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Summary

Enhancing the immune system is a validated strategy to combat infectious

disease, cancer and allergy. Nevertheless, the development of immune

adjuvants has been hampered by safety concerns. Agents that can

stimulate the immune system often bear structural similarities with patho-

gen-associated molecular patterns found in bacteria or viruses and are

recognized by pattern recognition receptors (PRRs). Activation of these

PRRs results in the immediate release of inflammatory cytokines, up-regu-

lation of co-stimulatory molecules, and recruitment of innate immune

cells. The distribution and duration of these early inflammatory events

are crucial in the development of antigen-specific adaptive immunity in

the forms of antibody and/or T cells capable of searching for and destroy-

ing the infectious pathogens or cancer cells. However, systemic activation

of these PRRs is often poorly tolerated. Hence, different strategies have

been employed to modify or deliver immune agonists in an attempt to

control the early innate receptor activation through temporal or spatial

restriction. These approaches include physicochemical manipulation, cova-

lent conjugation, formulation and conditional activation/deactivation.

This review will describe recent examples of discovery and optimization

of synthetic immune agonists towards clinical application.

Keywords: adjuvants; drug discovery; immuno-oncology; Toll-like recep-

tor; vaccine.

Introduction

Therapeutic use of immune potentiators holds great pro-

mise where the enhancement of the immune response to

either foreign or endogenous antigens is the desired out-

come. Beginning with the work of Jenner, vaccinology

has been a proven science, and vaccines have eliminated

many deadly diseases such as smallpox.1 As vaccine devel-

opers have begun to move away from live-attenuated

microorganisms to subunit vaccines, they have also

stripped away many of the immune-stimulating agents

naturally embedded within pathogenic bacteria or viruses,

ultimately resulting in reduced vaccine efficacy. Hence,

subunit prophylactic vaccines often require the addition

of exogenous adjuvants.2 Immune activation also has the

potential to treat established infectious diseases. Most of

the antiviral and antibacterial drugs used today target

pathogens. However, in many situations, pathogens can

mutate and become resistant to these drugs. Alternatively,

pathogens can evade or even blunt the host immune

response. Raising or restoring host immunity could be a

solution to treat chronic infections that are difficult to

cure.3 Furthermore, vaccination can be extended beyond

protection against infectious pathogens to priming of an

immune response against self-antigens that have become

transformed or malignant.4 Over a century ago, the

famous experiment by Coley demonstrated the potential

of immune therapy by injecting bacteria into cancer

patients.5 Today, many investigational cancer vaccines

incorporate powerful adjuvants to overcome the immune

suppressive tumour microenvironment or to break self-

tolerance. Lastly, the hygiene hypothesis suggests that the

lack of childhood exposure to infectious microorganisms

increases the susceptibility to atopic allergic disorders,

Abbreviations: BCG, bacillus Calmette–Gu�erin; HBV, hepatitis B virus; MPLA, monophosphoryl lipid A; PEG, polyethylene gly-
col; PRR, pattern recognition receptors; ssRNA, single-stranded RNA; STING, stimulator of interferon gene; Th2, T helper type
2; TLR, Toll-like receptors
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because the immune system suffers from a lack of toler-

ance induction to the environment during early develop-

ment.6 One experimental approach to suppress the

allergic T helper type 2 (Th2) response is to raise the

opposing Th1 response through the appropriate type of

immune potentiators. Collectively, although immune

potentiators could be used in many beneficial ways to

treat infectious disease, cancer and allergy, immune acti-

vation is a double-edged sword, and the development of

novel immune adjuvants has been hampered historically

by poor safety and tolerability. Concepts or technologies

to uncouple immune-mediated efficacy from toxicity are

therefore key to novel immune agonist design (Fig. 1).

