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SUMMARY

Community water fluoridation is an important public health measure to prevent dental caries, but it 

continues to be somewhat controversial. The Iowa Fluoride Study (IFS) is a longitudinal study on 

a cohort of Iowa children that began in 1991. The main purposes of this study (http://

www.dentistry.uiowa.edu/preventive-fluoride-study) were to quantify fluoride exposures from both 

dietary and non-dietary sources and to associate longitudinal fluoride exposures with dental 

fluorosis (spots on teeth) and dental caries (cavities). We analyze a subset of the IFS data by a 

marginal regression model with a zero-inflated version of the Conway-Maxwell-Poisson 

distribution for count data exhibiting excessive zeros and a wide range of dispersion patterns. In 

general, we introduce two estimation methods for fitting a ZICMP marginal regression model. 

Finite sample behaviors of the estimators and the resulting confidence intervals are studied using 

extensive simulation studies. We apply our methodologies to the dental caries data. Our novel 

modeling incorporating zero inflation, clustering and overdispersion sheds some new light on the 

effect of community water fluoridation and other factors. We also include a second application of 

our methodology to a genomic (next generation sequencing) dataset that exhibits underdispersion.
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 1. Introduction

There has been growing interest in analyzing various types of count data encountered in 

practice leading to improved and specialized statistical methods. Some count datasets, in 

particular, have more zero values than expected from a certain common count distribution 

such as Poisson or negative binomial. This phenomenon, called zero-inflation, takes place in 

diverse fields such as engineering, dentistry, health surveys, transport and so on. To this end, 

zero-inflated versions of these distributions and related inferential procedures have been 

derived (Bohning, 1998; McLachlan, 1997; Yau, Wang and Lee, 2003).

A Poisson distribution is well known for modeling count data. It is a relatively simple 

distribution that belongs to an exponential family which makes it convenient for analysis 

within the generalized linear models (GLM) framework. However, a Poisson distribution 

may not be the best choice in certain cases when the data is under- or over- dispersed, which 

violates the property that the variance and the mean are equal. The negative binomial is a 

popular choice to model data overdispersion, however, that is not the case for 

underdispersion. The Conway-Maxwell-Poisson (CMP) distribution introduced by Conway 

and Maxwell (1962) is a great tool to overcome this difficulty, since it can model a wide 

range of dispersion. In addition, it belongs to an exponential family as well.

Often in practice not all the data values are independent. Instead they arise as independent 

groups called clusters. The goal of the present paper is to develop a marginal regression 

model framework for analyzing count data with a zero-inflated CMP model (ZICMP, 

hereafter) where the data values are clustered. The motivation behind this work comes for 

our attempt to analyze a dataset of caries experience scores (CES) for each tooth of a 

collection of nine year old children from the Iowa Fluoride Study (IFS), which we return to 

in Section 3. The response variable for this case study exhibits zero inflation and 

overdispersion; in addition, each child represents a cluster since the CES values for all teeth 

belonging to a particular child are likely to be correlated due to shared genetic and 

environmental factors.

Currently, SAS version 13.1 has a procedure, PROC COUNTREG which allows us to 

perform a regression analysis based on the ZICMP distribution and the COMPoissonReg 

package in R performs a CMP regression analysis based on a GLM framework (Sellers and 

Shmueli, 2010). In addition, a recent paper by Barriga and Louzada (2014) introduces 

Bayesian inference with a ZICMP distribution. However, all these procedures and papers are 

only applicable to independent data. In this paper, we explore two different statistical 

approaches for fitting marginal regression models to clustered count data using a ZICMP 

distribution: a maximum pseudo-likelihood (MPL) method with an adjusted variance 

estimator for cluster dependency, and a modified generalized estimating equation based 

method we call the modified expectation-solution (MES) algorithm along with a cluster 

bootstrap based variance estimator.

The rest of the paper is organized as follows: In Section 2, we provide a brief introduction to 

a CMP distribution and its zero inflated version and review some important properties; we 

introduce the parameters estimation procedures for a ZICMP model based on the two 
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different regression methods mentioned above. In Section 3, we apply both the MPL and 

MES methods to analyze the dental caries data. Our novel modeling of the dental data 

incorporating zero inflation, clustering, and overdispersion sheds some new light on the 

effect of community water fluoridation and other factors. In addition, we also include a 

second real data example to illustrate the case of underdispersion; this involves the modeling 

of read counts of a given gene under four different genotypes in a next generation 

sequencing (NGS) experiment with maze hybrids (Paschold et. al, 2014). Section 4 presents 

two simulation studies. In the first simulation, we investigate the sampling properties of both 

the MPL and MES methods in a setting similar to the dental data along with a comparison 

with a zero-inflated Poisson (ZIP) regression model that is readily available in an existing R-

package. In the second simulation, we compare the MPL and MES algorithms in a different 

setting motivated by a data on airfreight breakage, where we also examine the effect of 

increasing the number of clusters. Finally, our paper ends with a Conclusion section. Some 

technical details and additional results are placed in the Web appendices.

