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SUMMARY

Community water fluoridation is an important public health measure to prevent dental caries, but it
continues to be somewhat controversial. The lowa Fluoride Study (IFS) is a longitudinal study on
a cohort of lowa children that began in 1991. The main purposes of this study (http://
www.dentistry.uiowa.edu/preventive-fluoride-study) were to quantify fluoride exposures from both
dietary and non-dietary sources and to associate longitudinal fluoride exposures with dental
fluorosis (spots on teeth) and dental caries (cavities). We analyze a subset of the IFS data by a
marginal regression model with a zero-inflated version of the Conway-Maxwell-Poisson
distribution for count data exhibiting excessive zeros and a wide range of dispersion patterns. In
general, we introduce two estimation methods for fitting a ZICMP marginal regression model.
Finite sample behaviors of the estimators and the resulting confidence intervals are studied using
extensive simulation studies. We apply our methodologies to the dental caries data. Our novel
modeling incorporating zero inflation, clustering and overdispersion sheds some new light on the
effect of community water fluoridation and other factors. We also include a second application of
our methodology to a genomic (next generation sequencing) dataset that exhibits underdispersion.
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6. Supplementary Materials

The Web Appendices referenced in Sections 2 and 4 plus the R-code for the dental data analysis are available with this paper at the
Biometrics website on Wiley Online Library.
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1. Introduction

There has been growing interest in analyzing various types of count data encountered in
practice leading to improved and specialized statistical methods. Some count datasets, in
particular, have more zero values than expected from a certain common count distribution
such as Poisson or negative binomial. This phenomenon, called zero-inflation, takes place in
diverse fields such as engineering, dentistry, health surveys, transport and so on. To this end,
zero-inflated versions of these distributions and related inferential procedures have been
derived (Bohning, 1998; McLachlan, 1997; Yau, Wang and Lee, 2003).

A Poisson distribution is well known for modeling count data. It is a relatively simple
distribution that belongs to an exponential family which makes it convenient for analysis
within the generalized linear models (GLM) framework. However, a Poisson distribution
may not be the best choice in certain cases when the data is under- or over- dispersed, which
violates the property that the variance and the mean are equal. The negative binomial is a
popular choice to model data overdispersion, however, that is not the case for
underdispersion. The Conway-Maxwell-Poisson (CMP) distribution introduced by Conway
and Maxwell (1962) is a great tool to overcome this difficulty, since it can model a wide
range of dispersion. In addition, it belongs to an exponential family as well.

Often in practice not all the data values are independent. Instead they arise as independent
groups called clusters. The goal of the present paper is to develop a marginal regression
model framework for analyzing count data with a zero-inflated CMP model (ZICMP,
hereafter) where the data values are clustered. The motivation behind this work comes for
our attempt to analyze a dataset of caries experience scores (CES) for each tooth of a
collection of nine year old children from the lowa Fluoride Study (IFS), which we return to
in Section 3. The response variable for this case study exhibits zero inflation and
overdispersion; in addition, each child represents a cluster since the CES values for all teeth
belonging to a particular child are likely to be correlated due to shared genetic and
environmental factors.

Currently, SAS version 13.1 has a procedure, PROC COUNTREG which allows us to
perform a regression analysis based on the ZICMP distribution and the COMPoissonReg
package in R performs a CMP regression analysis based on a GLM framework (Sellers and
Shmueli, 2010). In addition, a recent paper by Barriga and Louzada (2014) introduces
Bayesian inference with a ZICMP distribution. However, all these procedures and papers are
only applicable to independent data. In this paper, we explore two different statistical
approaches for fitting marginal regression models to clustered count data using a ZICMP
distribution: a maximum pseudo-likelihood (MPL) method with an adjusted variance
estimator for cluster dependency, and a modified generalized estimating equation based
method we call the modified expectation-solution (MES) algorithm along with a cluster
bootstrap based variance estimator.

The rest of the paper is organized as follows: In Section 2, we provide a brief introduction to
a CMP distribution and its zero inflated version and review some important properties; we
introduce the parameters estimation procedures for a ZICMP model based on the two
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different regression methods mentioned above. In Section 3, we apply both the MPL and
MES methods to analyze the dental caries data. Our novel modeling of the dental data
incorporating zero inflation, clustering, and overdispersion sheds some new light on the
effect of community water fluoridation and other factors. In addition, we also include a
second real data example to illustrate the case of underdispersion; this involves the modeling
of read counts of a given gene under four different genotypes in a next generation
sequencing (NGS) experiment with maze hybrids (Paschold et. al, 2014). Section 4 presents
two simulation studies. In the first simulation, we investigate the sampling properties of both
the MPL and MES methods in a setting similar to the dental data along with a comparison
with a zero-inflated Poisson (ZIP) regression model that is readily available in an existing R-
package. In the second simulation, we compare the MPL and MES algorithms in a different
setting motivated by a data on airfreight breakage, where we also examine the effect of
increasing the number of clusters. Finally, our paper ends with a Conclusion section. Some
technical details and additional results are placed in the Web appendices.

