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Abstract

The family of sparse reconstruction techniques, including the recently introduced compressed 

sensing framework, has been extensively explored to reduce scan times in Magnetic Resonance 

Imaging (MRI). While there are many different methods that fall under the general umbrella of 

sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR 

images can be employed to reconstruct full images from undersampled data. This review describes 

the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MR 

imaging, and the open challenges to their general adoption in a clinical setting. The fundamental 

principles underlying different classes of sparse reconstructions techniques are examined, and the 

requirements that each make on the undersampled data outlined. Applications that could 

potentially benefit from the accelerations that sparse reconstructions could provide are described, 

and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges 

to widespread implementation of sparse reconstruction techniques, including optimization, 

reconstruction times, artifact appearance, and comparison with current gold-standards, are 

discussed.
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 Introduction

Magnetic Resonance Imaging (MRI) scans are often long, and it can be challenging and 

sometimes impossible for patients to comply with long requisite periods of stillness or 
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breath-hold commands for imaging certain organs. Moreover, rapid motion or contrast 

changes are difficult to capture with MRI, and any anatomic, physiologic, or contrast media 

concentration changes that occur during data collection can lead to errors in the resulting 

images. There are many clinical applications where information from MRI could be useful, 

but this information cannot be captured accurately with standard MR imaging techniques.

Significant research effort has been directed towards finding ways to accelerate MR 

imaging. Techniques including the family of parallel imaging reconstruction methods1–4 

have been successful in reducing clinical MRI scan times by factors of two or four, or even 

higher in some applications5–8. These acceleration techniques have also been used to 

improve image quality or reduce artifacts while maintaining scan time9,10. However, the 

scan time reduction with parallel imaging is limited, and other ways of reconstructing 

images from undersampled data have been explored, including sparse reconstruction 

methods such as compressed sensing11–28.

While compressed sensing has recently received a lot of attention for its potential to 

accelerate MRI data collection, compressed sensing is just one type of reconstruction which 

exploits image sparsity to reduce scan time and/or improve image quality. Other sparse 

reconstruction techniques include partially separable techniques29–45, k-t methods46–54 and 

model based reconstructions55–74. At the heart of these sparse reconstructions is the idea that 

MR images are compressible, or contain redundant information. If the data can be 

undersampled in such a way that the essential components are still captured, data collection 

time can be dramatically reduced while maintaining image quality. Because these techniques 

rely on image sparsity, and not hardware as in parallel imaging, the potential for scan time 

reduction exceeds that of parallel imaging. Indeed, some groups have shown that sparse 

reconstruction techniques could be used to generate images that have been accelerated by 

factors of 22530 or more75. Such high acceleration rates and resulting increased spatial 

and/or temporal resolution could make possible applications that have traditionally been 

impossible with MRI. However, while the promise of extremely rapid imaging has driven 

significant research into sparse reconstruction techniques, many of these methods have fallen 

short of entering routine clinical practice. When employed for imaging, conservative 

acceleration rates are often used due to the observation that sparse imaging techniques such 

as compressed sensing may generate unpredictable artifacts that are highly dependent on the 

object, potentially interfering with image interpretation. Reconstructions of dynamic datasets 

which take information from multiple timeframes into account, and which thus have a long 

“temporal footprint,” may lead to images with inaccurate temporal behavior, also 

compromising clinical utility. Lengthy reconstruction times and many tunable parameters 

complicate optimization and assessment for clinical efficacy. Such technical and clinical 

challenges make clinical adoption of these methods difficult and can only be solved through 

combined input from MR physicists/engineers and physicians.

This review describes the basic concepts behind sparse reconstruction techniques, how these 

technologies could be applied to improve MR imaging, and the challenges to widespread 

implementation of sparse reconstruction techniques from both a technical and clinical 

perspective.
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 MRI Data Collection and Acceleration

MRI data are collected in a space that is mathematically related to the image, called k-space. 

Once the k-space data have been collected, they can then be transformed into an image using 

the mathematical function that relates the two spaces, the Fourier Transform (as shown in 

Figure 1a). Collecting a complete set of k-space points can be time-consuming, and there are 

many situations in which it is desirable to accelerate the data collection process by simply 

collecting less data, or undersampling the k-space data. However, while undersampling k-

space can reduce scan time, it often leads to artifacts in the image.

Artifacts caused by undersampling can take on many forms depending on the sampling 

scheme. If the data are undersampled such that only every other line of the full k-space were 

collected, the total scan time is cut in half. However, skipping lines results in aliasing, or 

fold-over, artifacts in the image (Figure 1b). Other sampling patterns, such as the random 

undersampling shown in 1c or the radial undersampling in 1d, will result in different types 

of artifacts. In most cases, the image must be “reconstructed” to eliminate these aliasing 

artifacts before it can be used clinically. There are several techniques that can be used to 

reconstruct full images from incomplete data, including the sparse reconstruction techniques 

that are the topic of this review.

 Sparse Reconstruction Techniques

Sparse reconstruction (including methods which fall under the terms constrained 

reconstructions, compressive sampling, and compressed sensing) is a set of techniques 

which uses image properties that are known a priori to reconstruct MR images from highly 

undersampled k-space data. While there are many different types of sparse reconstruction 

methods, they all share the same overarching goal: To generate an image that is consistent 

with the data collected which also exhibits specific image properties, determined by the user.

Sparse reconstructions are based upon the combination of three main concepts:

1. Image Sparsity

2. “Noise-like” or benign aliasing artifacts

3. The use of a specialized reconstruction for image recovery

In a “sparse” image, most of the information in the image is contained in small number of 

image pixels. One example of a sparse MR image is an angiogram, where a few image pixels 

are bright (with high signal intensity values), and the rest are dark (with low values, ideally 

zero). Figure 2a shows a sparse MR image, in this case a single partition subtraction image 

from a 3D abdominal and pelvic contrast-enhanced MR angiogram. If undersampled k-space 

data are collected, the resulting accelerated image will contain aliasing artifacts and may no 

longer be sparse; this is the case in Figure 2b. However, if it is known a priori that the fully-

sampled image should be sparse, and that the lack of sparsity in the accelerated image is due 

to aliasing, it may be possible to use a sparse reconstruction to recover the unaliased, sparse 

image from the undersampled data.
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Most MR images are not intrinsically sparse, but as long as the image is sparse in some 

representation, or domain, a sparse reconstruction can still be used. A sparsifying transform, 

often denoted by the symbol Ψ, is a reversible user-selected mathematical operation that can 

be applied to an image to increase sparsity. For instance, the image in Figure 3a, which is not 

sparse, can be made sparser by applying a spatial finite differences transform, resulting in 

Figure 3b. The spatial finite differences transform involves calculating the difference 

between intensity values of neighboring pixels, thereby highlighting edges in the image. 