Immune agonists often structurally resemble bacterial

or viral components that are recognized by pattern recog-

nition receptors (PRR), the most studied being Toll-like

receptors (TLRs).7 TLR1/2 and TLR2/6 recognize the N-

terminus of lipoproteins from Gram-positive bacteria and

other microbial sources. TLR4 is stimulated by

lipopolysaccharide and its derivatives, produced by

Gram-negative bacteria. Bacterial flagellin is a ligand of

TLR5. Of the viral recognition receptors, TLR3 senses

double-stranded RNA, whereas TLR7 and TLR8 sense sin-

gle-stranded RNA (ssRNA). TLR9 is stimulated by

unmethylated CpG motifs commonly found in bacterial

DNA. Besides TLRs, nucleotide-binding oligomerization

domain-like receptors are stimulated by bacterial prod-

ucts.8 Retinoic acid-inducible gene-1-like receptors detect

the presence of viral infection.9 C-type lectin receptors

recognize a variety of carbohydrate derivatives.10 The

most recently discovered PRR, stimulator of interferon

gene (STING), is a sensor of cytosolic DNA.11

Although all PRR ligands can be derived from micro-

bial sources, many of these natural product derivatives

have undefined structures (e.g. complex glycolipids) that

are often polymeric, which make manufacturing on a

commercial scale a daunting task. The mechanism of

action is often complicated, and these natural products

exhibit poor physicochemical properties, which presents

formulation challenges compared with modern small-

molecule drug standards. Progressively, with a better

understanding of innate receptor biology, researchers have

explored different ways to simplify or synthesize patho-

gen-associated molecular pattern mimetics using chem-

istry to improve pharmacological properties. New

adjuvant chemotypes often bear structural resemblance to

the natural ligands, but are derivatized in ways that

increase and/or maintain the adjuvant potency, while

reducing the structural complexity for ease of manufac-

ture and improving other important characteristics.

Most modern small-molecule drugs have gone through

iterative rounds of optimization, often with the goal of

increasing systemic bioavailability and extending in vivo

half-life for maximum therapeutic effects. Immune adju-

vants, however, follow different design principles. Adju-

vants function by stimulating antigen-presenting cells to

more effectively uptake and present antigens through

inflammatory cytokines and co-stimulatory molecules.

This enhanced process leads to better adaptive humoral

and cellular responses. Without the intended antigen(s)

in proximity, adjuvants induce non-productive immune

activation, or wasted inflammation, which contributes lit-

tle to adaptive immunity. Literature reports have demon-

strated that systemic distribution of vaccine adjuvants is

not required to elicit antigen-specific immune

responses.12,13 Moreover, repeated systemic administra-

tion of TLR agonists has been shown to blunt the innate

response, possibly through receptor desensitization or

other mechanisms of immune tolerance induction.14,15

Hence, for better efficacy and improved tolerability, a key

attribute of adjuvant distribution should be co-localiza-

tion with the antigen(s) it serves to boost immunity

against. Systemic distribution and systemic immune acti-

vation are not needed nor desired to induce an antigen-

specific adaptive immune response.

Chemistry functionalization can be used to enhance the

biological activities and drug-like properties of small

molecules. Strategies of adjuvant optimization often

involve tuning selectivity and reducing off-target activity,

simplifying structural complexity, increasing stability,

enhancing injection site retention, improving antigen/ad-

juvant co-delivery, or engineering conditional activation/

Figure 1. Discovery, optimization and application of synthetic immune agonists. Discovery of novel immune agonists can come from rational

design based on pathogen-associated molecular patterns or from un-biased high-throughput screening of diverse compound libraries. Chemistry/

formulation optimization can follow a number of strategies with the common goal of eliciting antigen-specific immune response. Co-delivery of

antigen and adjuvant can be achieved through covalent conjugation or nanoparticle formulation. The physical–chemical properties of synthetic

immune agonists can be engineered to allow preferential tissue distribution. Conditional activation/deactivation by designed prodrug/antedrug

attempts to restrict the immune activation within certain tissues. Optimized agonists are then characterized in various immuno-pharmacological

animal models of their intended clinical applications. Different routes of administration are required for local delivery to afford the greatest bene-

fit-to-risk ratio (therapeutic index). Vaccine adjuvants are administered parenterally, either through subcutaneous or intramuscular injection,

together with the antigens. Autologous vaccination injects the immune agonists directly into the tumour to generate an immune response against

tumour antigens in situ. Topical applications are used to treat dermatological diseases. Intranasal administration and inhalation of immune

agonists are investigated for their ability to suppress allergy or asthma. Oral TLR7 agonists have been explored for treatment of hepatitis C virus

and hepatitis B virus. Intravesical delivery of bacillus Calmette–Gu�erin (BCG) directly into the bladder is currently the standard of care for non-

invasive bladder cancer.
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deactivation. Cumulative knowledge gained from system-

atic adjuvant optimization has provided the guiding prin-

ciples for designing safe and effective adjuvants.16–20 This

review will illustrate strategies of synthetic immune agonist

discovery and optimization toward clinical application.