2. Material and Method

The probability mass function (pmf) of a CMP distribution is given by

= o =0,1,2
p(y)_m7 y=u,L,2,..., (1)

where Z(Av)= Z @07, Here A1 > 0 is a shape parameter and v= 0 is a dispersion parameter.
If visl,aCMP dlstrlbutlon is exactly a Poisson distribution which means there is
equidispersion. It turns out that v> 1 represents underdispersion and v< 1 represents
overdispersion. Note that this distribution belongs to an exponential family since p()) =
exp{ylog(X) — viogOM}Z1(4, V). The limiting cases of a CMP distribution also include a
Bernoulli distribution (v= 00), or a geometric distribution (v=0and 1 < 1) Thus, a CMP
distribution has great flexibility to include various types of count distributions. Another
important feature of the CMP distribution is about the expectation function of Y. In general,
means behave independently from the dispersion parameters; in other words, the dispersion
parameters do not affect the means. However, Equation (2) shows that the mean of Y'in the
CMP distribution is not only a function of the shape parameter A, but also of the dispersion
parameter v.

EY= X /Z (A, 0)
Z &)

A zero-inflated model consists of two components: the zero-degenerated distribution & and
a particular count distribution W. The zero-degenerated part controls excessive zeros in the
form of a binary distribution and a count distribution, the CMP distribution in this case,
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controls counts including the expected number of zeros. Thus, the ZICMP marginal model
has probability mass function described by

\Y .
(I-P)gyzom, Hfy=1, ?)

P(Y=y)= {

where p € [0,1]is a parameter of the distribution representing the mixing proportion of the
degenerate at zero part. Our data consists of clustered responses {y;;}, where yj;denotes the
/7 observation in the /7 cluster with 1 < j< 17 and 1 < /< N. Note that ;s the size of the /%
cluster and Nis the total number of independent clusters in our dataset. In general, the yin a
given cluster are correlated. We assume that the dispersion parameter vis the same for all
subjects; the other two ZICMP parameters corresponding to y;; will be denoted by pj;and A

The expectation-maximization (EM) algorithm is widely used for estimating parameters in a
zero-inflated model. However, the EM algorithm, by itself, is not a valid tool for clustered
data. In three sub-section parts, we will explain the mechanism of the two methods
mentioned in the Introduction section, accounting for not only zero-inflation but also
dependency.

2.1. MES algorithm based on a modified Newton-Raphson method

Instead of using an EM algorithm, Hall and Zhang (2004) suggested applying the ES
(Expectation-Solution) algorithm (Hall and Zhang, 2004; Rosen, Jiang and Tanner, 2000)
when the data are clustered. The ES algorithm combines elements of both the GEE (Liang
and Zeger, 1986) and the EM algorithms, so that one can account for dependency
(clustering) in the data. However, the ES algorithm as prescribed by Rosen, Jiang and Tanner
(2000) has a major limitation in that it is only applicable to an exponential dispersion family

which has a form of £ (y;.0;;, ¢)=h(y;;, ¢) exp{ L%t )i }, where ;is the canonical
parameter, wj;is a constant, and ¢ is a dispersion parameter. Unfortunately, the CMP
distribution does not belong to the exponential dispersion family. Since the Zfunction can
not be factored into a function of 1;( = log(6)) and a function of v; it cannot be re-
expressed in the exponential dispersion family form. As a consequence of this, the
expectation of Y'is not only related to A but also to ¥making a regression formulation
complicated.

Therefore, we propose the following modification of the standard ES algorithm to deal with
the CMP family; we call it the MES algorithm. Note that given a specified value of v, the
CMP distribution indexed by A belongs to an exponential dispersion family with /= ()4)7,
k=1logZA, v), w=1and ¢=1 So, instead of using the ES algorithm for estimating all
parameters, we applied the ES algorithm for only regression coefficients other than v. For
estimating v, a log-likelihood function is applied instead of GEE. The parameters of interest
based on this algorithm consist of 9= {f, y, v, p, }: a dispersion parameter, v, both fand y
as coefficients of the count and zero-inflation parts from the GLM framework of /og(A(f)) =
Xgpand logit(p(y)) = X,y and correlation coefficients, p and & from correlation matrices
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corresponding to the count and zero-inflation parts in GEE formulation. Xzand X, are
covariates in the CMP distribution and zero-degenerated distribution, respectively. The
covariates are determined depending on researchers’ interests.