Figure 3c shows the sparse image that results from applying a wavelet transform to the 

image in Figure 3a.

In addition to exhibiting spatial sparsity, some dynamic MR images are temporally sparse, or 

sparse “through time.” An example of such a dynamic dataset is a time series of images 

showing cardiac motion, as shown in Figure 4a. In this example, only a small subset of 

image pixels varies through the image series. Such images can be made sparse by 

subtracting one time frame from the next, as depicted in Figure 4b. The resulting temporal 

difference image is sparser than the original because only pixels near the heart, where 

motion occurs, are non-zero. Figure 4c shows how the Fourier transform in the temporal 

direction can also be used to sparsify dynamic images.

The second requirement for sparse reconstruction techniques is that the true image signal is 

distinguishable from the aliasing artifacts that arise from undersampling. While sparsity in 

the image domain is a key feature for sparse reconstructions, it is important to recall that 

MRI data are collected in k-space. The selection of an appropriate k-space sampling pattern, 

which determines the appearance of the aliasing artifacts, is also essential to the ability of 

the sparse reconstruction to generate an acceptable image. Many sparse reconstruction 

methods rely on using a data sampling pattern that results in incoherent, or “noise-like” 

aliasing artifacts. With a regular, evenly spaced undersampling pattern where every other 

line is skipped, the fold-over artifacts are clearly visible and indistinguishable from the true 

signal (see Figure 1b). However, if k-space is randomly undersampled, the aliasing artifacts 

look more like noise, and the actual image can be readily distinguished from the artifacts 

(Figure 1c).

Random undersampling in k-space provides the noise-like aliasing necessary for many 

sparse reconstruction algorithms. However, the data collection path through k-space must be 

smooth, and thus for 2D imaging applications, truly random Cartesian undersampling is not 

realizable. When encoding MRI data for 3D or dynamic 2D datasets, random or pseudo-

random sampling can be achieved by appropriately collecting phase encoding lines4,13,76,77. 

In place of random undersampling in 2D, non-Cartesian trajectories including radial14,78,79, 

spiral64,80,81,, and rosette paths82, among others83, can be employed. These non-Cartesian 

paths offer a smooth movement through k-space that can be implemented in practice while 

also providing noise-like artifacts when undersampled (see Figure 1d for an example of 

radial undersampling). 3D non-Cartesian trajectories have also been explored, including 

radial84 or cone-shaped paths85. Some of these sampling trajectories, including 3D radial, 

lead to such diffuse noise-like artifacts when undersampled at modest levels that it is not 

necessary to resolve the artifacts, and a specialized reconstruction scheme is not needed84. 
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Because the selection of the appropriate trajectory is so important, trajectory optimization 

for sparse reconstructions is itself an area of research86,87

All sparse reconstruction methods make use of sparsity and specialized sampling patterns, 

but the information used to recover unaliased images varies greatly from method to method. 

The large number and variety of sparse reconstruction techniques makes it impossible to 

describe each of them here. However, it is possible to roughly group some of the methods 

based on their underlying assumptions of the data. It is important to note that there is some 

overlap between these techniques, and other techniques may not fall into any of these 

categories. However, the basic ideas of sparse reconstructions can be generally understood 

by looking at techniques in these four groups:

• Methods which separate spatial characteristics from temporal dynamics 

(such as RIGR29 or HYPR30)

• Methods which separate aliased pixels in the spatiotemporal domain (such 

as UNFOLD48 or k-t BLAST50)

• Compressed sensing techniques (including L1 SPIRiT13 and k-t SPARSE-

SENSE15)

• Model-based reconstruction methods (including dictionary-based 

techniques such as Magnetic Resonance Fingerprinting64 and patch-based 

methods)

Each of these groups of reconstruction methods will be briefly described below.

 Separable Methods

Some of the first sparse reconstruction techniques to be employed used the concept of 

“partial separability,” or the idea that spatial information could be separated from temporal 

changes in a dynamic series of images. In such methods, aliased or low resolution images 

which capture rapid temporal dynamics are used together with one or more static high 

spatial resolution images to generate a dynamic series of images with a high spatial 

resolution showing the desired contrast changes or motion. Some methods use temporal 

redundancy only, including MR fluoroscopy32 as well as view-sharing and keyhole 

imaging33–36. Other more sophisticated methods use both temporal and spatial redundancy 

to improve the reconstruction. Methods in this group include the early sparse reconstruction 

technique RIGR29 as well as HYPR30 and its variants37–44. While these methods do not 

explicitly enforce sparsity, they do rely on the assumption that few image pixels actually 

change from frame to frame, and that this change is slow and smooth. In HYPR (shown 

schematically in Figure 5), it is assumed that the signal intensity changes primarily in the 

blood vessels during the arrival of the contrast bolus in a contrast-enhanced MR 

Angiography exam. Following the injection of contrast agent, radial data are collected in 

such a way that they can be highly undersampled to generate low spatial resolution images 

with a high temporal resolution (Figure 5, top), or reconstructed together to make one high-

resolution static image that does not show contrast dynamics. The high-resolution static 

image is known as the composite image and it shows the locations of all of the blood vessels 

(Figure 5, center). While the undersampled dynamic timeframes show many areas of 
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“bright” signal due to the undersampling artifacts, only the pixels that are also bright in the 

composite image are actually blood vessels and should be bright in each of the single 

timeframes. The HYPR reconstruction uses the undersampled dynamic images to weight the 

composite image to give it the correct contrast for each timeframe. In this way, a high-

resolution dynamic time series can be recovered (Figure 5, bottom). More detailed 

descriptions of these types of techniques can be found elsewhere31,75.

These partially separable techniques can only be used to accelerate dynamic time series, and 

they function best when the changes from timeframe to timeframe are small. The application 

that is most frequently accelerated with such techniques is contrast-enhanced MR 

Angiography, and acceleration rates of over 80075 have been reported using separable 

methods due to the high degree of sparsity in the image series. It may also be possible to 

accelerate myocardial perfusion37,38, pulmonary perfusion40, and ultra-short TE 

spectroscopy39 using the ideas of partial separability.