Discovery from rational design (inspired by
nature)

Among the known innate immune receptors, TLR7 was the

first receptor reported to be activated by small molecules;

hence, it has been the target for which most small-molecule

agonists have been generated and researched. TLR7

recognizes viral ssRNA, which consists of repeating units of

ribonucleotides.21,22 However, even before the discovery of

TLR7, small heterocyclic molecules bearing nucleoside-like

structure were reported to exhibit therapeutic effects

through immune potentiation. As early as the 1970s,

Nichol et al.23 reported the interferon-inducing activity of

a substituted pyrimidine, a scaffold shared by nucleic acid

bases cytosine and thymidine. During the 1980s, Goodman

and Weigle24 first reported the lymphocyte activation

activity of a purine nucleoside analogue. In the late 1980s,

Bernstein et al. and Chen et al.25,26 reported antiviral activ-

ity of an imidazoquinoline named R837/S26308 (later

named imiquimod) in guinea-pig models of herpes simplex

virus and cytomegalovirus. Building on the earlier findings,

Hirota et al.27 described the structural activity relationship

of a series of non-nucleoside adenine analogues as potent

interferon inducers without knowing the target. It was not

until 2002 that Hemmi et al.28 identified the target of imi-

quimod to be TLR7. A year later, Lee et al.29 demonstrated

that purine nucleoside analogues also function through

TLR7. Relative to complex natural products and biologics,

small synthetic molecules can be more easily made into

defined drug candidates using controlled and reproducible

manufacturing processes. Hence, the discovery that low-

molecular-weight agonists can stimulate TLR7 in a manner

comparable to the natural ligand, ssRNA, prompted

biotech and pharmaceutical companies to search for novel

and proprietary chemical space. Expanding on the earlier

chemotypes, a series of deazapurine,30 pyrimidine,31

pteridinone,32 benzonaphthyridine,33 and other scaffolds

have been disclosed in publications and patents.34 It is of

interest to note that most of these TLR7 chemotypes share

a common 2-aminopyridine or 2-aminopyrimidine core,

which could be a critical nucleic acid recognition motif for

the receptor. Although the structure of TLR7 has yet to be

solved, researchers have built homology models based on

the X-ray crystal structure of the TLR8 ectodomain in an

attempt to rationalize the observed structure activity rela-

tionship and guide future medicinal chemistry optimiza-

tion.32

Similar to TLR7, TLR8 is also an endosomal TLR that

recognizes ssRNA. The main differences between the two

RNA recognition receptors lie in their expression and

functional activity across different species. Whereas TLR7

is predominantly expressed in plasmacytoid dendritic

cells, TLR8 is expressed in myeloid dendritic cells,

monocytes and macrophages.35,36 Interestingly, rodents

lack a functional TLR8, making it challenging to

characterize TLR8 agonists in vivo.37,38 CL075 is an

imidazoquinoline TLR7/8 agonist reported to have more

TLR8-biased activity.39 Extending from the imidazo-

quinoline series, Kokatla et al.40 identified a series of

furoquinolines that displays much improved selectivity

over TLR7. Recently, the X-ray co-crystal structure of

TLR8 has been solved with a number of small-molecule

ligands.41,42 Guided by this information, structure-based

ligand design led to the identification of several

additional TLR8 agonists.43,44

Bacterial lipoproteins and lipopeptides are known to

stimulate the innate immune system through TLR2.45,46

Even before the discovery of TLR2, N-acyl-S-diacylglyceryl

cysteine motifs were known simply as macrophage-

activating lipopeptides.47 X-ray crystallography revealed

that the number of acyl chains determines selectivity

between TLR1/2 versus TLR2/6 heterodimerization. Tri-

acylated lipopeptides activate TLR1/2 by insertion of the

N-acyl chain to TLR1 and the remaining two glyceryl

acyl chains to TLR2.48 In contrast, di-acylated lipopep-

tides, with the N-acyl chain missing, activate TLR2/6.49

Detailed structure activity relationship studies of the

cysteine-glycerol core showed the importance of stereo-

chemistry, the thioether bridge, and ester connections.50

The peptide region can tolerate more functional group

manipulation. Many synthetic lipopeptides have intro-

duced polyethylene glycol (PEG) or sugar moieties at the

peptide region with the aim of improving solubility and/

or amphiphilic properties of these otherwise poorly

soluble and lipophilic molecules.51–53 Further simplifying

