

Scheme 2a

aReagents and conditions: (a) (R)-epichlorohydrin, LiClO4, NaOMe, toluene/MeOH, RT; (b) (i) Pd(OH)2, Boc2O, NEt3, 45 psi H2, RT; (ii) oxalyl
chloride, NEt3, DMSO, CH2Cl2, −78 °C; (c) (i) K2CO3, 18-crown-6, (2-nitrobenzyl)triphenylphosphonium bromide, DME, RT; (ii) Pd/C, 50 psi
H2, EtOH, RT; (d) (S)-2-((methoxycarbonyl)amino)-3,3-diphenylpropanoic acid, HATU, 2,6-lutidine, DMF, RT; (e) TBAF, THF, RT; (f) (i)
benzylisocyanate, DCM, RT; (ii) TFA, DCM, 0 °C.

Table 1. Profiles of Compounds 9a−9j

aAssay for inhibition HIV protease as described in the Supporting
Information (n = 2). bAssay for inhibition of viral infection as
described in the Supporting Information (n = 2). c1 mpk IV (60%
PEG 400/water), 5 mpk PO (0.5% methylcellulose). n = 2 rats.

Scheme 3a

aReagents and conditions: (a) K2CO3, 18-crown-6, (2-fluoro-6-
nitrobenzyl)triphenylphosphonium bromide,20 DME, RT; (b) HCl,
MeOH, RT; (c) (i) 2,2,2-trifluoroethylamine, CDI, pyridine, RT; (ii)
Pd(OH)2, 50 psi H2, CF3CH2OH, RT.

Scheme 4a

aReagents and conditions: (a) dimethyl (1-diazo-2-oxopropyl)-
phosphonate, K2CO3, MeOH, RT; (b) (i) 5-fluoro-4-iodopyridin-3-
amine, 7% (PPh3)2PdCl2, 10% CuI, Et3N, CH3CN, 70 °C; (ii) 50%
PtO2, 50 psi H2, CF3CF2OH, RT; (c) (i) Cbz-Cl, pyridine, 0 °C; (ii)
TBAF, THF, RT; (d) (i) 2,2,2-trifluoroethylamine, CDI, pyridine, 60
°C; (ii) Pd/C, 1 atm H2, EtOH, RT.
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9o shown in Table 2. Key discoveries from this set of compounds
were as follows.
A pyridyl P2 improved binding affinity (9i vs 9m) and a

fluorophenyl P2 improved binding affinity and oral bioavail-
ability (9i vs 9k). Combining these two findings afforded 9n,
which offered a favorable combination of antiviral activity (IC95 =
94 nM) and rat clearance. Two primary amine derivatives were
also prepared and offered improvements in binding affinity (9l vs
9k) and bioavailability (9o vs 9n).
At this point we turned our attention to optimizing the P1 and

P3 phenyl substituents. It is evident from Figure 2 that the S1 and
S3 pockets of the enzyme are not equivalent, even though they
are occupied by identical P1 and P3 substituents. This inspired us
to examine unsymmetrical P1 and P3 groups to further improve
enzyme affinity. A series of designs were modeled and prioritized
for synthesis. Synthesis of the requisite acid precursors was
carried out as shown in Scheme 5. para-Fluorophenyl substituted
acryloyl chloride 2623 was treated with the anion of (S)-4-
phenyloxazolidin-2-one to afford the desired acryloyloxazolidi-

none 27.24 Copper-catalyzed Grignard addition was used to
introduce the desired P3 substituent in a highly stereoselective
manner.25 Subsequent electrophilic azide transfer to the chiral
enolate of 28 afforded the desired α-azidocarboximide 29.
Hydrogen peroxidemediated hydrolysis afforded azido acid 30.26

In addition to a mono-fluorinated P3 substituent, we were also
interested in a difluoro substituted P3. Unfortunately the 3,5-
difluorophenyl Grignard reagent was insufficiently reactive to
undergo copper catalyzed Grignard addition to 27. Accordingly,
we used the route shown in Scheme 6 whereby the more reactive
Grignard of the P1 substituent was utilized.
3,5-Difluoro substituted acryloyl chloride 31 was treated with

the anion of (R)-4-phenyloxazolidin-2-one to afford the desired
acrylooxazolidinone 32. Copper-catalyzed Grignard addition
afforded acryloyloxazolidinones 33 and 34. Switching of the
chiral auxiliaries afforded 35 and 36, which underwent