Another group of techniques known as low-rank completion methods uses the idea that the 

background of the image can be separated mathematically from dynamic portions58,88–91. If 

only a few dynamic components are required to represent signal changes, the signal is sparse 

in this representation. Although included in the separable methods section, these techniques 

are typically combined with explicit sparsity constraints in compressed sensing-type 

reconstructions. Additionally, some such methods can be thought of as model-based 

techniques if the sparse components make up a dictionary. Such hybrid techniques serve to 

highlight the complex nature of sparse reconstructions and lack of clear boundaries 

separating the different groups of methods.

 k-t Methods

Like partially separable techniques, k-t methods46–54 take advantage of the sparsity of a 

dynamic time series. However, unlike those methods described above, k-t techniques use 

spatial and temporal sparsity (or joint spatiotemporal sparsity) together instead of separating 

them. While a detailed review of k-t methods can be found elsewhere51, this section 

describes the basic concepts.

In many types of dynamic images, only certain areas of the images contain motion, while 

other portions remain static. For example, in a cardiac cine image series, it can be assumed 

that organs other than the heart do not move substantially during the imaging process. This 

can be seen by looking at an x-t plot of the dynamic images, or the cross-section which 

shows changes in the images through time (Figure 4c). In the so-called x-f space, which is 

calculated by applying the Fourier transform through time, only portions of the image that 

move will lead to signal spread (indicated with the purple arrow); pixels with no motion will 

be confined to a single pixel (indicated with the orange arrow). This property makes the x-f 

space sparse in imaging applications were few pixels change over time. If the accelerated k-

space data are undersampled in an interleaved fashion, the aliasing in the images appears as 

distinct and often non-overlapping replicas in the x-f space. k-t methods, which include 

techniques such as UNFOLD48 and k-t BLAST/SENSE50, rely on the separation of these 

replicas in the x-f space for reconstruction.
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UNFOLD uses a low-resolution training dataset to determine what the signal should look 

like in the full x-f space, and then filters the accelerated x-f space to remove the aliasing 

artifacts. k-t BLAST50 instead takes the approach of resolving the copies by determining an 

unmixing matrix using the low-resolution time series, which can provide a more nuanced 

reconstruction of signals in the x-f space. Figure 6 illustrates the basic idea of k-t BLAST. 

Aliasing from interleaved undersampling can be seen in the accelerated data in x-f space 

(Figure 6c, top), but with knowledge of the structure of the true x-f profile (dotted line in 

Figure 6c, bottom), a set of unaliased images can be generated (Figure 6e). k-t SENSE is a 

form of k-t BLAST in which parallel imaging is incorporated to help resolve aliased pixels, 

enabling higher acceleration factors to be employed. Other k-t variants exist, including those 

that involve parallel imaging in a different way or use sparsifying transforms other than the 

temporal Fourier transform52–54.

The various k-t methods provide the ability to accelerate dynamic acquisitions. However, 

they only work for dynamic time series and perform best when motion is smooth and limited 

to a subsection of the image. These methods have been applied to cardiac functional and 

perfusion imaging49,50,53,54 and fMRI48 but have the potential to be used in any case which 

meets these requirements. Additionally, k-t methods are often combined with other types of 

sparse reconstruction techniques, such as the compressed sensing-based k-t FOCUSS47 and 

k-t SPARSE28.

 Compressed Sensing

Although sparsity has been exploited to accelerate MR imaging for many years, sparse 

reconstructions regained popularity after the introduction of compressed sensing (also 

known as compressive sampling)11,12. The basic idea of compressed sensing is that if MRI 

data are collected such that the undersampling artifacts appear as noise (incoherent aliasing) 

and the images are sparse, the full image can be recovered using an appropriate non-linear 

reconstruction method. These nonlinear reconstruction techniques enforce two conditions:

1. Sparsity of the image in the transform domain

2. Consistency of the reconstruction with the acquired data

The first condition enables aliasing artifacts to be separated from actual signals in the image 

by requiring that the reconstructed image is sparse (or sparse in the transform domain). The 

second condition ensures that the reconstruction does not replace actual acquired data with 

arbitrary data in the interest of making the final solution sparse. Thus these two requirements 

balance the desire for a sparse image, and an image that is consistent with the data collected.

This problem can be formulated mathematically using the following minimization:

(1)

where Ψ is a sparsifying transform chosen by the user to convert the image m into a sparse 

domain, y are the actual undersampled k-space data acquired, and Fu is the Fourier 

transform for the data collection trajectory that was employed. The first term ensures that the 
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reconstructed image m is consistent with the k-space data that have been collected, y. This 

term calculates the least-squares difference, denoted as ||•||2, between the k-space of the 

reconstructed image and the k-space that was acquired. The second term ensures that the 

reconstructed image m is sparse in the selected transform domain. This term uses the L1 

norm, ||•||1, which calculates the degree of sparsity in the image by summing the absolute 

value of the pixels in the image (or the image after the sparsifying transform). Thus, 

described in words, this equation seeks to find an image m which is both sparse (or 

transform sparse) and also consistent with the data that has been collected The so-called 

regularization parameter, λ, controls the relative importance of the two terms in the 

reconstruction. Selecting a small value of λ will lead to a solution that is closer to the 

collected data and relies less on the sparsity term, whereas a large value of λ will lead to a 

final image that may deviate from the collected data in the interest of providing a sparse 

solution.

A schematic example of a basic compressed sensing algorithm is shown in Figure 7. The 

gray box shows how the algorithm iterates between enforcing sparsity (top row) and 

ensuring data consistency (bottom row). Note that there are much more elegant and efficient 

techniques which can be used to solve these minimization problems, for instance projections 

onto convex sets or iterative soft thresholding.

Unlike the methods described in the previous sections, compressed sensing can be used to 

accelerate static images by using only spatial transforms, or temporal transforms can be 

included when reconstructing accelerated dynamic data. Parallel imaging is often 

incorporated into these techniques to further increase the data reduction factor and improve 

image quality13,15,18. Because motion, including cardiac and respiratory motion, can reduce 

the efficacy of compressed sensing reconstructions, a number of groups have incorporated 

navigator information19–21, image registration22–24, or even an additional motion 

dimension25,26, directly into the reconstruction.