the structure, a series of monoacyl lipopeptides was

discovered to be human-specific TLR2 agonists.54,55

Another simplified class of lipoamino acid agonist was

identified by maintaining the minimal structure require-

ment for TLR2 activity.56

The natural ligand of TLR4 is bacterial lipopolysaccha-

ride.57 X-ray crystal structure studies have shown that the

recognition element lies in the lipid A portion through

the adaptor protein MD2.58 Mono-phosphoryl lipid A

(MPLA) is a TLR4 agonist produced from alkaline

hydrolysis of salmonella-derived lipopolysaccharide.59 The

structure of MPLA is not synthetically defined, as the

product contains a mixture of derivatives with five and

six alkyl chains. It is clinically approved as an adjuvant in

hepatitis B virus (HBV) and human papillomavirus

vaccines. Apart from the semi-synthetic MPLA, fully

synthetic derivatives of lipid A have been reported includ-

ing glucopyranosyl lipid A,60 aminoalkyl glucosaminide

4-phosphate61 and E6020.62

ª 2016 John Wiley & Sons Ltd, Immunology, 148, 315–325318

T. Y.-H. Wu



Discovery from high throughput screening

With the advent of new screening technologies with the

ability to assay large collections of small-molecule com-

pound libraries in miniaturized cellular assays, both

industrial and academic institutions have turned to high-

throughput screening as a modern way of identifying

novel small-molecule immune potentiators. VentiRx has

reported a series of benzoazepine TLR8 agonists identified

from screening.63 The lead candidate, VTX-2337, has been

shown to activate natural killer cells and enhance anti-

body-dependent cell-mediated cytotoxicity in human cells

in vitro, and is being developed for cancer indications.64

Another benzoazepine derivative, VTX-294, was reported

to activate newborn and adult leucocytes better than

other TLR7/8 agonists R848 and CL075.65 Other human-

specific small-molecule agonists discovered from high-

throughput screening have been reported for TLR2,66

TLR467,68 and STING.69 Interestingly, given that these

screenings were conducted in human cells, many of these

agonists were reported to exhibit significantly reduced

activity in mouse cells.

Physicochemical manipulation

Most low-molecular-weight drugs are designed with the

intent for oral bioavailability and systemic delivery. In

contrast, immune adjuvants should be co-localized to the

antigen(s) against which the immune response is

intended. Restricting the spatial distribution of adjuvants

prevents systemic activation of peripheral immune cells,

and thereby minimizes inflammatory cytokine production

that is not contributing to the antigen-specific immune

response. As vaccines are often given parenterally, one

way to provide localized immune activation is through

increasing local injection site retention. This could be

achieved by manipulating the physicochemical properties

of the small molecule adjuvant. Towards this end, Smir-

nov et al.12 installed long lipophilic alkyl moiety for slow

dissemination from the site of application. Upon subcuta-

neous injection, 3M-052 drives a strong Th1 response to

haemagglutinin and serum neutralization of viable H1N1

virus in the absence of circulating tumour necrosis

factor-a or the induction of Th1 cytokines. Intratumoral

administration of 3M-052 in the B6.F10 melanoma model

generated systemic antitumour immunity and suppressed

both injected and non-injected (distal) tumour growth.70

Similarly, Chan et al.71,72 described the synthesis and

characterization of adenine TLR7 agonists modified with

PEG and/or phospholipid for improved pharmacokinetics

and biodistribution. Installation of a phospholipid onto

the benzylic region of 8-oxo-adenine increased in vitro

potency 100-fold over the unmodified TLR7 agonist

and induced both Th1 and Th2 antigen-specific

immune responses in an ovalbumin model.71 The

phospholipid–adenine conjugate was further demon-

strated to reduce cancer growth in a B16c-ovalbumin

melanoma model via intralesional administration.73

Shukla et al.74 designed TLR7-agonistic dendrimers with

three to six units of the active imidazoquinoline pharma-

cophore. These high-molecular-weight dendrimers retain

potent TLR7 activity and were shown to induce high-

affinity antibodies to bovine a-lactalbumin. Taken

together, there are multiple ways in which synthetic

immune agonists can be localized through physical

chemical parameters, such as increasing molecular weight

and lipophilicity (logP), or reducing polarity (polar sur-

face area) and solubility.