Table 2. Profile of Compounds 9i, 9k−9t, and Atazanavir

Rat PKc

Compound X R1 R2 R3 R4 R5 R6 Enzymea IC50 (nM) Antiviralb IC95 (nM) Cl (mL/min/kg) %F

atazanavir 0.04 17 nd nd
9i C H H H H H Moc 27 120 36 19
9k C F H H H H Moc 12 95 36 37
9l C F H H H H H 3.1 230 nd nd
9m N H H H H H Moc 14 330 81 <5
9n N F H H H H Moc 3.5 94 11 15
9o N F H H H H H 9.9 150 13 59
9p C F F H H F H 6.4 75 45 30
9q C F F F H F H 8.2 61 22 14
9r N F F H H F H 2.4 66 16 37
9s N F F F H F H 2.4 130 nd nd
9t (MK-8718) N F Cl F H F H 0.8 49 11 25

aAssay for inhibition HIV protease as described in the Supporting Information (n = 2). bAssay for inhibition of viral infection as described in the
Supporting Information (n = 2). cFor compounds 9i−9n: 1 mpk IV (60% PEG 400/water), 5 mpk PO (0.5% methylcellulose). n = 2 rats. For
compounds 9o−9t: 2 mpk IV (1:1 DMSO/PEG400), 10 mpk PO (10% tween 80/water). n = 2 rats.

Scheme 5a

aReagents and conditions: (a) nBuLi, (S)-4-phenyloxazolidin-2-one,
THF, −78 °C; (b) (3-Fluorophenyl)magnesium bromide, CuBr.SMe2,
THF, −20 °C; (c) NaHMDS, trisyl azide, THF, −78 °C; (d) H2O2,
LiOH, NaHCO3, THF/H2O, 0 °C.

Scheme 6a

aReagents and conditions: (a) nBuLi, (R)-4-phenyloxazolidin-2-one,
THF, −78 °C; (b) (4-fluoro or chlorophenyl)magnesium bromide,
CuBr·SMe2, THF, −20 °C; (c) H2O2, LiOH, NaHCO3, THF/H2O, 0
°C; (d) SOCl2, CH2Cl2, reflux; (d)

nBuLi, (S)-4-phenyloxazolidin-2-
one, THF, −78 °C; (d) NaHMDS, trisyl azide, THF, −78 °C; (d)
H2O2, LiOH, NaHCO3, THF/H2O, 0 °C.
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electrophilic azide transfer to give α-azidocarboximides 37 and
38. Hydrogen peroxide mediated hydrolysis liberated azido acids
39 and 40. As depicted in Scheme 7 anilines 18 and 25 were
coupled to azido acids 30, 39, and 40. Azide reduction, followed
by Boc-removal, afforded the desired targets 9p−9t.
The relevant data for this set of compounds is shown in Table

2. The combination of para-fluorophenyl as the P1 substituent
and a meta-fluorophenyl as the P3 substituent improved cell
based antiviral activity (9p vs 9l). Adding a second fluorine to the
P3 phenyl served to maintain cell based activity while lowering
rat clearance (9p vs 9q). Incorporation of a P2 pyridyl
substituent further improved rat clearance relative to the P2
phenyl, while maintaining cell based activity (9r vs 9p). Finally,
replacing the P1 para-fluoro of 9r with a para-chloro substituent
afforded 9t. This compound offered improvements in binding
affinity, cell-based antiviral activity, rat clearance, and oral
bioavailability. Additional preclinical evaluation of 9s−9t showed
that 9t had the most favorable overall profile. Based on these
desirable attributes 9t was designated as MK-8718 and was
chosen for further studies to enable entry into the clinic for
assessment of human pharmacokinetic properties.
In summary, a series of HIV protease inhibitors were designed

containing a novel morpholine based aspartate binding group.
Structure based optimization of the P1, P1′, P2, and P3
substituents was carried out to improve cell based antiviral
activity and rat pharmacokinetic properties. This resulted in the
identification ofMK-8718, a potent HIV protease inhibitor with
a favorable pharmacokinetic profile with potential for further
development.
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