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Abstract

In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its
capability to exploit a variety of strategies to enter and infect immune cells. Although CD4+ T cells are well
known as the major HIV target, with infection occurring through the canonical combination of the cluster of
differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine
receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such
as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of
distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore,
HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events.
While several publications have investigated details of how HIV manipulates particular cell types or subtypes,
an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this
review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter
particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules asso-
ciated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying
cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in
identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection.

Introduction

Human immunodeficiency virus (HIV) infection is one
of the most challenging health issues to arise in the last

three decades as it affects a significant proportion of the
world population.1 Although much progress has been made
since HIV was discovered as the cause of acquired immu-
nodeficiency syndrome (AIDS),2–4 *1.6 million people die
from HIV-related causes each year.1 Primarily due to theories
supporting the independent evolutionary jumps of HIV types
1 and 2 (HIV-1 and HIV-2) from simian immunodeficiency
virus (SIV) in Central Africa during the 1930s,5,6 scientists
have historically sought to characterize the nature of HIV in-
fection through in vivo studies of SIV infection in primates.7

Of the two distinct HIV genotypes, HIV-2 is less patho-
genic and predominantly found in western Africa, whereas
HIV-1 accounts for 95% of HIV infections worldwide and is
more virulent and treatment resistant.8,9 As such, HIV in-

fection generally refers to HIV-1, which will be the focus of
this review.

While work on primates has provided valuable informa-
tion,10 in vitro models using infectious HIV in human cell
cultures remain highly relevant for important treatment dis-
coveries and characterizing the multiple mechanisms used by
HIV to enter cells.11 Moreover, a large number of AIDS trials
have been based on research that investigated the efficacy of
drugs shown to inhibit HIV binding and entry into target cells
in vitro.12,13 While this prior work has often been general-
ized, the specific molecules that HIV utilizes to infect dif-
ferent and pathologically relevant immune cell types, that is,
viral tropism, is less understood, which is pertinent for the
development of novel HIV therapeutic approaches.

The knowledge gained from studying HIV tropism provi-
des researchers with unique targets to inhibit infection of
specific immune cell subsets and target different stages of
disease progression, and thus increase the chances of finding
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useful combinations of antiviral compounds.14,15 Moreover,
as resistance to current HIV-1 therapies continues to emerge,16

inhibitors of HIV-1 attachment/entry provide a different mech-
anism of action than those of the current standards of care,
and are potentially of great value in populations where drug
resistance is more prevalent. Furthermore, during the path-
ogenesis of HIV infection, the virus evolves, in part, due to
genetic drift of neutral mutations followed by brief episodes
of natural selection during the infectious process, changing
with it the cell subtype preference of the virus, which is
dictated by coreceptors expressed by target cells.17

A complete understanding of the different molecules that
HIV uses to enter particular immune cells is crucial to de-
velop effective strategies to inhibit the virus at precise stages
of infection. Hence, while it is easier to focus on a single cell
type or subtype for new HIV prevention strategies, an over-
view of HIV receptor usage on different target cells merits
discussion as effective strategies will need to focus on mul-
tiple targets.

The purpose of this review is to summarize the latest in-
formation on HIV receptor usage based on in vitro studies
of different human immune cells, as this clarifies not only
the tropism of HIV for certain target cells but also how this
may correlate with cell-to-cell transmission of HIV, and thus,
how HIV spreads to different anatomical sites throughout
the human body. In addition, drugs and other experimental
compounds that have been used to target different HIV re-
ceptors, coreceptors, and cofactors will be discussed and are
summarized in Table 1. This review will be presented in four
sections based on the following HIV target cells: (1) CD4+ T
cells, (2) macrophages (MFs), (3) professional antigen-
presenting cells (APCs), and (4) other immune cells. Each
section will focus on primary receptor(s), coreceptor(s), and
other cellular cofactors/components that are exploited by

HIV to efficiently enter the aforementioned target cells, as
well as discuss prophylactics/therapeutics that have been
developed to target several of these mechanisms in an effort
to halt infection.