Covalent conjugation

In order to elicit a more efficient and specific immune

response, an effective vaccine delivery system would func-

tion to target the immune agonist (adjuvant) and antigen

to the same antigen-presenting cells. To this end,

researchers have explored various approaches to cova-

lently conjugate adjuvant and antigen. Wille-Reece

et al.75,76 have demonstrated that covalent linking of an

imidazoquinoline TLR7/8 agonist to HIV Gag protein

dramatically enhanced the magnitude and altered the

quality of the Th1 response, compared with animals co-

immunized with HIV Gag protein (non-conjugated) and

the TLR7/8 agonist or CpG-oligodeoxynucleotide. Follow-

up mechanistic studies revealed that the TLR agonist–
antigen conjugate elicits CD8+ T-cell responses based not

on the capacity to induce dendritic cell maturation or

antigen persistence and uptake, but on the engagement of

dendritic cell cross-presentation pathways.77 Vecchi

et al.78 described the conjugation of a TLR7 agonist to

Streptococcus pneumoniae antigen, which resulted in dose-

sparing of both antigen and adjuvant, and it also pro-

tected mice from a lethal challenge. No adjuvant effect

was observed when equimolar unconjugated TLR7 agonist

was co-administered together with the non-conjugated

antigen. Other examples of TLR agonist conjugation to

peptide antigens have been extensively reviewed.79

In addition to vaccine antigens, conjugation of small-

molecule immune agonists to other macromolecules such

as proteins, carbohydrates or antibodies can be used to

achieve special properties. Wu et al.80 showed that cova-

lent attachment of an adenine TLR7 agonist to mouse

serum albumin can increase local immune activation and

reduce systemic inflammation. When administered into

mouse lung in vivo, the TLR7 agonist–mouse serum

albumin conjugate induced 10-fold higher local release of

cytokines relative to the unconjugated TLR7 agonist. The

functional efficacy of the conjugate was demonstrated in

an anthrax and flu challenge model to delay mortality.

Leveraging non-covalent affinity, Liu et al.81 modified a

TLR9-activating CpG-oligonucleotide with lipid moieties
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capable of physical binding to albumin. Hitch-hiking on

endogenous serum albumin, lipid-modified CpG effec-

tively accumulated in lymph nodes, which resulted in bet-

ter T-cell priming, enhanced antitumour efficacy in a

B16F10 tumor model, and reduced systemic toxicity.

Shinchi et al.82 conjugated an adenine TLR7 agonist onto

polysaccharides to improve aqueous solubility. The result-

ing conjugate appeared to be a more potent adjuvant,

and the authors hypothesized that this was due to the

enhanced uptake by the antigen-presenting cells. Lastly,

to mimic the combination effect of multiple types of TLR

agonists found naturally in microorganisms, Esser-Kahn

and co-workers have conjugated agonists of TLR2 and

TLR9, and also agonists of TLR4, TLR7 and TLR9,

respectively. These spatially defined di- and tri-agonists

were shown to exhibit higher activity synergistically over

the unconjugated mixtures.83,84

Delivery of small-molecule drug via antibodies through

covalent conjugation is a validated technology, as several

antibody–drug conjugates have been approved for clinical

treatment of cancer.85 Extending this concept, several

groups have attempted to deliver immune agonists by

conjugation to antibodies targeting tumour cells. Sharma

et al.86 conjugated CpG-oligodeoxynucleotide (TLR9 ago-

nist) to anti-Her-2/neu monoclonal antibody and demon-

strated that the conjugate can bind to Her-2/neu+

tumours, activate dendritic cells, and induce antitumour

responses. Li et al.87 described the conjugation of CpG to

clinically approved monoclonal antibodies rituximab and

trastuzumab. Recently, Gadd et al.88 have extended the

antibody conjugation approach to TLR7 agonists as the

payload. Instead of targeting tumour cells, Kreutz et al.89

reported an antibody–antigen–adjuvant conjugate

designed to target DEC205+ dendritic cells. The anti-

body–antigen–adjuvant triple conjugate was demonstrated

to be superior to the antibody-free antigen–adjuvant dou-
ble conjugate in priming of cytotoxic T-lymphocyte

responses and efficiently induced anti-tumour immunity

in a B16 model, although the authors had noted possible

non-specific delivery to cells that are independent of the

DEC205.