 2. Material and Method

The probability mass function (pmf) of a CMP distribution is given by

(1)

where . Here λ > 0 is a shape parameter and v ≥ 0 is a dispersion parameter. 

If v is 1, a CMP distribution is exactly a Poisson distribution which means there is 

equidispersion. It turns out that v > 1 represents underdispersion and v < 1 represents 

overdispersion. Note that this distribution belongs to an exponential family since p(y) = 

exp{ylog(λ) − vlog(y!)}Z−1(λ, v). The limiting cases of a CMP distribution also include a 

Bernoulli distribution (v = ∞), or a geometric distribution (v = 0 and λ < 1) Thus, a CMP 

distribution has great flexibility to include various types of count distributions. Another 

important feature of the CMP distribution is about the expectation function of Y. In general, 

means behave independently from the dispersion parameters; in other words, the dispersion 

parameters do not affect the means. However, Equation (2) shows that the mean of Y in the 

CMP distribution is not only a function of the shape parameter λ, but also of the dispersion 

parameter v:

(2)

A zero-inflated model consists of two components: the zero-degenerated distribution δ0 and 

a particular count distribution W. The zero-degenerated part controls excessive zeros in the 

form of a binary distribution and a count distribution, the CMP distribution in this case, 
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controls counts including the expected number of zeros. Thus, the ZICMP marginal model 

has probability mass function described by

(3)

where p ∈ [0,1]is a parameter of the distribution representing the mixing proportion of the 

degenerate at zero part. Our data consists of clustered responses {yij}, where yij denotes the 

jth observation in the ith cluster with 1 ≤ j ≤ ni, and 1 ≤ i ≤ N. Note that ni is the size of the ith 

cluster and N is the total number of independent clusters in our dataset. In general, the y in a 

given cluster are correlated. We assume that the dispersion parameter v is the same for all 

subjects; the other two ZICMP parameters corresponding to yij will be denoted by pij and λij.

The expectation-maximization (EM) algorithm is widely used for estimating parameters in a 

zero-inflated model. However, the EM algorithm, by itself, is not a valid tool for clustered 

data. In three sub-section parts, we will explain the mechanism of the two methods 

mentioned in the Introduction section, accounting for not only zero-inflation but also 

dependency.

 2.1. MES algorithm based on a modified Newton-Raphson method

Instead of using an EM algorithm, Hall and Zhang (2004) suggested applying the ES 

(Expectation-Solution) algorithm (Hall and Zhang, 2004; Rosen, Jiang and Tanner, 2000) 

when the data are clustered. The ES algorithm combines elements of both the GEE (Liang 

and Zeger, 1986) and the EM algorithms, so that one can account for dependency 

(clustering) in the data. However, the ES algorithm as prescribed by Rosen, Jiang and Tanner 

(2000) has a major limitation in that it is only applicable to an exponential dispersion family 

which has a form of , where θij is the canonical 

parameter, wij is a constant, and ϕ is a dispersion parameter. Unfortunately, the CMP 

distribution does not belong to the exponential dispersion family. Since the Z function can 

not be factored into a function of λij( = log(θij)) and a function of v, it cannot be re-

expressed in the exponential dispersion family form. As a consequence of this, the 

expectation of Y is not only related to λ but also to v making a regression formulation 

complicated.

Therefore, we propose the following modification of the standard ES algorithm to deal with 

the CMP family; we call it the MES algorithm. Note that given a specified value of v, the 

CMP distribution indexed by λ belongs to an exponential dispersion family with h = (y!)−ν, 

k = logZ(λ, v), w = 1 and ϕ = 1 So, instead of using the ES algorithm for estimating all 

parameters, we applied the ES algorithm for only regression coefficients other than v. For 

estimating v, a log-likelihood function is applied instead of GEE. The parameters of interest 

based on this algorithm consist of θ = {β, γ, v, ρ, δ}: a dispersion parameter, v, both β and γ 

as coefficients of the count and zero-inflation parts from the GLM framework of log(λ(β)) = 

Xββ and logit(p(γ)) = Xγγ and correlation coefficients, ρ and δ from correlation matrices 
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corresponding to the count and zero-inflation parts in GEE formulation. Xβ and Xγ are 

covariates in the CMP distribution and zero-degenerated distribution, respectively. The 

covariates are determined depending on researchers’ interests.