An MES algorithm starts with the complete log-pseudo-likelihood of ZICMP model given
by

n;

(B, 7y, v3Yig, wig) = Z Zumlogp(%gHZ Z(l u;j)log(1—p(7iz))+

=1 ]_ =1 ]_

22(1 uzy)(yZJZOQ/\ZJ(ﬁ) Ulo.g(yw) lOQZ(/\ij(ﬁ)vv))v
1=1j= (4)

where j;are latent (i.e., unobserved) binary indicators of the degenerate at zero part. (We
call it a pseudo-likelihood because it is a product over likelihoods of individual terms as if
they were independent.) Subsequently, it alternates between two main steps: the expectation
(E) step and the solution (S) step. The E-step is to calculate the expectation of the
expressions in each side of Equation (4) by replacing v;;with £(u) leading to

N n;

Q:E(Ec(ﬂa v, UY, u)):Zch(ﬂ, 7> UiYigs E(”’L])):

i=1j=1
where

E(uij) (u1]_1|ylj—0 ﬂa’Y: )
=) 20 )

Let «; denote this value at the /#” iteration. In the solution step, given Au) ( = u”), estimates
of 3, ¥, and vare obtained by solving there own linearized estimating equations leading to
the following updating schemes:

-1
qjl(’y)a
—1
ﬁhﬂzﬁw[ﬁ%{m " Diag(1—ul") 25 wmwwgl«(ﬂ)ﬂ Uy (8),

n; d2£c hﬁh7 h N n; ave (vh ﬁh, h
T Z | i (Z S M) } ,
(6)

3 _
Pl =V, } 18p1+‘1’11(7)‘1’h(7)

i=

Y =yt

N n; c Uh h ~h
Y B [szf i( Iﬁ Y )}/

i=1j=1 i=1j= 1=1j5=1

where
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Ti(7)=)_Pu(y) Z V Huf—pi(7)),
i =1 @)

and

S 0 (9) zaE(y@ V-~ Diag(1-u®) (g~ E(w:(5)). o
7 =1

See Web Appendix A.1 and A.2 for the details of the estimating functions 1 and ¥, Note
that the estimating functions for yand g are of the GEE form (as in a standard ES algorithm)
whereas that for the vis from a complete data pseudo-likelihood. As explained in the
beginning of Section 2, the CMP distribution does not fall under an exponential dispersion
family for changing v, and consequently we cannot apply the GEE methodology to estimate
v. Also note that a step-size parameter xis introduced in the updating scheme as compared
with the classical Newton-Raphson method so that the algorithm converges slowly and
steadily. The iterative algorithm stops when the maximum componentwise difference of the
estimates between two successive iterations falls below a threshold . Depending on the
datasets, it may be possible to use other versions of the updating scheme to get more stable
updates. As for example, we could replace the sequential updates and the ¥ functions by
their Cesaro sums.

The working variance-covariance matrices for the zero-inflation and the count parts are

specified as V,, =AY/ R(5)AY* and V,,=D}/* R(p) D;}* respectively. Here A;= A{p[»)) =
Var(u)) = Diag(p(1 - p), Dj= D/((E(YIW V)) = Diag( \Aa/(y,)) and R(é) and R(p) are

working correlation matrices.

1/2 1/2

For estimating the correlation coefficients, dand p, the GEE formulations are used. The
corresponding estimating equations are given by

ay0)=3 2O w07 3))=0

i=1 o8t ’ 9)
Napﬁ (P) 1

Uy(p)=> W, L H (U —pi(p)=0,

a(p) ;:1 o7 3i(U; —psi(p)) (10)

where
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v (Uis—pis)(Uit—pit)
S pis(U=pi)pic(1—pir)’ -
Y _— Y Y Y
Ui _(Ui12’Ui137"' U ) ’

) in,j—l,n,j
pi(0)=EU])=(p}1a: Plr3: - - - 7Pz7ni,1,ni

Hg;=Diag{(1—ui )(1—ui2), .. ., (1=tin;—1)(1—uin,) },
U(ﬁ\f: Wis—E(Yis)) Wir —E(yir))

)T

)

\/Var(yz‘s)Var(yit) T’
Uiﬁ:(UgQ, Uiﬁ13> RN Uiéufl,ni) , and

T
p[ﬁi(p):E(Uiﬁ):(pfw’ pz[‘j137 e ’pl@nz_hni) )

the weight matrices W,;and Wj, are both taken to be the identity matrices in this article.
Furthermore, we assume a compound symmetry structure for both /(6 and /(o) leading to a
simple expression for the common correlations (see Web Appendix B.1 and B.2).

Note that all the estimated parameters are updated iteratively as explained before. We are
sometimes suppressing the index / for notational simplicity.

2.2. The Maximum Pseudo-Likelihood (MPL)

Estimators from the MPL method are obtained by maximizing the observed log-pseudo-
likelihood function

0B, U;Qij):ijzv:lj%ll (yij=0)log[p(7i;)+{1—p(7ij) }/Z (Nij (B),v)]
2 3 10y = Dllog{L-p(oi)}+ 0ol (9))} ol ~log(Z (35 (9), 0} (11)

with respect to 3, yassociated with covariates, Xzand X, and the dispersion parameter v.
The above log-pseudo-likelihood is constructed under the independence assumption; so, an
adjusted variance method is used to account for the dependency within clusters. The
adjusted variance proposed in this article is based on the log-pseudo-likelihood-based
sandwich variance and is illustrated in Subsection 2.3 in detail.

2.3. Variance estimation

We investigate two different variance estimation methods: a sandwich-variance based on the
large sample approximation and one using a nonparametric bootstrap at the cluster level.