Formulation-assisted delivery

Although covalent conjugation and increased lipophilicity

are strategies that have led to good tool adjuvants

through localized immune activation, there are practical

considerations for commercial development. Covalent

attachment of immune agonist requires careful control of

conjugation chemistry to afford homogeneous protein

production. Each covalently modified antigen is a new

biological entity that requires separate manufacturing and

characterization protocols. Co-administering a vaccine

antigen with a locally retained adjuvant offers the advan-

tage of stockpiling one adjuvant formulation to be used

with multiple vaccines. However, highly lipophilic and

poorly soluble adjuvants often present formulation chal-

lenges, resulting in inconsistent dosing and prolonged res-

idence time at the injection site, sometimes lasting longer

than the antigens.

To better understand the ideal properties of immune

adjuvant, Wu et al.13 investigated the minimal essential

temporal and spatial distribution required for effective

adjuvanticity using structurally similar TLR7 agonists

with differential physicochemical properties. Gene expres-

sion and cytokine profiling revealed that most of the

immediate inflammatory activity is needed only at

the injection site, and that increased inflammation in the

serum does not necessarily contribute to better adjuvan-

ticity. To address the poor developability of insoluble

adjuvants, the authors subsequently designed soluble ana-

logues that can be adsorbed onto alum via phosphonate/

Al(OH)3 ligand exchange. Alum has been used in human

vaccines for decades.90 It is thought that one attribute

linked to its adjuvanticity is increased antigen deposition,

via non-covalent adsorption. This is argued to be medi-

ated through electrostatic, hydrophobic and ligand

exchange interactions.91 As alum behaves like a particu-

late at the injection site, alum adsorption of adjuvant and

antigen results in a highly co-localized vaccine formula-

tion with good development potential. Once dissociated

from alum, these soluble TLR7-phosphonates are readily

eliminated from the injected muscle and undergo rapid

systemic clearance, resulting in minimal wasted inflam-

mation. TLR7/alum adjuvant formulations were tested to

effectively enhance a vaccine against Neisseria meningitidis

serotype B, increasing both the depth and breadth of

serum bactericidal antibody coverage against 17 Neisseria

meningitidis serotype B strains. Furthermore, the authors

demonstrated that the modification of TLR7 agonists with

phosphonate to afford alum adsorption was a generaliz-

able approach to enhance vaccine adjuvanticity in several

other TLR7 chemotypes.

Polymer-based encapsulation has also been extensively

investigated for adjuvant delivery.92,93 Kasturi et al.94

demonstrated that immunization of mice with poly(lac-

tic-co-glycolic acid) nanoparticles containing antigens

plus TLR7 and TLR4 ligands induced synergistic increases

in antigen-specific, neutralizing antibodies. Moreover,

immunization protected completely against lethal avian

and swine influenza virus strains in mice, and induced

robust immunity against pandemic H1N1 influenza in

rhesus macaques. Ilyinskii et al.95 demonstrated that co-

delivery of an antigen with a TLR7/8 or TLR9 agonist in

synthetic vaccine particles resulted in a strong augmenta-

tion of humoral and cellular immune responses with

minimal systemic production of inflammatory cytokines.