An MES algorithm starts with the complete log-pseudo-likelihood of ZICMP model given 

by

(4)

where uij are latent (i.e., unobserved) binary indicators of the degenerate at zero part. (We 

call it a pseudo-likelihood because it is a product over likelihoods of individual terms as if 

they were independent.) Subsequently, it alternates between two main steps: the expectation 

(E) step and the solution (S) step. The E-step is to calculate the expectation of the 

expressions in each side of Equation (4) by replacing uij with E(uij) leading to

where

(5)

Let  denote this value at the hth iteration. In the solution step, given E(u) ( = uh), estimates 

of β, γ, and v are obtained by solving there own linearized estimating equations leading to 

the following updating schemes:

(6)

where
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(7)

and

(8)

See Web Appendix A.1 and A.2 for the details of the estimating functions Ψ1 and Ψ2 Note 

that the estimating functions for γ and β are of the GEE form (as in a standard ES algorithm) 

whereas that for the v is from a complete data pseudo-likelihood. As explained in the 

beginning of Section 2, the CMP distribution does not fall under an exponential dispersion 

family for changing v, and consequently we cannot apply the GEE methodology to estimate 

v. Also note that a step-size parameter κ is introduced in the updating scheme as compared 

with the classical Newton-Raphson method so that the algorithm converges slowly and 

steadily. The iterative algorithm stops when the maximum componentwise difference of the 

estimates between two successive iterations falls below a threshold ε. Depending on the 

datasets, it may be possible to use other versions of the updating scheme to get more stable 

updates. As for example, we could replace the sequential updates and the Ψ functions by 

their Cesàro sums.

The working variance-covariance matrices for the zero-inflation and the count parts are 

specified as  and , respectively. Here Ai = Ai(pi(γ)) = 

Var(ui) = Diag(pi(1 − pi)), Di = Di((E(yi|β, v)) = Diag(Var(yi)), and R(δ) and R(ρ) are 

working correlation matrices.

For estimating the correlation coefficients, δ and ρ, the GEE formulations are used. The 

corresponding estimating equations are given by

(9)

(10)

where
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the weight matrices Wγi and Wβi are both taken to be the identity matrices in this article. 

Furthermore, we assume a compound symmetry structure for both R(δ) and R(ρ) leading to a 

simple expression for the common correlations (see Web Appendix B.1 and B.2).

Note that all the estimated parameters are updated iteratively as explained before. We are 

sometimes suppressing the index h for notational simplicity.

 2.2. The Maximum Pseudo-Likelihood (MPL)

Estimators from the MPL method are obtained by maximizing the observed log-pseudo-

likelihood function

(11)

with respect to β, γ associated with covariates, Xβ and Xγ, and the dispersion parameter v. 

The above log-pseudo-likelihood is constructed under the independence assumption; so, an 

adjusted variance method is used to account for the dependency within clusters. The 

adjusted variance proposed in this article is based on the log-pseudo-likelihood-based 

sandwich variance and is illustrated in Subsection 2.3 in detail.

 2.3. Variance estimation

We investigate two different variance estimation methods: a sandwich-variance based on the 

large sample approximation and one using a nonparametric bootstrap at the cluster level.

Large sample sandwich variances are calculated both for the MPL estimators and the 

estimators obtained from the MES algorithm. The typical sandwich covariance matrix is of 

the form B−1M(BT)−1. The matrices B and M for the MPL method for independent data are 

given by
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(12)

(13)

where ℓ is the observed log-pseudo-likelihood function in Equation (11) pβ and pγ are the 

numbers of covariates used for the count part and the zero part, respectively (see Web 

Appendix C.1 for details). However, Equation (13) does not account for dependence within a 

cluster; so an adjusted sandwich covariance matrix is applied in the complete log-pseudo-

likelihood function. The adjusted sandwich covariance matrix (Adj_SW) for the MPL 

estimators is obtained in the form of  using the independence of the 

clusters where

(14)

The sandwich covariance matrix for θM̂ES = (β̂T, γ̂T, v̂)T obtained from the MES algorithm is 

in the form of , where the matrix BMES is obtained by 

adding two different matrices, B1 and B2; the expressions for these matrices and MMES are 

given in Web Appendix C.2. We note that it is not possible to estimate BMES based on the 

model assumptions since we do not specify the joint likelihood of the clustered observations. 

Therefore, using a bootstrap based standard error (15) is a natural option in this case. Of 

course, the same bootstrap resampling that is described in the next paragraph could be used 

for obtaining the standard errors for the MPL estimators as well.