An example of a static compressed sensing reconstruction is L1 SPIRiT13 which uses the 

parallel imaging method SPIRiT4 combined with a spatial wavelet transform to sparsify the 

images. L1 SPIRiT is an iterative reconstruction that is typically used with 3D Cartesian 

datasets collected using a pseudo-random Poisson disk sampling pattern. This technique has 

the potential to accelerate clinical MRI scans by a factor of 8 in applications such as 

pediatric body imaging13,27.

k-t SPARSE-SENSE15 is a compressed sensing method which takes advantage of sparsity in 

the spatiotemporal domain by using a temporal total variation transform. This technique has 

been used for high frame rate dynamic cardiac imaging, angiography, and free-breathing 

liver imaging with acceleration factors up to 8. GRASP14 (Golden-Angle Radial Sparse 

Parallel) is a version of k-t SPARSE-SENSE which works with radial data collected in a 

continuous fashion for dynamic 3D imaging. GRASP has been demonstrated in dynamic 

contrast-enhanced free-breathing liver, pediatric body, breast, and neck imaging with 

acceleration factors up to 28.7.
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While L1 SPIRiT and k-t SPARSE-SENSE/GRASP have been used as examples of 

compressed sensing techniques in this section, there are many more compressed sensing 

type reconstruction algorithms that have been presented in the literature and reviewed 

elsewhere92,93.

 Model-Based Methods

Model-based methods are another type of sparse reconstruction technique which make the 

assumption that the final image or time series can be described using a set of parameters that 

is much smaller than the total number of image pixels, which would indicate that the data 

are redundant and can tolerate high degrees of undersampling. For instance, in the case of T1 

relaxation parameter mapping, a time course made up of several T1 weighted images is 

usually collected and used to determine the T1 value for each pixel by performing a 

mathematical fit (Figure 8a and 8b). However, although many T1 weighted images are 

collected to yield an accurate value of T1, only two unknowns actually must be determined 

for each pixel, the proton density and T1. Thus, a dictionary of possible time courses for the 

T1 weighted images can be determined mathematically; these are the only possible time 

courses that can be found in the images (excluding noise), as the physics of T1 relaxation are 

well understood (Figure 8c). If the images in the time course are randomly undersampled, 

this dictionary can be used to recover the T1 maps despite the aliasing that results from the 

accelerated scan (Figure 8d and 8e).

There are different ways of using a model to perform a sparse reconstruction. For instance, 

some sparse reconstruction techniques employ the dictionary of possible elements as a 

sparsifying transform in a compressed sensing reconstruction55,59–63. MR Fingerprinting64 

is a dictionary-based approach in which highly undersampled pixel time courses are matched 

to a dictionary of possible time courses to derive T1 and T2 maps. While MR Fingerprinting 

does not rely on the image time series itself to be sparse, this method uses the idea that a 

sparse set of dictionary elements, in this case a single element, can be used to represent the 

time course of each pixel. Yet other techniques employ a signal model directly in the 

reconstruction to constrain the resulting images or time courses to follow a specific 

mathematical form94–98. Such a parametric approach does not require the user to explicitly 

calculate all of the possible elements to form a dictionary, which may allow improved results 

as any values of the model parameters can result from the reconstruction (and not just those 

found in the dictionary). Although the example of T1 mapping has been used here, any other 

physical property can be treated in the same manner if a well-defined mathematical 

relationship exists between the signal time course and the property to be measured, such as 

T2 65, proton density56, fat fraction95–98, or susceptibility mapping94. Additionally, there are 

methods which use the images themselves to determine an appropriate signal model; here an 

explicit knowledge of the mathematical model is not required59,61,66.

In addition to using mathematical models to depict signal time courses, some sparse 

reconstruction techniques use spatial “patches” to model the information in MR 

images67–74. Such methods assume that each block of pixels in an image can only be 

described by the elements in a dictionary of possible blocks. These possible blocks are 

determined either empirically or using a priori information such as a set of similar images. 
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These techniques can use 2D70,71 or 3D blocks 72,73, and can even be combined with time 

course modeling methods for further sparsification58,69.

 Clinical Applications of Sparse Reconstruction Techniques

A sparse reconstruction technique is often directed towards accelerating a particular 

application, such as dynamic cardiac or abdominal imaging, MR angiography, or high-

resolution brain imaging. The performance of the technique is then demonstrated in a small 

set of proof-of-concept reconstructions using in vivo data, typically collected from healthy 

volunteers and sometimes a small number of patients. However, the impact of the various 

sparse reconstruction techniques in clinical practice with regard to diagnostic accuracy has 

been less extensively studied93. The following section describes some applications where 

sparse reconstructions hold clinical promise. The literature reviewed is representative, but by 

no means exhaustive.

 Vascular and Flow Imaging

MR angiograms are relatively sparse in the image domain and can be further sparsified in 

both the image domain and in the time domain. Therefore, MR angiography (MRA) is a 

natural application for sparse reconstructions. Both contrast enhanced99 and non-contrast 

enhanced MRA100 have been examined in a variety of applications, including intracranial 

vasculature101,102, carotids103,104, coronaries19, and pulmonary veins105. Reducing the 

acquisition time enables the dynamic visualization of the flow of blood sequentially into 

arteries and then veins via repeated rapid imaging. This may allow the characterization of 

pathologies such as abnormal blood flow dynamics and arteriovenous malformations106.

The challenge of collecting angiograms in regions where the degree of physiological motion 

encountered requires high temporal resolution imaging to capture the anatomy or the 

contrast bolus during peak enhancement has also driven the development of fast imaging 

methods. Pulmonary angiography, thoracic angiography, and coronary angiography are 

important representative techniques in which respiratory and cardiac motion pose major 

difficulties, necessitating ultrafast imaging19,85,105,107–109. Abdominal MR angiography 

poses the twin challenges of rapid contrast dynamics and a need for very large field of view 

coverage. Thus significant efforts to use sparse reconstruction techniques for acceleration in 

the abdomen are underway, both in adults and children110.

The use of sparse reconstructions has also been explored for improving 4D flow or phase 

contrast imaging111, to evaluate valvular insufficiency, improve accuracy in delineating 

shunt pathology, assess anomalous flow in pulmonary veins, and visualize hemodynamics in 

congenital heart disease112–116. Sparse reconstructions have been used to obtain single 

breath-hold characterization of portal flow117 and can yield improved vessel conspicuity 

while retaining accuracy of quantification of portal flow118. While the carotid vasculature 

does not pose the same motion problems as thoracic and abdominal regions, the very high 

resolutions needed for vessel wall imaging in these regions necessitate extremely long 

acquisitions (8–10 minutes are not unusual). Early exploration of sparse reconstructions in 

this setting in volunteers and two patients shows greater than 8-fold acceleration of the exam 

with improved flow quantification119.
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 Cardiac Imaging

Cardiac examinations are some of the longest MRI protocols and are dependent on patient 

compliance and the patient’s ability to hold his or her breath. Technologies for accelerating 

cardiac imaging using sparse reconstructions are being explored for free-breathing cine 

imaging23,120–124 and for breath-held functional assessment of measurements such as left 

ventricular volume, ejection fraction, and mass125–127. The largest study included 21 

patients and showed that single accurate breath-hold functional measurements are feasible in 

patients with a variety of cardiac pathologies126. Multiple groups are exploring the 

application of sparse reconstruction techniques to first pass perfusion imaging15,128–132 in 

pathologies such as atrial fibrillation, where it was previously impossible to obtain 

diagnostic exams133. Such advances could contribute to a highly efficient and rapid 

throughput approach that could greatly simplify cardiac MR134. However, questions remain 

regarding image quality compared to traditional exams134 and whether CS-based methods 

suffer from worsened spatiotemporal blurring compared to parallel imaging-based 

acceleration135,136. Acceleration of late gadolinium enhancement (LGE) exams with sparse 

reconstructions for faster/free breathing acquisitions or greater anatomical coverage has also 

been explored136–138. An early study of 3D isotropic LGE imaging on 28 patients indicates 

that accelerated scans may be used to visualize left ventricular scar with a high spatial 

resolution, and potentially pulmonary vein and left atrial scar post ablation for atrial 

fibrillation137.