CD41 T Cells

As the major targets for HIV, T helper cells (CD4+ T cells,
Fig. 1) are the most recognized and studied immune cells in
HIV research. Depletion of these important immune cells is
the hallmark of HIV infection18 and contributes to the
symptomatic manifestation that characterizes AIDS19; how-
ever, direct versus indirect reductions of these T cells within
HIV-infected individuals remain contentious.20,21 Never-
theless, the loss of these T cells results in compromised im-
munity, leading to opportunistic infections as well as cancers
arising in HIV-infected individuals. These conditions include
pneumonia caused by uncontrolled growth of a common
airborne fungus, Kaposi’s sarcoma arising from unchecked
infection of Kaposi’s sarcoma-associated herpesvirus, tu-
berculosis, and several other secondary diseases involving
the nervous system and skin.22

Primary receptor

Cluster of differentiation 4 (CD4) was demonstrated to be
the principal receptor of HIV on T helper cells in 1986 when
the virus was tentatively named lymphadenopathy-associated
virus.23 In this study, McDougal et al. used radiolabeling
techniques in experiments that exposed CD4+ T cells to HIV
and found that one of two monoclonal antibodies (mAbs)
recognizing different CD4 epitopes was unable to bind HIV-
treated cells. Then, through antibody–antigen complex ana-
lyses, the authors demonstrated that the CD4 molecule binds
to the viral glycoprotein gp120, thus providing evidence that

Table 1. Summary of Drugs Within That Have Been Used to Target Human Immunodeficiency

Virus/Cell Surface Interactions in an Effort to Prevent Viral Infection

Target Drug Mechanism Clinical stage Trial number(s) Citation

CD4 CADAs Competitive binding Preclinical development 49

CD4 DARPins Competitive binding In phase II clinical trials NCT02181517
and NCT02181504

47,48

CXCR4 AMD3100 Competitive binding Preclinical development 60

CCR5 Aplaviroc Competitive binding Clinical development suspended 121

CCR5 Maraviroc Competitive binding FDA approved 123

CCR5 PRO 140 Competitive binding In phase IIb/III clinical trials NCT02483078 118

CCR5 pV2alpha-Tys Competitive binding Preclinical development 124

CCR5 TAK-652 Competitive binding In phase II clinical trials NCT01338883 119

CCR5 Vicriviroc Competitive binding Completed phase III clinical trials 120

gp120 NBD analogues Competitive binding Phase I clinical trials NCT00001091 39,40

gp120 b12 Competitive binding Preclinical development 33

gp120 BMS-626529 Competitive binding Ongoing part 2 of phase I clinical trial NCT02508064 45,46

gp120 BMS-663068 Competitive binding Completed part 1 of phase I trial NCT02508064 42

gp120 sCD4 Inhibitory binding Completed phase I trials NCT00002087
and NCT00000743

36,37

gp120 TNX-355 Competitive binding Phase III clinical trials NCT02028819 32

gp41 HP32 Fusion inhibition Preclinical development 90,91

gp41 SC35EK Fusion inhibition Preclinical development 86

gp41 Sifuvirtide Fusion inhibition Preclinical development 85

gp41 T20 Fusion inhibition FDA approved 82

gp41 T2635 Fusion inhibition FDA approved 87,88

gp41 C34 Fusion inhibition Clinical trials—United Kingdom ISRCTN89747147 88,89

CCR5, C-C chemokine receptor type 5; CD4, cluster of differentiation 4; CXCR4, C-X-C chemokine receptor type 4.
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CD4 plays a major role in HIV infection. Other studies uti-
lizing mAbs against CD4 have showed that HIV infection of
target CD4+ T cells could effectively be blocked.24–26 In
accordance with these results, the forced expression of CD4
through gene transfection into CD4- human cell lines con-
ferred susceptibility to HIV infection. However, forced CD4
expression in other mammalian cells lines, such as those from
mice, yielded nonproductive viral infections.27 These con-
flicting results led to the conclusion that there were proteins
specific to human cell lines, in addition to CD4, responsible
for viral infection and propagation, and systems deficient in
these factors do not support HIV replication.28