Dranoff, Mooney and co-workers have reported the

incorporation of granulocyte–macrophage colony-stimu-

lating factor (a dendritic cell enhancement factor) and
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CpG (a dendritic cell activating factor) in biomaterials

based on poly(lactic-co-glycolic acid),96 mesoporous silica

rods97 and cryogel.98 The goal of this approach is to

induce a coordinated regulation of a dendritic cell net-

work to enhance host immunity against added tumour

lysate or in situ tumour antigens. DeMuth et al.99 gener-

ated microneedle arrays coated with biodegradable catio-

nic poly(b-amino ester) and negatively charged

interbilayer-cross-linked multilamellar lipid vesicles. These

interbilayer-cross-linked multilamellar lipid vesicles were

loaded with protein antigen and MPLA, and the vaccina-

tion promoted a robust humoral response compared with

the soluble components. Hanson et al.100 demonstrated

that encapsulation of STING agonist cdGMP using PEGy-

lated lipid nanoparticle can block systemic dissemination

and enhance draining lymph node accumulation, leading

to increased CD8 T-cell response and antitumour immu-

nity. Lynn et al.101 investigated the physicochemical prop-

erties of polymer-linked TLR7/8 agonists by varying

different linkers with agonist densities. Interestingly,

improved local retention is necessary but not sufficient

for enhancing T-cell immunity, as low-density unimolec-

ular polymer coils showed reduced immunogenicity com-

pared with high-density submicron polymer particles.

Conditional activation through prodrug and
antedrug

Chemical modification of TLR agonists can be used to

elicit tissue-specific immune activation through controlled

drug cleavage. Fletcher et al.102 designed masked oral pro-

drugs of TLR7 agonist that can bypass immune stimula-

tion in the gastrointestinal tissues, thereby reducing

gastrointestinal intolerances. Fosdick et al.103 showed that

oral administration of a pteridinone agonist (GS-9620)

with high first-pass hepatic clearance induced more inter-

feron than intravenous administration, while achieving

similar systemic exposure; therefore, the majority of inter-

feron is generated pre-systemically from the gut-asso-

ciated lymphoid tissue. At low doses, GS-9620 activates

interferon-stimulated genes without inducing systemic

interferon and related adverse effects, providing a poten-

tial therapeutic window for inducing an anti-HBV

immune response. Recently, Ryu et al.104 have reported

an imidazoquinoline TLR7 agonist prodrug that can be

activated by light. Light-activated TLR7 agonists can be

used in combination with radiation therapy, where local-

ized irradiation of tumour can kill the cancer cells and

release cancer antigens, while simultaneously activating

the TLR7 prodrug for enhanced antigen uptake and pre-

sentation.