 Abdominal and Pelvic Imaging

Abdominal imaging requires large fields-of-view for organs such as the liver, or entire 

abdominal/pelvic cavity for imaging the bowel for applications such as enterography, while 

retaining sufficient resolution for visualization and characterization of pathology. Children 

have particular difficulty in providing the long breath-holds required; these patients are 

scared and often sedated or anesthetized. Thus application to pediatric abdominal imaging is 

one of the first areas where early application of sparse reconstructions such as compressed 

sensing has been particularly promising, for improved delineation of key structures in the 

abdomen with significantly shortened acquisition times14,20,79,139,140.

Abdominal perfusion imaging in kidneys and liver is particularly challenging for 

quantitative analysis due to the need for dynamic imaging of large fields-of-view at a high 

resolution. Ultrafast imaging techniques, including the family of sparse reconstruction 

techniques discussed here, are potentially enabling technologies for robust abdominal 

perfusion analysis with improved 3D coverage. Application of compressed sensing 

acquisitions has been reported for quantitative renal and hepatic perfusion imaging141,142 

with volumetric coverage and high spatial resolution. Similarly for MR enterography in 

Crohn Disease, a free-breathing accelerated acquisition could be used to enable perfusion 

measurements in addition to qualitative imaging of terminal ileitis, opening the door for 

quantitative analysis143. Accelerated DCE imaging of the prostate with quantitative 

perfusion characterization has also been explored144.

Fat and water imaging plays an important role in the abdomen and multiple groups have 

accelerated these acquisitions using sparse reconstructions96–98,145. Faster imaging to reduce 
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breath-hold lengths could lead to improved image quality, and acceleration for this purpose 

has been demonstrated146,147 and used for measurement of hepatic steatosis in diabetic 

patients without compromising accuracy of measurement147. Quantitative measurement of 

relaxation times in the upper abdominal organs with Magnetic Resonance Fingerprinting has 

also been explored, and early work indicates that colorectal cancer hepatic metastases can be 

differentiated from surrounding parenchyma148.

MR Spectroscopic Imaging (MRSI) has potential in characterizing tumors in the prostate, 

but long acquisitions are required, which can be clinically prohibitive. Recent advances have 

shown that sparse reconstructions can be used to significantly reduce these acquisition times 

while providing quantitative information on multiple relevant metabolites. It remains to be 

seen whether such advances can make the technique more feasible for routine clinical 

application149.

 Neuroimaging

As in other anatomical regions, sparse reconstructions could be used in neuroimaging to 

enable exams that have traditionally been too long for practical use. For example, arterial 

spin labeling (ASL), a non-contrast method for measuring perfusion, can be made 

significantly faster and yet more accurate using sparse reconstructions150. Similarly, 

accelerated dynamic contrast-enhanced imaging has been achieved for accurate 

characterization of brain perfusion parameters151. Accelerated scans have been used for 

qualitative and quantitative analysis of pituitary adenomas152. As with prostate, 

spectroscopic imaging can be shortened and made more feasible153 for assessment of 

pathologies such as obstructive sleep apnea154, which have been shown to be associated with 

biochemical alterations of multiple metabolites. Applications of quantitative relaxometry 

technologies such as MR Fingerprinting indicate that subtle but measurable region-specific 

aging-related changes may occur155, leading to the possibility of using relaxation time 

changes to assess diffuse pathologies and potentially focal lesions.

Functional MRI (fMRI) is a challenging application requiring rapid imaging and quantitative 

characterization of very small signal changes. Sparse reconstruction approaches have been 

used to accelerate fMRI exams while still providing high quality activation maps in areas of 

low SNR156 and improved sensitivity to functional activation81. Sparse imaging has also 

been employed to reduce susceptibility artifacts in fMRI and improve imaging efficiency, 

making use of the fact that hemodynamic signal changes in fMRI are typically small from 

frame to frame157.

A major area of development within neuroimaging is diffusion tensor imaging (DTI). For 

applications such as high angular resolution diffusion imaging (HARDI), a very large 

number of high spatial resolution images must be obtained, which result in long acquisition 

times. Acceleration with sparse reconstruction techniques is being actively explored improve 

these q-space or HARDI acquisitions158–161. In addition to tractography and basic 

neuroanatomical research, these technologies have application in accelerating fiber tracking 

around tumors for surgical planning162.

Yang et al. Page 12

Invest Radiol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Lung Imaging

The high temporal resolution acquisitions enabled through modern reconstruction techniques 

are starting to make pulmonary MRI a feasible alternative to CT, and a number of groups are 

exploring the utility of sparse reconstruction techniques for imaging lung structure and 

function. Enabling the use of MRI for rapid and high-resolution structural assessment of the 

lungs, for instance in children with cystic fibrosis, could reduce the large burden of radiation 

associated with repeated CT scans. In a review exploring MR imaging for lung cancer 

screening, it has been suggested that compressed sensing may provide some of the 

acceleration needed for MR to image small tumors in the lungs163. Another developing area 

of clinical interest has been imaging of the lungs and lung function using 

hyperpolarized 3He imaging164. Acceleration enables accurate calculation of ventilation, 

with initial application in imaging ventilation changes in asthma165. The same group has 

previously explored hyperpolarized 3He for chronic obstructive pulmonary disease 

(COPD)166 and application to this pathology is also likely feasible. Alternatively, an 

ultrashort echo time (UTE) approach has been used with compressed sensing for imaging 

COPD patients, where UTE MR signal intensity correlates to CT density and can be related 

to pulmonary function metrics such as FEV1/FRC167.