We employ a cluster bootstrap technique (Field and Welsh, 2007) to perform the resampling 

since the clusters are independent and the primary sampling units. This way, the intra-cluster 

correlation will be preserved for the resampled data. Thus, each bootstrap sample is 

generated by resampling at the cluster level with replacement. Mathematically, let 

 be a random sample of indices drawn with replacement from {1, ⋯, N}, for 1 ≤ 

b ≤ B. Then the bth bootstrap dataset is given by 

, where . 

The bootstrap standard errors based on B bootstrap resamples are calculated as

Choo-Wosoba et al. Page 8

Biometrics. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(15)

where  is the vector of estimates obtained by either the MPL method or the MES algorithm 

from the bth bootstrap sample and  is the mean of the B bootstrap estimates.

 3. Real Data Applications

In this section, we introduce two different count datasets that include both zero inflation and 

clustering characteristics. The first dataset is obtained from the Iowa Fluoride Study (Levy et 

al., 2003) that serves as an example of the overdispersion phenomenon; the second 

illustrative dataset is taken from an NGS assay on maze hybrids and provides an example of 

underdispersion in count data.

 3.1 An application for the Iowa Fluoride Study (IFS)

We apply our marginal regression model to analyze a dataset on dental caries from the Iowa 

Fluoride Study (Levy et al., 2003). As mentioned before, this dataset possesses the 

characteristics of zero-inflation, overdispersion and clustered counts. IFS was a longitudinal 

study of Iowa children who were recruited at age 5 (http://www.dentistry.uiowa.edu/

preventive-fluoride-study). For this illustration, we looked at the data at the first follow-up 

when they were about nine years of age.

The response is the caries experience score (CES) that is obtained by summing the scores of 

individual dental surface scores for each tooth (scored 0, 1 or 2 depending on the caries 

severity). Eight potential risk/protective factors (covariates) are available:

Gender Gender of the child; Male is coded as 1.

DentalExamAge Age in years at the time of the dental examination.

AUCmhF5_9yrs Daily Fluoride intake (mg) from water, other beverages and selected foods, 
ingested dentifrice and fluoride supplements. Computed using AUC trapezoidal 
method using all available data within the time span 5 to 9 years.

AUCSodaOz5_9yrs Daily soda pop intake (oz.) computed using AUC trapezoidal method using all 
available data within the time span 5 to 9 years.

ToothBrushingFeq.Per_DayAvg Average of all tooth brushing frequencies reported for the period 5 to 9 years.

DentalVisitPast6monthAvg Proportion of times a dental visit was indicated with each individual point 
assessing the previous 6 months.

FluorideTreatmentPast6monthAvg Average proportion of times a professional dental fluoride treatment was received 
with each individual point assessing the previous 6 months.

HomeFluorideppmAvg Average home tap water fluoride level for all returned questionnaires for the 
period 5 to 9 years.

Altogether, 464 children are included in our analysis.

Choo-Wosoba et al. Page 9

Biometrics. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.dentistry.uiowa.edu/preventive-fluoride-study
http://www.dentistry.uiowa.edu/preventive-fluoride-study


We treat the outcomes (i.e., CES) on teeth belonging to the same child to be clustered. It is 

likely that they will be correlated due to shared genetic and environmental factors. The 

cluster size varies between 16 and 24. Overall, there are 10,838 observations on the CES. A 

preliminary inspection of the CES values reveals that zero-inflation is a concern for this 

dataset (Figure 1).

We fit a clustered ZICMP model to these data where the parameters are estimated using both 

the MPL and MES methods. The ZIP estimates obtained from the R package ‘pscl’ are used 

as the starting values in the MES algorithm. The standard errors of the MPL estimators are 

calculated by using the adjusted sandwich variance method mentioned before. For the 

standard errors of MES estimators, the bootstrap scheme (outlined in Section 2) is used with 

bootstrap size B = 500. Finally, p-values for each of the potential risk/protective factors are 

calculated using a large sample Wald test.

Before we describe the significance of the risk/protective factors, we want to note that v̂ 

turned out to be about 0.6 for both the MPL and MES methodologies (Table 1), indicating 

that the data are somewhat overdispersed. Because v̂ < 1, it is important to test whether this 

apparent overdispersive pattern is statistically significant. The observed absolute Z-statistic 

corresponding to the MES estimator,  is larger 

than z0.025 ≈ 1.96, indicating statistical significance at the commonly applied 5% level. A 

similar conclusion is reached from v̂MPL as well. Therefore, the ZICMP model is 

recommended over the simpler ZIP model for analyzing this dataset. Furthermore, we also 

compare the ZICMP model with the ZIP model with adjusted sandwich variance accounting 

for the cluster dependence (Table 1).