The first successful crystal structure of a fragment of CD4
in complex with the gp120 core was solved by Kwong et al. in
1999 through X-ray diffraction.29 This interaction has since
become a key target between virus and host to block viral
entry. Importantly, there are several antiviral therapies under
development that impede the gp120-CD4 interaction, po-
tentially serving as HIV entry inhibitors. For example, TNX-
355, a humanized murine anti-CD4 mAb previously referred
to as hu5A8, was shown to have high antiviral potency alone,
synergized with antibodies targeting gp120 in vitro, and re-
duced HIV viral load in primates in vivo.30,31 Furthermore, it
has been shown that a single dose of TNX-355 reduced HIV
plasma levels and increased T-cell counts in HIV-infected
patients.32 A natural, broadly neutralizing gp120-binding
antibody, known as b12, was isolated from HIV-infected
subjects, and a growing class of such antibodies is now
available.33,34 Experiments with b12 show reduced HIV
binding to target cells; however, the emergence of HIV-
resistant variants has limited its success.35

Beyond antibodies, HIV attachment/entry inhibitors that
interfere with gp120-CD4 interactions or stabilize conforma-
tions of gp120 that do not associate with CD4 have become an
attractive strategy to prevent HIV infection.36,37 Early candi-
dates included soluble CD4 (sCD4) mimetics, although their

efficacy has been hindered due to their slow kinetics of HIV-1
inactivation.38,39 A more potent design that combines sCD4
with a coreceptor peptide mimetic has been shown to protect
primates when delivered using adenovirus-associated virus
vectors.40 However, protein-based sCD4s lack oral availabil-
ity, which is characteristic of small molecules.41

Along these lines, two main chemotypes of small mole-
cules have predominated in HIV entry inhibitor research,
including the N-phenyl-N-piperidin-4-yl-oxalamide (NBD)
analogues42,43 and Bristol-Myers Squibb (BMS) compounds
that specifically interfere with the gp120-CD4 interaction
through different mechanisms.44 One inhibitor in the latter
group that is currently under development is BMS-663068.45

BMS-663068 is a prodrug, of which activation inhibits gp120
interactions with CD4 via binding to gp120, and this is the
first drug that blocks HIV-receptor interactions to undergo
clinical development.46,47 Although phase III trials are
planned for BMS-663068,47 modifications of its active form
(BMS-626529) and new classes of similar compounds are
currently under investigation and may allow for lower dose
formulations without the need of a prodrug.48,49

A third class of candidate anti-HIV drugs currently being
examined utilizes CD4-specific designed ankyrin repeat
protein (DARPin) technology, which promises a potent and
stable inhibitory strategy with low production costs and high
specificity to CD4 that can outcompete viral gp120 bind-
ing.50,51 Cyclotriazadisulfonamides (CADAs) are yet another
type of small molecule that target CD4 rather than envelope
(Env) proteins, and work by knocking down CD4 in an
mRNA-independent manner52; however, long-term adverse
effects on the immune system are of concern. Lignosulfonic
acid, a low-cost lignin-derived polyanionic macromolecule,
has also shown potency in inhibiting HIV entry by interfering
with gp120 binding to the cell surface of CD4+ T cells, al-
though the mechanism of action is not yet fully understood.53

Most recently, thiolated pyrimidine derivatives were shown

FIG. 1. Summary of receptors used by HIV to
enter CD4+ T cells. CD4 is the primary receptor for
gp120, while either CXCR4 or CCR5 can act as
coreceptors. On attachment to these moieties, the
gp41 fusion protein is exposed and facilitates viral
membrane fusion. CD26 and a4b7 have been
shown to aid in catalyzing these interactions as
cofactors. When ICAM-1 is incorporated into the
viral envelope during budding events, it can inter-
act with its receptor LFA-1 to enhance infectivity
(interaction indicated by *). CCR5, C-C chemokine
receptor type 5; CD4, cluster of differentiation 4;
CXCR4, C-X-C chemokine receptor type 4; HIV,
human immunodeficiency virus; ICAM-1, inter-
cellular adhesion molecule-1; LFA-1, lymphocyte
function-associated antigen 1. (Color image is avail-
able at www.liebertpub.com/apc).
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to prevent HIV entry by interacting with redox-active thiol
groups on both CD4 and gp120 that are paramount for HIV
entry in vitro,54 although more work is required to establish
clinical viability of these compounds.