Large sample sandwich variances are calculated both for the MPL estimators and the
estimators obtained from the MES algorithm. The typical sandwich covariance matrix is of
the form B-1M(B7)~1. The matrices Band M for the MPL method for independent data are
given by
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224 0 22
26067 2800
D : > _ 824
BMPL_EBMPL , with BMPL_ 0 Doy T 0 and
_0% 0 024
05T 2
dvdB dv PE*P~y (12)
ot o \T [ Y ot; \ T
] s ) (&
y - o 2 - ij ij
]\[MPL =K v v =E 5‘37 86}«, ’
ot £l i=1j=1 Cij Obiy
v v =4 av v (13)

where £ is the observed log-pseudo-likelihood function in Equation (11) pgand p, are the
numbers of covariates used for the count part and the zero part, respectively (see Web
Appendix C.1 for details). However, Equation (13) does not account for dependence within a
cluster; so an adjusted sandwich covariance matrix is applied in the complete log-pseudo-
likelihood function. The adjusted sandwich covariance matrix (Adj_SW) for the MPL

N

. . . . ~—1 * ATl .
estimators is obtained in the formof B, M B, _ using the independence of the
clusters where

oty ot \ T
Ak N i 38 L. T aa L.
AIMPL:Z Z 8—»7 Z 8—»7
=1\ j=1 321‘]' 7=1 afij
ov v (14)

The sandwich covariance matrix for %Es = (,Bf, yf, )7 obtained from the MES algorithm is

in the form of Var <éMms> =B, My (BE;ES)A, where the matrix Bygs is obtained by
adding two different matrices, B; and By; the expressions for these matrices and Mg are
given in Web Appendix C.2. We note that it is not possible to estimate Bygs based on the
model assumptions since we do not specify the joint likelihood of the clustered observations.
Therefore, using a bootstrap based standard error (15) is a natural option in this case. Of
course, the same bootstrap resampling that is described in the next paragraph could be used
for obtaining the standard errors for the MPL estimators as well.

We employ a cluster bootstrap technique (Field and Welsh, 2007) to perform the resampling
since the clusters are independent and the primary sampling units. This way, the intra-cluster
correlation will be preserved for the resampled data. Thus, each bootstrap sample is
generated by resampling at the cluster level with replacement. Mathematically, let

i1y, -+ %, be arandom sample of indices drawn with replacement from {1, ---, A}, for 1 <
b< B. Then the 4" bootstrap dataset is given by

*

(yTbv XE),lb> X:yk,lb)a Ty (y*Nb’ Xﬁ)N;ﬁ X::’N;,): where y.;b:yi;b’ Xévjb:X:@;i;M X;]'b:X 7’?5'
The bootstrap standard errors based on B bootstrap resamples are calculated as
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~ 1 B . o oKy o ox T
SEy(0)= | 5>-Ding {(6,-0),-0) |,
b=1 (15)

where éz is the vector of estimates obtained by either the MPL method or the MES algorithm

from the £ bootstrap sample and 7" is the mean of the B bootstrap estimates.

3. Real Data Applications

In this section, we introduce two different count datasets that include both zero inflation and
clustering characteristics. The first dataset is obtained from the lowa Fluoride Study (Levy et
al., 2003) that serves as an example of the overdispersion phenomenon; the second
illustrative dataset is taken from an NGS assay on maze hybrids and provides an example of
underdispersion in count data.

3.1 An application for the lowa Fluoride Study (IFS)

We apply our marginal regression model to analyze a dataset on dental caries from the lowa
Fluoride Study (Levy et al., 2003). As mentioned before, this dataset possesses the
characteristics of zero-inflation, overdispersion and clustered counts. IFS was a longitudinal
study of lowa children who were recruited at age 5 (http://www.dentistry.uiowa.edu/
preventive-fluoride-study). For this illustration, we looked at the data at the first follow-up
when they were about nine years of age.

The response is the caries experience score (CES) that is obtained by summing the scores of
individual dental surface scores for each tooth (scored 0, 1 or 2 depending on the caries
severity). Eight potential risk/protective factors (covariates) are available:

Gender Gender of the child; Male is coded as 1.
DentalExamAge Age in years at the time of the dental examination.
AUCmMhF5_9yrs Daily Fluoride intake (mg) from water, other beverages and selected foods,

ingested dentifrice and fluoride supplements. Computed using AUC trapezoidal
method using all available data within the time span 5 to 9 years.

AUCS0daOz5 9yrs Daily soda pop intake (0z.) computed using AUC trapezoidal method using all
available data within the time span 5 to 9 years.

ToothBrushingFeq.Per_DayAvg Average of all tooth brushing frequencies reported for the period 5 to 9 years.

DentalVisitPastémonthAvg Proportion of times a dental visit was indicated with each individual point
assessing the previous 6 months.

Fluoride TreatmentPastémonthAvg ~ Average proportion of times a professional dental fluoride treatment was received
with each individual point assessing the previous 6 months.

HomeFluorideppmAvg Average home tap water fluoride level for all returned questionnaires for the
period 5 to 9 years.