Based on our fitted ZICMP model and the corresponding p-values (Table 1), it turns out that 

AUCmhF5_9yrs, AUCSodaOz5_9yrs, and ToothBrushingFeq.Per_DayAvg have statistically 

significant effects (p-values are all less than 0.01) on the excessive zero part for 9-year-old 

children data for both the MPL and MES methodologies. According to the signs of the 

coefficients of these model terms, frequent tooth brushing and greater daily fluoride intake 

are protective against the development of caries, whereas soda pop intake is a risk factor for 

the same. HomeFluorideppm.Avg is the one which is a moderately significant factor for both 

the count part and the excessive zero part (just above 5% level) with the MPL method; 

however, the message is mixed. The result for the count part makes clinical sense and 

indicates that the presence of fluoride in tap water might reduce the severity of caries. Also 

noteworthy is that the data from the same mouth exhibited low correlation (ρ̂ ≈ 0.27, for the 

count part and δ̂ ≈ 0.11, for the excessive zero part).

The standard ZIP model, which operates under the independence assumption, yields a 

different set of significant factors for both count and excessive zero parts. In addition to the 

three significant factors based on our marginal ZICMP model, Gender(Male=1), 
FluorideTreatmentPast6monthAvg, and HomeFluorideppm.Avg have significant effects in 

the count part (p-values < 0.01). Thus, overall, the significance results from the simpler ZIP 

model appear to be a bit too optimistic. This may be due, in part, to the fact that the ZIP 

analysis did not account for (positive) correlations within the cluster members and over-

dispersion of the data. This leads to the consequence that the variance of the covariate effects 
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are underestimated, leading to an inflated Z-statistic (and low p-value). On the other hand, 

the ZIP model with the adjusted sandwich variance obtained using a similar formula as (14) 

identifies the same set of significant factors as the ZICMP model (perhaps with the 

exception of ToothBrushingFeq.Per_DayAvg, which is borderline significant under the MES 

method). This consequence is natural because the ZIP with the adjusted sandwich variance 

reflects the dependency of data. However, dispersion characteristics cannot be captured by a 

ZIP model even with the adjusted sandwich variance and may lead to biased inference. 

Indeed we verify this to be the case in a simulation study in the next section.

It is perhaps worth mentioning that the CES values were all less than or equal to 10 because 

there were five surfaces for each tooth. Thus, use of a truncated ZICMP, say, may be more 

appropriate. However, we have calculated the probability of a response y exceeding 10 under 

the fitted model and found it to be too small to make a practical difference in this analysis.

 3.2 An application to maze hybrids data

We also apply our marginal ZICMP methods to a next generation sequencing (NGS) dataset 

to demonstrate a case of zero inflated, clustered count data, with underdispersion. This 

dataset emerges from a maze hybrids experiment (Paschold et. al, 2014). A complete 

analysis of this dataset from a biological standpoint is not intended here which consists of 

39,656 gene IDs with four different genotypes (B73, B73 × Mo17, Mo17 × B73 and Mo17), 

four different tissues of each experimental unit (in this case, a certain genotype of a maze) 

and four biological replications. Since four tissues are harvested from the same root, there 

could exist some correlation among tissues belonging to the corresponding root. Therefore, 

this data is clustered. Out of all gene IDs, “GRMZM2G042361” is selected for an providing 

an illustrative example of zero-inflation with underdispersion. For this specific gene ID, we 

have 64 observations (read counts) including 37 zeros, 23 ones, 3 twos and 1 three.

Both the MPL and MES methods are applied to fit a marginal ZICMP model to the data. 

Since differences in total numbers of read counts over genes exist across biological sample 

units or different lanes, we need to account for this additional characteristic of NGS data in 

our model. Hence, we include the total read counts as an offset term into our regression 

model for a normalization across the biological samples. Therefore, our count part link 

function is modified as logλ = genotype + log(offset). The number of clusters is not deemed 

to be large enough for us to use the normal based confidence interval calculations. Instead, 

we report the point estimates along with a first order bootstrap confidence interval using the 

cluster bootstrap scheme described in the previous section with B = 100.

The dispersion estimates v̂ ≈ 2 for both methods (Table 2) and indicate that the expression 

data for GRMZM2G042361 is significantly underdispersed since the bootstrap confidence 

intervals do not include the value 1. All the coefficients for genotype effects are similar in 

both the MPL and MES methods. Only the Mo17 genotype has a significant effect on this 

specific gene ID for the count part since the corresponding bootstrap confidence interval 

excludes zero for both MPL and MES confidence intervals. Note that, for a full scale 

analysis of this dataset, additional considerations such as multiple hypotheses corrections 

need to be taken into account.
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 4. Simulation Studies

We perform two different sets of simulations to study the finite sample performance of our 

methodology. The first simulation study is guided by the dental data analyzed in the previous 

section. Here we study the bias and variance of our MPL and MES estimators as well as the 

performance of the adjusted sandwich based variance estimator and the bootstrap based 

variance estimator, respectively. Performances of the estimators based on ZIP model and 

both variance estimators are also included for comparison. The second simulation study is 

guided by a dataset on airfreight breakage which has only one covariate; however, the 

covariate is a subject level (rather than cluster level) covariate. In addition, we are able to 

study the effect of increasing the number of clusters on the performance of these estimators.