Coreceptor(s)

Due to results that demonstrated that some non-CD4 ex-
pressing cells were susceptible to HIV infection,28,55 scien-
tists began to look for secondary receptors that permitted HIV
infection in CD4- cells. Although several laboratories re-
ported the sequence of a coreceptor involved in viral fu-
sion,56,57 it was not until 1996 when Feng et al. identified a
seven-transmembrane G protein-coupled receptor that func-
tioned as a critical coreceptor for T-cell line-tropic HIV in-
fection.58 The suggested name for this newly identified
protein was ‘‘fusin’’ because of its role in HIV viral envelope
fusion to T-cell membranes. Studies by Bleul et al. followed
shortly thereafter and implicated the same protein, although
named it with the more widely used chemokine field no-
menclature as the C-X-C chemokine receptor type 4
(CXCR4).59,60 As such, HIV strains capable of exploiting the
CXCR4 coreceptor to efficiently gain entry into T cells have
been dubbed X4-tropic, and the natural CXCR4 ligand stro-
mal cell-derived factor a (SDF-a) has been shown to inhibit
X4 strains.59,61

These X4-tropic strains typically emerge during the later
stages of AIDS, and a shift toward production of this HIV-
subtype provides a measure of disease progression within
patients. Consequently, compounds that interfere with the
interaction between HIV and the CXCR4 coreceptor have
been explored in a therapeutic setting.62 Unfortunately, tar-
geting CXCR4 has proven to be challenging. For example, a
CXCR4 antagonist named plerixafor, or AMD3100, was
under development for HIV treatment, but showed limited
inhibitory potency in preliminary trials.63 This result may be
explained as X4-tropic viruses are commonly present to-
gether with R5-tropic viruses that utilize the C-C chemokine
receptor type 5 (CCR5).64,65

CCR5 is another major HIV coreceptor on T cells,60 par-
ticularly on certain T-cell subsets, including T follicular
helper T cells (TFH)66 and effector memory T cells (TEM).67

Specifically, CXCR4 is expressed on 88.5% of CD4+ T cells
in resting tissues, whereas CCR5 is expressed on 10.4% of
cells.68 Thus, HIV infection inhibition via CCR5 targeting
will be discussed in more detail below. Due to the concur-
rence of viral subtypes that have different cellular tropism,
the inhibition of CXCR4 alone may not be sufficient to de-
crease viral load.69 In addition, inhibition of CXCR4 also
impacts its natural role in maintaining hematopoietic stem
cells in their bone marrow niche.70 While CXCR4 and CCR5
are the primary coreceptors for HIV entry into T cells, other
minor coreceptors, such as CXCR6, have also been proposed
for the expanding list of T-cell subsets,71 and variations in the
genes that encode for HIV-1 coreceptors and their natural
ligands modify viral susceptibility and disease progression.72

Cofactors and other components

In addition to the importance of the CD4 and the chemo-
kine receptor coreceptors, the enzyme CD26 (also known as
dipeptidyl peptidase IV) has been investigated as an HIV
cofactor due to its protease activity at a specific motif within a

highly conserved portion of the variable loop 3 (V3) of gp120
from different HIV isolates.73 CD26 is preferentially ex-
pressed on memory and helper CD4 subsets and is highly
upregulated on T-cell activation.74,75 It has also been dem-
onstrated that mAbs against CD26 are able to inhibit HIV
entry, and coexpression of human CD4 and CD26 in murine
NIH 3T3 fibroblasts made them permissive to HIV infec-
tion.76 Follow-up studies supported the role of CD26 in a
variety of lymphocytic functions77 and showed that CD26
expression levels by CD4+ T cells are positively correlated
with the rate of HIV infection.78 Consequently, scientists
began to strategize methods to inhibit CD26 as potentially
useful treatment options.79 However, other groups have
published conflicting evidence suggesting that high CD26
expression decreases HIV infection of T cells in vitro,80 and
that high expression of CD26 confers HIV resistance
in vivo.81 Therefore, the future of targeting CD26 in thera-
peutic approaches remains controversial.