Altogether, 464 children are included in our analysis.
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We treat the outcomes (i.e., CES) on teeth belonging to the same child to be clustered. It is
likely that they will be correlated due to shared genetic and environmental factors. The
cluster size varies between 16 and 24. Overall, there are 10,838 observations on the CES. A
preliminary inspection of the CES values reveals that zero-inflation is a concern for this
dataset (Figure 1).

We fit a clustered ZICMP model to these data where the parameters are estimated using both
the MPL and MES methods. The ZIP estimates obtained from the R package ‘pscf are used
as the starting values in the MES algorithm. The standard errors of the MPL estimators are
calculated by using the adjusted sandwich variance method mentioned before. For the
standard errors of MES estimators, the bootstrap scheme (outlined in Section 2) is used with
bootstrap size B =500. Finally, p-values for each of the potential risk/protective factors are
calculated using a large sample Wald test.

Before we describe the significance of the risk/protective factors, we want to note that v~
turned out to be about 0.6 for both the MPL and MES methodologies (Table 1), indicating
that the data are somewhat overdispersed. Because v'< 1, it is important to test whether this
apparent overdispersive pattern is statistically significant. The observed absolute Z-statistic

corresponding to the MES estimator, |0—1|/ \/ var(9)=|0.5975—1|/0.1362 ~ 2.96 is larger
than 7 g25 ~ 1.96, indicating statistical significance at the commonly applied 5% level. A
similar conclusion is reached from wyp,_ as well. Therefore, the ZICMP model is
recommended over the simpler ZIP model for analyzing this dataset. Furthermore, we also
compare the ZICMP model with the ZIP model with adjusted sandwich variance accounting
for the cluster dependence (Table 1).

Based on our fitted ZICMP model and the corresponding p-values (Table 1), it turns out that
AUCMhF5_9yrs, AUCSodaOz5 9yrs, and ToothBrushingFeq.Per DayAvg have statistically
significant effects (p-values are all less than 0.01) on the excessive zero part for 9-year-old
children data for both the MPL and MES methodologies. According to the signs of the
coefficients of these model terms, frequent tooth brushing and greater daily fluoride intake
are protective against the development of caries, whereas soda pop intake is a risk factor for
the same. HomeFluorideppm.Avg is the one which is a moderately significant factor for both
the count part and the excessive zero part (just above 5% level) with the MPL method;
however, the message is mixed. The result for the count part makes clinical sense and
indicates that the presence of fluoride in tap water might reduce the severity of caries. Also
noteworthy is that the data from the same mouth exhibited low correlation (o ~ 0.27, for the
count part and & ~ 0.11, for the excessive zero part).

The standard ZIP model, which operates under the independence assumption, yields a
different set of significant factors for both count and excessive zero parts. In addition to the
three significant factors based on our marginal ZICMP model, Gender(Male=1),

Fluoride TreatmentPastémonthAvg, and HomeFluorideppm.Avg have significant effects in
the count part (p-values < 0.01). Thus, overall, the significance results from the simpler ZIP
model appear to be a bit too optimistic. This may be due, in part, to the fact that the ZIP
analysis did not account for (positive) correlations within the cluster members and over-
dispersion of the data. This leads to the consequence that the variance of the covariate effects
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are underestimated, leading to an inflated Z-statistic (and low p-value). On the other hand,
the ZIP model with the adjusted sandwich variance obtained using a similar formula as (14)
identifies the same set of significant factors as the ZICMP model (perhaps with the
exception of 7oothBrushingFeq.Per DayAvg, which is borderline significant under the MES
method). This consequence is natural because the ZIP with the adjusted sandwich variance
reflects the dependency of data. However, dispersion characteristics cannot be captured by a
ZIP model even with the adjusted sandwich variance and may lead to biased inference.
Indeed we verify this to be the case in a simulation study in the next section.

It is perhaps worth mentioning that the CES values were all less than or equal to 10 because
there were five surfaces for each tooth. Thus, use of a truncated ZICMP, say, may be more
appropriate. However, we have calculated the probability of a response )y exceeding 10 under
the fitted model and found it to be too small to make a practical difference in this analysis.

3.2 An application to maze hybrids data

We also apply our marginal ZICMP methods to a next generation sequencing (NGS) dataset
to demonstrate a case of zero inflated, clustered count data, with underdispersion. This
dataset emerges from a maze hybrids experiment (Paschold et. al, 2014). A complete
analysis of this dataset from a biological standpoint is not intended here which consists of
39,656 gene IDs with four different genotypes (B73, B73 x Mol17, Mol7 x B73 and Mo17),
four different tissues of each experimental unit (in this case, a certain genotype of a maze)
and four biological replications. Since four tissues are harvested from the same root, there
could exist some correlation among tissues belonging to the corresponding root. Therefore,
this data is clustered. Out of all gene IDs, “GRMZM2G042361” is selected for an providing
an illustrative example of zero-inflation with underdispersion. For this specific gene ID, we
have 64 observations (read counts) including 37 zeros, 23 ones, 3 twos and 1 three.