 4.1 Simulation guided by the dental data

The CES dataset of the nine-year-old children from the Iowa Fluoride Study (Levy et al., 

2003) is described in detail in the previous section, which is also used for application of our 

marginal ZICMP model. The present large simulation study is guided by that dataset. We 

generate the clustered CES scores using a correlated ZICMP regression model with four 

cluster level covariates for both parts of the model. These covariates were the significant 

factors (based on results from Section 3) for the zero part: AUCmhF5_9yrs, 
AUCSodaOz5_9yrs and ToothBrushingFeq.Per_DayAvg except HomeFluorideppmAvg 
which was borderline significant for both the count and the zero parts based on the MPL 

analysis. Noisy versions of these covariate vectors resampled from the original dataset were 

used to generate the CES scores using the subject specific parameters through the links 

explained in Section 2. We use parameter values β = (1.00,0.01, −0.01, −0.13, −0.16) for the 

count part, γ = (2.00, 0.70, −0.07, 0.56, −0.30) for the zero part and v = 0.6. These are close 

to both MPL and MES estimates obtained for the dental data in Section 3.

In order to keep the computational burden in check, the total number of clusters, N, is taken 

to be 200 and a constant cluster size of ni = 15 is used for all the clusters. That is, Xi,β = Xi,γ 

is a 15 × 5 matrix including an intercept term for each of the count and zero parts. Following 

Kong et al. (2014), correlated Bernoulli variables to generate the zero values are, simulated 

using the Cholesky decomposition of a compound symmetric correlation matrix with a 

common correlation coefficient δ̃, whereas the correlated count (CMP) data are generated by 

the inverse CDF transformation technique starting with a multivariate normal distribution 

with zero mean and a compound symmetric correlation matrix with a common correlation ρ̃. 

We consider both low (ρ̃ = δ̃ = 0.2) and high (ρ̃ = δ̃ = 0.8) intra-cluster correlation cases.

For each setting, we create 100 datasets, calculate the MPL and MES estimates for each 

dataset, and obtain the empirical bias and standard error for each parameter estimator. The 

adjusted sandwich variance estimates are calculated for the MPL method and the variance 

estimates for the MES estimators are obtained through the bootstrap scheme (Field and 

Welsh, 2007) based on 100 bootstrap resamples as detailed in Section 2. ZIP estimates with 

their asymptotic variance and the adjusted sandwich variance estimates are also obtained for 

each Monte Carlo dataset by applying the pscl R package and using an analogous adjusted 

sandwich variance formula as (14), respectively.
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Estimators obtained from the ZIP model have larger biases than both the MPL and MES 

estimators of the ZICMP model (Table 3). This is more notable in high intra-cluster 

correlation case. The bias for the high intra-correlation case is larger for almost all 

estimators compared to the low intra-cluster case in both the ZICMP and ZIP models, as 

expected.

The estimators based on the simpler ZIP model are accompanied by Hessian-based standard 

errors, SE (pscl), obtained by the ‘zeroinfl’ function in pscl R package. For the low 

correlation case, these are not too different from the true standard errors for both count and 

zero parts. However, in the high intra-cluster correlation case, ZIP standard errors (SE 

(pscl)) are considerably smaller than the true ones. This implies that the Hessian-based 

standard errors are deflated which leads to a more liberal interpretation of p-values. This 

happens because the ZIP estimators do not account for the dependency of data in a cluster. 

This issue turns out to be more apparent for the high intra-cluster correlation case. On the 

other hand, the adjusted sandwich variance estimators tend to be closer to the true standard 

errors (SE). Thus, the inference from a ZIP model along with an adjusted sandwich variance 

has an ability to account for the clustering characteristic of data but still lacks the ability to 

handle data dispersion (under or over). This aspect may causes prominently larger bias, 

especially in the count part, which may lead to incorrect inference as shown by the 

probability-probability (p-p) plots (Figure 2 and Web Figure 1).

While the MES estimators yield smaller biases and true standard errors (SE) than MPL 

estimates (Table 3), they need to use the bootstrap-based standard errors for variance 

estimates which consumes a considerable amount of computational efforts.