 Musculoskeletal Imaging

While imaging of joints such as the knee is not intrinsically complicated by motion, many 

patients, especially children, have difficulty laying still for the entire exam. Early clinical 

implementations of sparse reconstructions for clinical use thus included imaging the knee 

for the pediatric population140. Sparse reconstructions may make it possible to image areas 

such as the cartilage in the hip, which can be as thin as 1–2 mm, at higher spatial resolution 

in a given scan time. An area of particular interest in musculoskeletal radiology is the 

development of technologies that enable imaging near metal. Multispectral imaging 

approaches for imaging around metal can be accelerated using sparse reconstruction 

techniques, without loss of image quality, in clinically relevant settings such as patients with 

implanted spinal fixation hardware168. Spectroscopic imaging of areas such as the calf169 

may also be feasible with the increases in imaging speed afforded by sparse reconstruction 

techniques.

High field sodium imaging of cartilage holds promise because it could help quantify 

glycosaminoglycan content, which in turn could relate to the degree of cartilage degradation 

in early osteoarthritis. It has been shown that sparse reconstructions can be used for faster 

and yet accurate quantitative sodium imaging of knee cartilage at 7T, opening the door for 

sodium imaging-based quantitative assessment of osteoarthritis170. Quantification of T1ρ 

similarly holds promise for characterization of osteoarthritis, and acceleration of T1ρ 

mapping in the knee has been demonstrated in early feasibility studies171,172. Accelerated 

dynamic functional metabolic imaging of phosphocreatine kinetics after calf muscle exercise 

has also been shown for 3D 31P spectroscopic imaging at 7T173. Such technology could be 

used to study exercise physiology and also pathology related to altered bioenergetics in 

skeletal muscle. Accelerated fat fraction with incorporation of effects of R2* has been 

demonstrated for improving accuracy in fat fraction mapping in musculature of patients with 
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Becker muscular dystrophy, with implications for clinical trials where such quantification is 

needed174,175.

 Technical Challenges

While sparse reconstruction techniques show promise in many MR applications, the 

selection and optimization of an acceleration technique for a given application is both 

technically and clinically challenging. Before a method can replace the current clinical 

standard-of-care technique, significant testing must be performed. In the best cases, this 

testing is difficult and time-consuming, and in the worst case, nearly impossible to perform 

due to the need for repeat patient scans. Moreover, the results of comparisons between 

sparse reconstruction techniques and more commonly-employed acceleration methods can 

yield different results depending on the specific application, reconstruction techniques that 

are examined, and method of comparison. Some groups have reported advantages when 

replacing conventional imaging methods with sparse reconstruction 

techniques25,109,114,162,176,177, while others have seen that standard clinical techniques 

continue to outperform these novel methods135,178. These conflicting reports stem from the 

challenges that basic scientists and clinicians alike face when employing sparse 

reconstruction methods. The following sections examine some of these challenges 

associated with both testing sparse reconstructions in a research setting as well as using 

sparse reconstructions in a clinical setting.

A major obstacle faced by researchers is that it is difficult to compare the quality of various 

reconstruction approaches, as the true test of a reconstruction is the diagnostic value of the 

resulting images. However, it is clearly not feasible for radiologist to assess the results of 

every reconstruction technique under development, and thus proxy metrics are often used. In 

some studies, authors calculate an “image error” metric by comparing the results of their 

image reconstruction to gold-standard images where all the data can be collected86,175,179. 

However, the ability of the reconstruction technique to enable visualization of specific 

pathology and anatomy are far more important to a radiologist than a mathematical match to 

what might also be a flawed gold-standard. Thus, while the use of these metrics simplifies 

the comparison of techniques in a research setting, these analyses may lead to methods that 

do not translate well to clinical practice. Overall image quality or feature conspicuity as 

rated by a radiologist may be preferable140,168,180 but even these are proxies for a true 

comparison of diagnostic accuracy in a clinical setting.

A second challenge is that the performance of each method depends strongly on the 

parameters used in the reconstruction. For instance, in compressed sensing reconstructions, a 

number of different sparsifying transforms beyond finite differences and wavelets have been 

proposed, including but not limited to singular value decomposition 181, principal 

component analysis53,151, Haar182 and temporal Fourier transforms182. To complicate 

matters, some proposed compressed sensing implementations use more than one sparsifying 

transform151,182. Once the number and type of sparsifying transforms have been selected, it 

is often necessary to determine an appropriate value for the regularization parameter 

associated with each transform. The results of the sparse reconstruction depend highly on 

the choice of the regularization parameter(s). Figure 9 demonstrates how an improperly 
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tuned regularization value can lead to an image that has lost many essential features, as the 

sparsifying transform has been overemphasized. The optimal value of the tunable 

parameter(s) can be drastically different between methods, and while it may be possible to 

determine suitable parameters for an application through extensive testing183, these 

parameters will apply only for that application184. Some groups have attempted to move to 

techniques which do not require an adjustable regularization parameter185,186, but the 

relative performance of these methods has not been assessed.

In addition to the regularization parameter, the performance of many sparse reconstruction 

methods is highly dependent on the way that the MRI data are sampled and the degree of 

undersampling. Often retrospective undersampling is employed for testing, as only one 

dataset must be collected and simply downsampled with different sampling patterns. 

However, the behavior of the magnetization may be different when collecting accelerated 

data than it was when collecting fully-sampled data due to the underlying physics87. Thus, 

the sampling pattern and acceleration rate that are found to be optimal with retrospectively 

undersampled data may not be the same for prospectively undersampled data. However, to 

collect prospectively undersampled data with different sampling patterns and acceleration 

factors, many more actual experiments must be performed, which is both expensive and 

time-consuming.

Another challenge is that most sparse reconstruction methods use complicated algorithms 

which can be difficult to implement. While researchers are able to develop and expand upon 

their own techniques, they may not be able to properly implement the techniques of others, 

even after the methods have been published. This makes unbiased comparisons of different 

sparse reconstruction techniques nearly impossible. However, there have been several 

attempts to help make fair and appropriate comparisons, which typically fall under the term 

“reproducible research”. For instance, there has been a push in the scientific community to 

deposit reconstruction code in code repositories, such as “MRI Unbound” 187 or the fat-

water toolbox that is available online as part of the ISMRM Workshop “Fat-Water 

Separation: Insights, Applications & Progress in MRI”188. Code in these repositories can 

then be downloaded by others for comparison purposes. Another option for algorithm 

comparison is a so-called “reconstruction contest,” in which a research society provides a 

dataset that is available for download. Multiple research groups can use their own techniques 

to reconstruct the images, which are then uploaded back to the society and then compared 

either quantitatively to a gold-standard image, qualitatively by radiologists, or both, to 

determine the “best” reconstruction method. For instance, in such a contest sponsored by 

ISBI 2012, 20 different reconstruction algorithms were tested using HARDI data and the 

results compared in terms of image quality and quantitative accuracy189. In this contest, 

none of the methods was found to significantly outperform the others in all experimental 

conditions, further highlighting the challenge in selecting just one for clinical adoption.