Both the MPL and MES methods are applied to fit a marginal ZICMP model to the data.
Since differences in total numbers of read counts over genes exist across biological sample
units or different lanes, we need to account for this additional characteristic of NGS data in
our model. Hence, we include the total read counts as an offset term into our regression
model for a normalization across the biological samples. Therefore, our count part link
function is modified as /ogA = genotype + fog(offset). The number of clusters is not deemed
to be large enough for us to use the normal based confidence interval calculations. Instead,
we report the point estimates along with a first order bootstrap confidence interval using the
cluster bootstrap scheme described in the previous section with 8= 100.

The dispersion estimates v 2 for both methods (Table 2) and indicate that the expression
data for GRMZM2G042361 is significantly underdispersed since the bootstrap confidence
intervals do not include the value 1. All the coefficients for genotype effects are similar in
both the MPL and MES methods. Only the Mo17 genotype has a significant effect on this
specific gene 1D for the count part since the corresponding bootstrap confidence interval
excludes zero for both MPL and MES confidence intervals. Note that, for a full scale
analysis of this dataset, additional considerations such as multiple hypotheses corrections
need to be taken into account.
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4. Simulation Studies

We perform two different sets of simulations to study the finite sample performance of our
methodology. The first simulation study is guided by the dental data analyzed in the previous
section. Here we study the bias and variance of our MPL and MES estimators as well as the
performance of the adjusted sandwich based variance estimator and the bootstrap based
variance estimator, respectively. Performances of the estimators based on ZIP model and
both variance estimators are also included for comparison. The second simulation study is
guided by a dataset on airfreight breakage which has only one covariate; however, the
covariate is a subject level (rather than cluster level) covariate. In addition, we are able to
study the effect of increasing the number of clusters on the performance of these estimators.

4.1 Simulation guided by the dental data

The CES dataset of the nine-year-old children from the lowa Fluoride Study (Levy et al.,
2003) is described in detail in the previous section, which is also used for application of our
marginal ZICMP model. The present large simulation study is guided by that dataset. We
generate the clustered CES scores using a correlated ZICMP regression model with four
cluster level covariates for both parts of the model. These covariates were the significant
factors (based on results from Section 3) for the zero part: AUCmhF5_9yrs,
AUCS00a0z5 _9yrsand ToothBrushingFeq.Per_DayAvg except HomeFluorideppmAvg
which was borderline significant for both the count and the zero parts based on the MPL
analysis. Noisy versions of these covariate vectors resampled from the original dataset were
used to generate the CES scores using the subject specific parameters through the links
explained in Section 2. We use parameter values 5= (1.00,0.01, —0.01, —0.13, —0.16) for the
count part, y=(2.00, 0.70, —0.07, 0.56, —0.30) for the zero part and v=0.6. These are close
to both MPL and MES estimates obtained for the dental data in Section 3.

In order to keep the computational burden in check, the total number of clusters, A, is taken
to be 200 and a constant cluster size of 77;= 15 is used for all the clusters. That is, Xjz= X,
is a 15 x 5 matrix including an intercept term for each of the count and zero parts. Following
Kong et al. (2014), correlated Bernoulli variables to generate the zero values are, simulated
using the Cholesky decomposition of a compound symmetric correlation matrix with a
common correlation coefficient &Whereas the correlated count (CMP) data are generated by
the inverse CDF transformation technique starting with a multivariate normal distribution
with zero mean and a compound symmetric correlation matrix with a common correlation p.
We consider both low (p; 5= 0.2) and high (p; 5= 0.8) intra-cluster correlation cases.

For each setting, we create 100 datasets, calculate the MPL and MES estimates for each
dataset, and obtain the empirical bias and standard error for each parameter estimator. The
adjusted sandwich variance estimates are calculated for the MPL method and the variance
estimates for the MES estimators are obtained through the bootstrap scheme (Field and
Welsh, 2007) based on 100 bootstrap resamples as detailed in Section 2. ZIP estimates with
their asymptotic variance and the adjusted sandwich variance estimates are also obtained for
each Monte Carlo dataset by applying the psc/R package and using an analogous adjusted
sandwich variance formula as (14), respectively.
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Estimators obtained from the ZIP model have larger biases than both the MPL and MES
estimators of the ZICMP model (Table 3). This is more notable in high intra-cluster
correlation case. The bias for the high intra-correlation case is larger for almost all
estimators compared to the low intra-cluster case in both the ZICMP and ZIP models, as
expected.

The estimators based on the simpler ZIP model are accompanied by Hessian-based standard
errors, SE (pscl), obtained by the ‘zeroinfl’ function in psc/R package. For the low
correlation case, these are not too different from the true standard errors for both count and
zero parts. However, in the high intra-cluster correlation case, ZIP standard errors (SE
(psch) are considerably smaller than the true ones. This implies that the Hessian-based
standard errors are deflated which leads to a more liberal interpretation of p-values. This
happens because the ZIP estimators do not account for the dependency of data in a cluster.
This issue turns out to be more apparent for the high intra-cluster correlation case. On the
other hand, the adjusted sandwich variance estimators tend to be closer to the true standard
errors (SE). Thus, the inference from a ZIP model along with an adjusted sandwich variance
has an ability to account for the clustering characteristic of data but still lacks the ability to
handle data dispersion (under or over). This aspect may causes prominently larger bias,
especially in the count part, which may lead to incorrect inference as shown by the
probability-probability (p-p) plots (Figure 2 and Web Figure 1).