In order to study the performance of the resulting inferences of the effects of covariates/

factors, we created the p-p plots where we plot the targeted nominal coverage of a 

confidence interval in the horizontal axis and the corresponding true coverage, as measured 

by the Monte Carlo simulation, in the vertical axis. Thus, a diagonal p-p plot would indicate 

that the asymptotic normal approximation to various estimators is accurate so we can have 

proper inferences using them. Overall, we noticed that all the p-p plots obtained from both 

the MPL and MES methods are relatively close to the solid reference lines (see Figures 2 

and Web Figure 1) even for the high correlation case. However, none of the p-p plots based 

on the ZIP model with standard variance estimates is very linear even in the low correlation 

case. As mentioned earlier, the situation improves when we use the adjusted sandwich 

variance with the ZIP model. Nevertheless, the p-p plots for most of the regression 

parameters still exhibit varying extent of under coverage. Thus, the ZIP model may not be a 

satisfactory method for analyzing zero-inflated clustered data with overdispersion.

 4.2 Simulation guided by the airfreight breakage data

In this simulation, we investigate the performance of our ZICMP marginal model with a 

subject (observation) level covariate by building a simulation plan around the airfreight 

breakage data (Kutner, Nachtsheim and Neter, 2003, page 35, Exercise 1.21) which consists 

of 10 observations and one scalar covariate. A CMP model for this data was fit by Sellers 

and Shmueli (2010), which yielded parameter estimates of β = (1.38, 1.3)T and v = 5.7818. 

Going forward, we use the same parameter values for generating the count part of our data, 
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with covariates Xβ resampled from the set of scalar covariates in the original dataset (to 

match the desired number of observations). The zero-inflated part is generated by a 

regression model as described in Section 2, with the same set of covariates, i.e., Xγ = Xβ but 

with the regression parameters γ = (2, −3)T. For generating clustered ZICMP data, we need 

to generate correlated zeros, as well as, correlated counts. These are generated as explained 

in the Section 4.1

In this simulation, we consider three different combinations of number of clusters and the 

cluster size, namely, N = 30 with n = 20, N = 50 with n = 30, and N = 75 with n = 15. For 

each condition, we generate data with low (ρ̃ = δ̃ = 0.2) or high (ρ̃ = δ̃ = 0.8) correlations 

within each cluster. Both MPL and MES methods are applied to each of the 100 simulated 

dataset and the results are averaged to compute the empirical bias and variances of our 

estimators. We also used the bootstrap to compute variance estimates for both estimators in 

addition to the adjusted sandwich variance estimate for the MPL estimator. In order to keep 

the computational resources in check, we have used a modest number of bootstrap resamples 

( = 100) which is still deemed to be sufficient for our purpose. As mentioned earlier, in order 

to calculate bootstrap variance, we resample 100 times at the cluster level with replacement 

so that the correlation structures are preserved within a cluster. Finally, bootstrap variance 

estimates are given by the empirical variances of the parameter estimates obtained for the 

100 bootstrap resamples. The results for N = 50 are provided in Table 4; results for the other 

two cases are placed in the Web Tables 1 and 2.

Web Table 1 results show that, in the case of N = 30, the estimators obtained from both MPL 

and MES methods have comparable performances in terms of bias and standard errors for 

both low and high intra-cluster correlation cases. For the low intra-cluster correlation case, 

bootstrap standard errors of both MPL and MES estimators match the true standard errors 

fairly well. However, in the high correlation case, the accuracy of the bootstrap standard 

errors worsens in both the MPL and the MES methods. Similarly, the adjusted sandwich 

standard errors based on the MPL method are fairly close to the true standard errors in the 

low intra-cluster correlation case, but not in the high correlation case. The bias terms for 

both MPL and MES methods are similar to each other and the bias tends to be larger in the 

high intra-cluster correlation case, as expected.

When the number of clusters increases to 50 (Table 4), the variance results were again 

comparable for the two sets of estimators in the case of both low and high intra-cluster 

correlations. In addition, the bootstrap based standard errors for both sets of estimators are 

very close to the true standard errors in both low and high intra-cluster correlation cases. 

Moreover, the adjusted sandwich standard errors based on the MPL method are quite 

comparable to the bootstrap standard errors in both low and high correlation cases, even 

though the bootstrap estimates are slightly closer to the true standard errors.

When the number of clusters N further increases to 75 in Web Table 2, the performance 

improves across the board. From the results based on all the three scenarios, both the MPL 

method and MES algorithm have similar performances with respect to bias and standard 

errors. Note, however, that the MPL method is generally easier to implement and comes with 

a closed form sandwich variance estimate. The standard errors obtained using the bootstrap 
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method appear to be reasonably close to the true SE as obtained by the Monte Carlo method; 

the estimates obtained from the adjusted sandwich formula for the MPL estimator can be 

adequate when the number of clusters is large.