Because many sparse reconstruction techniques are computationally intensive, the 

generation of images using these techniques can take a significant amount of time. 

Reconstruction times on the order of hours or even days have been reported14,42,72,151. Such 

long reconstruction times make it difficult to test the relative performance of different 

methods or determine optimal parameters. Many groups have moved to using dedicated 
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image reconstruction platforms which employ hardware and code optimized for rapid 

computations190. The use of specialized hardware and implementations including Graphics 

Processing Units (GPUs)27,191, distributed computing192, and/or multicore processors193 has 

been shown to enable 50-fold reductions in computation time, making clinical application of 

these sparse reconstruction techniques feasible191.

 Challenges to Clinical Application

In addition to the technical challenges associated with sparse reconstruction techniques, 

there remain significant clinical barriers to widespread testing, let alone adoption, of these 

methods. Ultimately, the success of a technique such as sparse image reconstruction depends 

on its acceptance by the radiology community, as these physicians are the end users of the 

technology. Full validation of new imaging methods must demonstrate diagnostic accuracy, 

or equivalent accuracy at a reduced scan time. Unfortunately, such validation is a lengthy 

and challenging process as it must show that the new imaging technology not only produces 

images of higher quality based on quantitative metrics, but also impacts clinical care in a 

meaningful way.

A major barrier to clinical adoption is that the imaging community has relatively little 

experience with the artifacts that can arise from these sparse reconstruction techniques. For 

example, the artifact profile with compressed sensing has been described to include 

significant image blurring and a “global ringing” similar in appearance to motion ghosting, 

and these can have deleterious effects even at a two-fold acceleration180. Furthermore, since 

many of these technologies take advantage of image information collected over a wider time 

window than a single frame of the imaging time series, it is possible that “temporal” artifacts 

are produced; in other words, each individual image may be acceptable, but the temporal 

fidelity with which events are observed in the imaged anatomy may be compromised. While 

the presence of artifacts in any accelerated image is an expected phenomenon, the unfamiliar 

and unpredictable nature of these artifacts means that radiologists or technologists may not 

be able to troubleshoot or even recognize them. This problem can be compared to the use of 

iterative reconstruction methods for reducing the radiation dose in Computed Tomography. 

The images generated with these new approaches look different than those reconstructed 

with more traditional filtered back projection approaches, and in many cases while they have 

less noise, the iterative reconstruction techniques may in fact obscure pathology194. Due to 

the large number of parameters in an MRI pulse sequence and contrasts which can be 

created, this challenge is compounded in MRI.

Another important problem with sparse reconstruction techniques is that of long image 

reconstruction times; while this creates technical challenges as described above, it can also 

hinder the use of such technologies clinically. Even if data are collected in real-time, the 

reconstructed images may not be clinically helpful if they are only available for review hours 

later. If the reconstruction is not successful due to an incorrect sampling pattern or overly 

ambitious acceleration rate, the patient would need to return for a second scan. Some 

patients may be too sick or lack proper transportation to return for repeat imaging, and the 

cost of repeat scanning may be prohibitive. If there are acutely important findings in the 

images, the reconstruction time could effectively delay or even preclude treatment. Such 
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practical considerations may make it difficult to replace current clinical standard exams with 

the computationally intensive techniques, no matter how enticing their potential benefits are.

Another complication is that testing sparse reconstruction techniques against a clinical gold 

standard can be problematic. Ideally head-to-head comparisons in non-contrived clinical 

settings are needed. Some exams, especially dynamic contrast-enhanced series, may be 

difficult or even impossible to repeat. Even if repeated, it may be challenging to replicate the 

scan on two different dates or time points. Thus testing of diagnostic utility against an 

accepted standard may not always be possible. Indeed, such testing in a clinical environment 

has been performed only with small groups of patients at advanced research hospitals due to 

the demanding nature of these studies113,139,180. True blinded comparisons are further 

complicated by the fact that the scans to be tested appear clearly different than the clinical 

standard in terms of SNR, imaging features (i.e. edges, contrast), and artifact profile.

Finally, in some applications, even promising sparse reconstructions may not deliver higher 

acceleration rates or improved image quality over existing (and emerging) techniques. 

Multislice195,196, 3D CAIPIRINHA197,198, and non-Cartesian parallel imaging 

techniques199 enable rapid imaging in many of the clinical applications discussed above, 

often at acceleration factors which are similar to those used in sparse reconstruction 

methods. Only a demonstrated dramatic increase in diagnostic efficacy can motivate the 

decision to use a time-consuming and complex sparse reconstruction technique instead of 

either the current gold-standard methods or another simpler emerging technology.

 Conclusion

Sparse reconstructions, including but not limited to the family of compressed sensing 

techniques, have the potential to significantly accelerate MRI scans. In this review, the 

fundamental ideas behind sparse reconstruction methods have been introduced. While many 

different types of sparse reconstruction techniques have been proposed, all rely on image 

sparsity, noise-like or benign aliasing artifacts, and the use of a specialized reconstruction. 

This review also describes the principles of four basic categories of sparse reconstruction 

techniques, namely separable methods, k-t methods, compressed sensing, and model-based 

methods. Each of these techniques places different requirements on the collected data and 

exploits different aspects of the underlying images, and thus some techniques may be better 

suited to the acceleration of a specific imaging application than others.