While the MES estimators yield smaller biases and true standard errors (SE) than MPL
estimates (Table 3), they need to use the bootstrap-based standard errors for variance
estimates which consumes a considerable amount of computational efforts.

In order to study the performance of the resulting inferences of the effects of covariates/
factors, we created the p-p plots where we plot the targeted nominal coverage of a
confidence interval in the horizontal axis and the corresponding true coverage, as measured
by the Monte Carlo simulation, in the vertical axis. Thus, a diagonal p-p plot would indicate
that the asymptotic normal approximation to various estimators is accurate so we can have
proper inferences using them. Overall, we noticed that all the p-p plots obtained from both
the MPL and MES methods are relatively close to the solid reference lines (see Figures 2
and Web Figure 1) even for the high correlation case. However, none of the p-p plots based
on the ZIP model with standard variance estimates is very linear even in the low correlation
case. As mentioned earlier, the situation improves when we use the adjusted sandwich
variance with the ZIP model. Nevertheless, the p-p plots for most of the regression
parameters still exhibit varying extent of under coverage. Thus, the ZIP model may not be a
satisfactory method for analyzing zero-inflated clustered data with overdispersion.

4.2 Simulation guided by the airfreight breakage data

In this simulation, we investigate the performance of our ZICMP marginal model with a
subject (observation) level covariate by building a simulation plan around the airfreight
breakage data (Kutner, Nachtsheim and Neter, 2003, page 35, Exercise 1.21) which consists
of 10 observations and one scalar covariate. A CMP model for this data was fit by Sellers
and Shmueli (2010), which yielded parameter estimates of #= (1.38, 1.3)7 and v=5.7818.
Going forward, we use the same parameter values for generating the count part of our data,
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with covariates Xjresampled from the set of scalar covariates in the original dataset (to
match the desired number of observations). The zero-inflated part is generated by a
regression model as described in Section 2, with the same set of covariates, i.e., X, = Xz but
with the regression parameters y = (2, —3) 7. For generating clustered ZICMP data, we need
to generate correlated zeros, as well as, correlated counts. These are generated as explained
in the Section 4.1

In this simulation, we consider three different combinations of number of clusters and the
cluster size, namely, N/= 30 with n=20, /=50 with 7= 30, and NV= 75 with n=15. For
each condition, we generate data with low (p; 5= 0.2) or high (o = §= 0.8) correlations
within each cluster. Both MPL and MES methods are applied to each of the 100 simulated
dataset and the results are averaged to compute the empirical bias and variances of our
estimators. We also used the bootstrap to compute variance estimates for both estimators in
addition to the adjusted sandwich variance estimate for the MPL estimator. In order to keep
the computational resources in check, we have used a modest number of bootstrap resamples
(= 100) which is still deemed to be sufficient for our purpose. As mentioned earlier, in order
to calculate bootstrap variance, we resample 100 times at the cluster level with replacement
so that the correlation structures are preserved within a cluster. Finally, bootstrap variance
estimates are given by the empirical variances of the parameter estimates obtained for the
100 bootstrap resamples. The results for /=50 are provided in Table 4; results for the other
two cases are placed in the Web Tables 1 and 2.

Web Table 1 results show that, in the case of /= 30, the estimators obtained from both MPL
and MES methods have comparable performances in terms of bias and standard errors for
both low and high intra-cluster correlation cases. For the low intra-cluster correlation case,
bootstrap standard errors of both MPL and MES estimators match the true standard errors
fairly well. However, in the high correlation case, the accuracy of the bootstrap standard
errors worsens in both the MPL and the MES methods. Similarly, the adjusted sandwich
standard errors based on the MPL method are fairly close to the true standard errors in the
low intra-cluster correlation case, but not in the high correlation case. The bias terms for
both MPL and MES methods are similar to each other and the bias tends to be larger in the
high intra-cluster correlation case, as expected.

When the number of clusters increases to 50 (Table 4), the variance results were again
comparable for the two sets of estimators in the case of both low and high intra-cluster
correlations. In addition, the bootstrap based standard errors for both sets of estimators are
very close to the true standard errors in both low and high intra-cluster correlation cases.
Moreover, the adjusted sandwich standard errors based on the MPL method are quite
comparable to the bootstrap standard errors in both low and high correlation cases, even
though the bootstrap estimates are slightly closer to the true standard errors.