We would like to point out that the biases for the intercept terms from the count parts based 

on these two simulations (Table 3 and Table 4) appear to be large compared to those for the 

other terms. In fact, the true values of the intercept parameters are relatively large compared 

to the other regression coefficients and consequently the relative biases of the intercept terms 

are comparable to those for the other terms.

 5. Discussions

The CMP model has received a great deal of attention in recent years in many fields of 

application. In particular, the article by Shmueli et al. (2005) advocating the use of CMP 

distributions has already been cited 165 times according to Google Scholar (accessed 

September 5, 2015). While Sellers and Shmueli (2010) developed regression modeling for 

CMP distributed data, in this paper we provide two significant extensions of the CMP 

methodology for making frequentist inference, thereby making this applicable to a greater 

variety of problems. Our version of the methodology can handle excessive zeros (zero-

inflation) in the data and also when the data are clustered so that not all observations are 

independent. In particular, we have analyzed a dataset from the Iowa Fluoride Study using 

our model and show that more reliable inference can be obtained using it than the ZIP 

regression.

In this paper, we have introduced two methods to fit a ZICMP marginal model with 

clustered data that has over or under dispersion. In our simulations, the MES method 

produced slightly more efficient estimators through the use of a working variance-covariance 

matrix like the GEE. However, the corresponding variance estimates are computationally 

more expensive. The MPL method, on the other hand, affords a close form variance 

estimator. Like any other numerical optimization/estimating equation based methods, these 

methods may have convergence issues for certain datasets and changing the initial values 

and the optimization method (e.g., use a different method rather than the default in the R 

function ‘optim’) or the updating scheme (e.g., acceleration constant, Cesàro updating) may 

help the situation.

We also demonstrated that a cluster bootstrap method is capable of producing reasonable 

variance estimates for both sets of estimators through two different simulations. With respect 

to this, it is important for the reader to note that certain R packages that are directly able to 

calculate the sandwich variances may not work as well as using bootstrap to estimate the 

variances. We also obtain a theoretical form of the asymptotic variance covariance matrix of 

the MES estimators that explains the variability in the estimation of the indicators of the 

zero part. However, it is not possible to obtain an empirical analogue of this for general 

clustered data, since we do not know the exact joint likelihood of the cluster-correlated 

observations. On the other hand, we can obtain a valid sandwich variance estimators for the 

MPL method even for clustered data by utilizing the independence of the cluster sums of the 

corresponding estimating functions.
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The two real data examples demonstrate the scope of applications of our methodology to 

diverse fields and it is our hope that with time more applications to these models for 

clustered count data with zero inflation and wide range of dispersion will be discovered.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary plots of the data of the nine-year-old children from the Iowa Fluoride Study: 

Frequency histogram of caries experience scores (CES) summarized over all teeth and 

children in our sample (left panel), and the frequency histogram of CES excluding zero 

counts summarized over all teeth and children in our sample (right panel).
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Figure 2. 
Empirical coverage of the confidence intervals in a simulation study guided by the dental 

data of nine-year-old children from the Iowa Fluoride Study. The p-p plots are for N = 200 

and n = 15 when intra-cluster correlation is high. Three sets of plots are provided for the 

regression parameters corresponding to the four covariates: ZICMP/MPL (upper left panel), 

ZICMP/MES (upper right panel), ZIP (bottom left panel) and ZIP with Adj_SW (bottom 

right panel).
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TABLE 2

Results for the GRMZM2G042361 gene from the maze hybrids data. Parameter estimates are reported along 

with cluster bootstrap based (nonasymptotic) confidence intervals (BS_CI).

MPL

Count part BS_CI Zero part BS_CI

Intercept −16.6529 (−16.70, −15.93) −11.2535 (−24.46, −2.04)

B73 × Mo17 0.5264 (−0.29, 0.71) −1.9622 (−18.75, 6.86)

Mo17 1.4999 (0.66, 3.24) −3.9165 (−10.27, 15.54)

Mo17 × B73 0.6317 (−1.22, 2.97) −4.9595 (−14.67, 13.64)

v 2.1020 (1.86, 4.93)

MES

Count part BS_CI Zero part BS_CI

Intercept −16.6490 (−16.69, −15.93) −11.2748 (−24.46, −2.04)

B73 × Mo17 0.5150 (−0.28, 0.71) −1.9740 (−18.75, 6.85)

Mo17 1.5027 (0.65, 3.23) −3.8774 (−10.26, 15.53)

Mo17 × B73 0.6273 (−1.22, 2.96) −4.9362 (−14.67, 13.63)

v 2.1056 (1.86, 4.93)
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