While decreasing imaging time for standard exams may be possible using sparse 

reconstructions, the true benefit of these techniques will be realized if new applications can 

be enabled through faster imaging. Additionally, it may be possible to better scan patient 

populations that have traditionally been challenging to image with MRI, including children 

or patients who cannot hold their breath, thus expanding the role of MR in diagnostic 

imaging. Despite this great potential, sparse reconstruction techniques have not been widely 

adopted in the clinic. In order to make such adoption possible, it is essential for researchers 

and clinicians to work closely together to design, optimize, validate and compare these 

sparse reconstruction techniques and competing methods. The few studies which have 

explored the use of sparse reconstructions in a clinical setting typically recommend factors 
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of 2 to 4 for static imaging, and up to 8 to 12 for dynamic imaging. At these data reduction 

factors, it will be important to demonstrate the benefit of moving to the more complex and 

time-consuming sparse reconstruction technique instead of relying solely on parallel 

imaging, which is well-accepted clinically and broadly used. Thus far, the majority of the 

work on sparse reconstruction algorithms has been performed by integrated teams of 

researchers and physicians in academic settings. More general acceptance and routine 

utilization will require the reconstructions to be rapid and predictable, such that 

technologists or radiologists can understand and troubleshoot any residual artifacts and 

either re-reconstruct the data or recollect images while the patient is still on the table.
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Figure 1. 
(a) Fully sampled k-space is converted to an image via the Fourier Transform. (b) Cartesian 

undersampling by factor of 2, where every other line of k-space is missing. The resulting 

image is corrupted by aliasing or fold-over artifacts. (c) Random Cartesian undersampling. If 

k-space points are skipped in such random fashion, the resulting aliasing artifacts no longer 

appear as distinct replicas of the image (as in (b)), but instead as blurring or noise-like 

artifacts. This type of sampling is typically not realizable in 2D. (d) Radial undersampling 

by factor of 9. The resulting image contains streak artifacts due to the undersampling, but 

the bulk of the image is recognizable since the center of k-space is well sampled.
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Figure 2. 
(a) An example of a sparse MR image, specifically a single partition subtraction image from 

a 3D abdominal and pelvic contrast enhanced MR angiogram, where few of the image pixels 

contain signal (and are bright), but most of the image pixels are near zero. (b) When the k-

space data are undersampled, the resulting image is no longer sparse due to the presence of 

aliasing artifacts. If it is known a priori that the image should be sparse, a sparse 

reconstruction can be used to recover the original image.
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Figure 3. 
(a) An axial brain image. (b) Horizontal finite differences transform of the image shown in 

(a). This transform shows the differences between neighboring pixels, and thus highlights 

edges in the image. Many images are sparse, i.e. contain more pixels with near-zero values, 

after such a spatial finite differences transform. (c) Wavelet transform of the image shown in 

(a), where the transformed images are again sparse compared to the untransformed image 

(a).
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Figure 4. 
(a) A time series of dynamic cardiac images is shown, where the x-y plane shows the 

images, and the t axis depicts the time dimension (left). Three different images of the heart 

show the motion that occurs through time (right). (b) When one frame from the dynamic 

dataset is subtracted from another, the result is a sparser image because many tissues are 

stationary from frame to frame. Only pixels near the heart change, and these are reflected in 

the temporal difference image. (c) The 3D space-time data can be examined along one slice 

of the x-t plane (left), designated by the white dotted line. The areas with significant motion 

can be clearly seen in the “x-t space” image (middle). If a Fourier transform is applied to the 

x-t space in the time direction, the result is the image representation in the spatiotemporal 

domain (x-f space, right). Static areas of the image will only have a single bright pixel in the 

x-f space (orange arrow), and only pixels with significant motion will contribute many non-

zero pixels (purple arrow), making x-f space sparse in many dynamic applications.
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Figure 5. 
(top) By sampling data using an undersampled radial scheme, dynamic images of low spatial 

resolution but high temporal resolution can be collected. These images show the 

enhancement in different regions over time, but are not usable because of their low 

resolution. (middle) By gathering all acquired radial projections from each timeframe, a high 

spatial resolution composite image can be created. This single static image displays all 

enhanced vessels at a high resolution, but does not show the order in which they enhance. 

HYPR works by combining spatial information from the high-resolution composite image 

with temporal information from the low-resolution dynamic images. This reconstruction 

yields a time series of high spatial and high temporal resolution images (bottom row) that 

shows dynamic enhancement of the vessels.
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Figure 6. 
A schematic of the k-t BLAST reconstruction technique. Both undersampled data with high 

spatial and temporal resolution (a, top) and fully-sampled low resolution data (a, bottom) are 

collected. The undersampled accelerated data are used to generate the image, and the low 

resolution data serve as training data for the k-t BLAST reconstruction. After using Fourier 

transform to convert the datasets into the image domain (b), the aliasing in the undersampled 

data can be seen (b, top). By applying a Fourier transform in time, the data are converted to 

the x-f domain (c). If the undersampled data are collected using the k-t interleaved sampling 

pattern, the duplicates seen in the x-f domain will be offset in the undersampled data (c, top). 

However, the low resolution training data do not show aliasing in the x-f domain because 

they are fully-sampled (c, bottom). A knowledge of the structure of the x-f training data 

(indicated by the dashed shape in x-f space) can be used to remove aliasing in the high 

resolution aliased x-f space (d). The final images are generated by applying an inverse 

Fourier transform to the reconstructed high resolution x-f data (e).
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Figure 7. 
A schematic of a simplified compressed sensing reconstruction. Randomly undersampled k-

space data are collected (bottom left), leading to an image which exhibits noise-like aliasing 

artifacts (top left). A sparse representation of this undersampled image can be obtained by 

applying a sparsifying transform such as finite differences, which highlights edges. Because 

the artifacts look like noise, it is possible to retain most of the significant pixels in the sparse 

image while removing some noise-like artifacts by thresholding this image. After 

thresholding, only true edges remain, although some may have been lost in the thresholding 

process. An updated image is generated by “undoing” the sparsifying transform, and this 

updated image with reduced aliasing artifacts is converted back to k-space. This k-space 

may contain data that is different from the collected k-space data after the thresholding step. 

Therefore, to ensure data consistency, the original k-space data are reinserted into the k-

space of the updated image. This updated k-space is then converted into an image, which is 

now both consistent with the original data and contains reduced aliasing artifacts, and the 

loop begins again. When the error between the previous iteration of the updated image and 

the current iteration reaches the stopping criteria set by the user, the iteration loop is broken 

and the final image is output.
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Figure 8. 
(a) From a set of rapidly collected undersampled T1-weighted images, one pixel is selected 

and examined through time (b). With a knowledge of the underlying physics, a model can be 

used to calculate all possible signal timecourses for different values of T1. In this case, the 

dictionary consists of signals which could arise from T1 values of 300ms, 500ms, or 

1000ms. The actually measured signal is then compared to the signals in the dictionary to 

find the closest match (d), in this case, the curve for T1=500ms. (e) The value of 500ms is 

then assigned as the T1 value for this pixel. The process is repeated for every pixel of interest 

to produce a T1 map.
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Figure 9. 
(left) An image generated using a sparse reconstruction with properly tuned parameters. The 

image appears clear and with no obvious aliasing artifacts remaining. (right) An image 

generated with the same data and sparse reconstruction but with a larger regularization term. 

The overemphasis on the sparsifying transform, in this case total variation, leads to a blurry 

reconstruction.
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