When the number of clusters A/ further increases to 75 in Web Table 2, the performance
improves across the board. From the results based on all the three scenarios, both the MPL
method and MES algorithm have similar performances with respect to bias and standard
errors. Note, however, that the MPL method is generally easier to implement and comes with
a closed form sandwich variance estimate. The standard errors obtained using the bootstrap
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method appear to be reasonably close to the true SE as obtained by the Monte Carlo method:;
the estimates obtained from the adjusted sandwich formula for the MPL estimator can be
adequate when the number of clusters is large.

We would like to point out that the biases for the intercept terms from the count parts based
on these two simulations (Table 3 and Table 4) appear to be large compared to those for the
other terms. In fact, the true values of the intercept parameters are relatively large compared
to the other regression coefficients and consequently the relative biases of the intercept terms
are comparable to those for the other terms.

5. Discussions

The CMP model has received a great deal of attention in recent years in many fields of
application. In particular, the article by Shmueli et al. (2005) advocating the use of CMP
distributions has already been cited 165 times according to Google Scholar (accessed
September 5, 2015). While Sellers and Shmueli (2010) developed regression modeling for
CMP distributed data, in this paper we provide two significant extensions of the CMP
methodology for making frequentist inference, thereby making this applicable to a greater
variety of problems. Our version of the methodology can handle excessive zeros (zero-
inflation) in the data and also when the data are clustered so that not all observations are
independent. In particular, we have analyzed a dataset from the lowa Fluoride Study using
our model and show that more reliable inference can be obtained using it than the ZIP
regression.

In this paper, we have introduced two methods to fit a ZICMP marginal model with
clustered data that has over or under dispersion. In our simulations, the MES method
produced slightly more efficient estimators through the use of a working variance-covariance
matrix like the GEE. However, the corresponding variance estimates are computationally
more expensive. The MPL method, on the other hand, affords a close form variance
estimator. Like any other numerical optimization/estimating equation based methods, these
methods may have convergence issues for certain datasets and changing the initial values
and the optimization method (e.g., use a different method rather than the default in the R
function ‘gptim’) or the updating scheme (e.qg., acceleration constant, Cesaro updating) may
help the situation.

We also demonstrated that a cluster bootstrap method is capable of producing reasonable
variance estimates for both sets of estimators through two different simulations. With respect
to this, it is important for the reader to note that certain R packages that are directly able to
calculate the sandwich variances may not work as well as using bootstrap to estimate the
variances. We also obtain a theoretical form of the asymptotic variance covariance matrix of
the MES estimators that explains the variability in the estimation of the indicators of the
zero part. However, it is not possible to obtain an empirical analogue of this for general
clustered data, since we do not know the exact joint likelihood of the cluster-correlated
observations. On the other hand, we can obtain a valid sandwich variance estimators for the
MPL method even for clustered data by utilizing the independence of the cluster sums of the
corresponding estimating functions.
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The two real data examples demonstrate the scope of applications of our methodology to
diverse fields and it is our hope that with time more applications to these models for
clustered count data with zero inflation and wide range of dispersion will be discovered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Caries Experience Score(CES)

Summary plots of the data of the nine-year-old children from the lowa Fluoride Study:
Frequency histogram of caries experience scores (CES) summarized over all teeth and

children in our sample (left panel), and the frequency histogram of CES excluding zero
counts summarized over all teeth and children in our sample (right panel).
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(a) Coverage probabilities based on ZICMP/MPL
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(c) Coverage probabilities based on ZIP
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Empirical coverage of the confidence intervals in a simulation study guided by the dental
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(b) Coverage probabilities based on ZICMP/MES
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(d) Coverage probabilities based on ZIP with Adj_SW
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data of nine-year-old children from the lowa Fluoride Study. The p-p plots are for /=200
and n =15 when intra-cluster correlation is high. Three sets of plots are provided for the
regression parameters corresponding to the four covariates: ZICMP/MPL (upper left panel),

ZICMP/MES (upper right panel), ZIP (bottom left panel) and ZIP with Adj_SW (bottom

right panel).
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TABLE 2

Page 22

Results for the GRMZM2G042361 gene from the maze hybrids data. Parameter estimates are reported along

with cluster bootstrap based (nonasymptotic) confidence intervals (BS_CI).

MPL

Count part BS CI Zeropart BS CI
Intercept -16.6529 (-16.70, -15.93) -11.2535  (-24.46,-2.04)
B73xMol7 0.5264 (-0.29,0.71) -1.9622 (-18.75, 6.86)
Mol7 1.4999 (0.66, 3.24) -3.9165 (-10.27, 15.54)
Mol17 x B73  0.6317 (-1.22,2.97) -4.9595 (-14.67, 13.64)
v 2.1020 (1.86, 4.93)
MES

Count part BS_CI Zeropart BS_CI
Intercept -16.6490 (-16.69, -15.93) -11.2748  (-24.46,-2.04)
B73 xMol17 0.5150 (-0.28,0.71) -1.9740 (-18.75, 6.85)
Mo17 1.5027 (0.65, 3.23) -3.8774 (-10.26, 15.53)
Mol7 x B73 0.6273 (-1.22, 2.96) —4.9362 (-14.67, 13.63)
v 2.1056 (1.86, 4.93)
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