Although prodrugs are activated under certain biologi-

cal conditions, antedrugs are deactivated to limit the

activity within certain tissues. Administration of low-dose

TLR7 agonist to the upper airway has the potential to

treat various allergic diseases by skewing the immune

microenvironment from Th2 to Th1.105 To prevent

undesired systemic activity, Kurimoto et al.106 applied the

antedrug concept to an adenine TLR7 agonist to restrict

innate immune activation in the airway. The TLR7 ante-

drug is designed to be metabolically deactivated by

plasma esterase to avoid systemic spillover. Even with

transient activity in the lung, the adenine antedrug

was demonstrated to effectively inhibit allergen-induced

airway inflammation without inducing systemic

cytokines.107

Clinical application

Though many potential utilities have been demonstrated

in pre-clinical models, a key clinical translation hurdle for

all immune adjuvants is safety. Successful clinical applica-

tions for TLR agonists have been so far limited to local

delivery. R837 (imiquimod) is currently the only

approved TLR7 agonist for use in humans to topically

treat basal cell carcinoma.108 Despite being effective

against these skin lesions, there are significant adverse

effects associated with excessive inflammation at the trea-

ted sites, which is sometimes accompanied with fever and

flu-like symptoms.109 We now know that R837 acts, at

least in part, through activation of TLR7. But because it

was developed before knowledge of the molecular target,

it is likely that the drug was identified solely based on

phenotypic activities without fully understanding the

selectivity against a broader panel of proteins and recep-

tors. Many reports have described R837 having TLR7-

independent effects, which could contribute either to the

efficacy and/or adverse effects.110–112 Recently, a non-imi-

dazoquinoline-based TLR7 agonist was reported to be

equally effective in a guinea-pig herpes simplex virus

model through intravaginal administration, but without

the side-effects of weight loss and fever.113 This raises the

possibility that perhaps not all of the TLR7-independent

effects are required for R837’s efficacy. In additional to

dermatological diseases, topical R848 (resiquimod) gel is

also being investigated as cancer vaccine adjuvant.114

Parenteral TLR agonists are administered as single

agents (subcutaneous), together with vaccine antigens

(intramuscular), or more recently, directly into the

tumour where tumour-associated antigens reside (intratu-

moral). AS04 is an adjuvant that contains the TLR4 ago-

nist MPLA and alum.115 It is approved for intramuscular

injection as adjuvant in human HBV and human papillo-

mavirus vaccines. Bacillus Calmette–Gu�erin (BCG) is a

live-attenuated bacteria used for the treatment of non-

invasive bladder cancer.116 Its mechanism of action has

been attributed to TLR2/4 activation. TMX-101 is a sol-

uble formulation of R837 for intravesical delivery directly

into the bladder.117 In addition to being synthetic, R837

also has the advantage of being non-infectious compared
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to BCG. TLR3 agonists AmpligenTM and HiltonolTM have

been used for the treatment of chronic fatigue syndrome

and various types of cancer, as well as vaccine adju-

vants.118–120 The TLR5 agonist entolimod has been impli-

cated in radiation countermeasures and cancer

therapy.121,122 A number of TLR9 agonists have been

investigated as adjuvants for human vaccines, the most

advanced being 1018 ISS in HBV vaccine.123 More

recently, in situ vaccination through intratumoral injec-

tion of TLR9 agonist (PF-3512676) has been demon-

strated to induce systemic anti-tumour immunity in

murine models and in patients with B-cell lym-

phomas.124,125 Interestingly, in other trials the same CpG

molecule given systemically through subcutaneous admin-

istration reached dose-limiting toxic levels before any

therapeutic benefits were observed.126,127 The critical

abscopal response, where intratumoral administration

diminishes tumour growth at both treated and non-trea-

ted sites, has also been observed with TLR7/8 and STING

agonists in murine models.70,128 Hence, several companies

are currently exploring intratumoral injection of TLR4

(G100), TLR7/8 (3M-052 aka MEDI9197), or TLR9 ago-

nists (SD-101, IMO-2125, CMP-001) in clinical trials as

single agents or in combination with checkpoint inhibi-

tors. VTRX-2337 is a TLR8 agonist also being investigated

for cancer treatment in combination with chemother-

apy.129

With regard to infectious diseases, oral TLR7 agonists

such as R848, ANA773 (now RG-7795) and PF-4878691

have been explored for treatment of hepatitis C virus.130–132

All of these investigational drugs showed adverse effects

with symptoms reminiscent of interferon induction. Low

doses of the TLR7 agonist GS-9620 are currently being

investigated for treatment of chronic HBV,133 which has

been shown to be efficacious in the woodchuck hepatitis

viral model and in HBV-infected chimps.134,135 GS-9620

has also shown promise in reversing HIV latency.136 In

addition, intranasal TLR agonists have been investigated

for allergen immunotherapy. In a phase IIa trial,

AZD8848 (TLR7 antedrug) dosed intranasally was associ-

ated with sustained reduction in allergen responsiveness,

although it also produced interferon-related effects.137

AZD8848 was also tested in humans for tolerability via

inhalation.138 GSK2245035 is yet another intranasal

TLR7 agonist being investigated to treat respiratory

diseases.139,140

Conclusion

Stimulation of innate immune receptors has been impli-

cated in the treatment of many diseases. Even before the

discovery of TLRs, there were numerous reports of syn-

thetic molecules capable of inducing cytokines and acti-

vating lymphocytes. With better understanding of the

TLR structure and biology, discoveries of novel synthetic

adjuvants have come from rational design or high-

throughput screening. Optimization of adjuvants has

aimed at increasing potency and reducing structural

complexity, but most importantly, improving safety and

tolerability. Strategies such as manipulation of physico-

chemical properties, conjugation to macromolecules,

formulation-assisted delivery, and prodrug/antedrug all

serve to localize the immune activation to the intended

antigen(s). So far, clinical applications of immune ago-

nists have been mainly limited to local delivery to mini-

mize immune-related toxicities. Non-antigen-specific,

systemic activity is not desired for adjuvanticity and

should be minimized to avoid wasted inflammation. The

ability to tune the properties of synthetic agonists

through chemistry or formulation may allow broader

clinical utilities of these immune agonists to benefit more

patients as we understand more about them.
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