Several integrins have also been implicated in HIV in-
fection. Specifically, HIV has been shown to target gut CD4+

T helper cells (Th17 cells), in part, through attachment via
a4b7 integrin,82–84 although more recently it was suggested
that a4b7 increases HIV susceptibility via an attachment-
independent mechanism.85 Another cofactor that is part of
the leukocyte integrin family involved in HIV infection of
CD4+ T cells is lymphocyte function-associated antigen 1
(LFA-1).86 In its activated form, LFA-1 has a high binding
affinity for its ligand, intercellular adhesion molecule-1
(ICAM-1), which can be incorporated into the HIV viral
envelope during the budding process from other immune
cells.87,88 For example, CD4+ T cells deficient in LFA-1 were
shown to be less susceptible to HIV-1 transmission from
dendritic cells (DCs) that express ICAM-1.89 Moreover, HIV
gp120 was shown to be sufficient for LFA-1 activation, thus
promoting the use of this cofactor.90 Monoclonal and single
domain antibodies against the beta subunit of LFA-1
(CD11a) efficiently blocked HIV-1 transmission both in an
in vitro and in an in vivo mouse model.91 Interestingly, a
murine mAb against LFA-1 (also known as Cytolin) was
shown to inhibit HIV replication by inducing the secretion of
a currently unidentified soluble antiviral factor on LFA-1
engagement, providing a novel mechanism of action for
targeting this cofactor in antiviral approaches.92

As an alternative approach to block HIV infection, it may
be possible to target viral envelope fusion to the host cell
membrane, which occurs after initial binding and exposure of
the HIV gp41 fusion peptide required for HIV entry into
CD4+ T cells.93 Therapeutic strategies aimed at preventing
viral fusion are appealing, given that such approaches would
likely be strain independent. Early work by Ebenbichler et al.
found that three cell surface proteins on human T-cell lines
in vitro bound recombinant gp41 with high affinity,94 which
may have promoted viral fusion. Thus, inhibitors of viral
fusion have long been explored to prevent HIV-1 entry pri-
marily by targeting the N- or C-terminal heptad repeats (NHR
and CHR, respectively) of gp41. The most studied of such
fusion inhibitors is T20 (or enfuvirtide), a peptide that mimics
the CHR sequence of gp41 (aa 643–678) and competitively
binds to gp41, thereby blocking the formation of the post-
fusion structure. While T20 has been approved for use since
2003 and remains the only approved HIV-1 fusion inhibi-
tor,95 it has been met with drawbacks, including costs of up to
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$25,000 per year, high dosage requirements due to relatively
low activity, and drug resistance.96,97 Nonetheless, efforts
were made to develop new fusion inhibitors with improved
pharmaceutical profiles, including sifuvirtide,98 SC35EK,99

and T2635,100 although they have suffered from similar dif-
ficulties. A related fusion inhibitor, C34, has been considered
one of the most promising fusion inhibitors,101 and efforts have
continued to increase its potency.102 Moreover, C34 is cur-
rently being used in a phase I clinical trial for HIV-positive men
in the United Kingdom (EudraCT No. 2014-002671-28). Most
recently, a newly designed peptide (HP32) has been developed
that shows cross-strain HIV antiviral activity by specifically
targeting a gp41 pocket different from the T20 resistance
sites.103,104 As such, HP32 has been shown to effectively inhibit
T20- and MT-SC22EK-resistant HIV-1 strains, making it an
ideal candidate for clinical development. An overview of HIV
receptor usage on T cells is provided in Fig. 1.

Macrophages

One of the first immune cells to encounter HIV during
sexual transmission are MFs (Fig. 2).105 While other immune
cells have been identified to be important early targets for
HIV infection,106,107 MFs have been the most extensively
studied for their roles in viral dissemination throughout the
host.108,109 Specifically, MFs are able to promote viral dis-
semination due to their ability to migrate throughout the
entire body and are key players in persistent HIV infection.110

Due to their resistance to the cytopathic effects of HIV,111

MFs can produce virus for long periods of time and act as
HIV reservoirs for viral transmission to other lympho-
cytes.112 Because of their unique roles in HIV infection, MFs
not only function in initial HIV infection113 but also play
roles in HIV-associated neurodegenerative and innate im-
mune system disorders.114,115

Primary receptor

The original paradigm that HIV tropism was restricted
to T cells was reevaluated once researchers demonstrated
that other immune cells were permissive to HIV infection,
primarily due to CD4 expression combined with yet to be
identified coreceptors.25,116 While it is now understood that
HIV can exploit CD4 to bind to MFs,117 it stands that cells of
the MF lineage phenotypically express lower levels of this
molecule.118 Consequently, certain HIV strains have evolved
or developed adaptations to infect cells with low surface
CD4 expression and are known as macrophage tropic (M-
tropic).119 These strains are able to efficiently infect MFs,
including those resident in the brain (known as microglia).120

M-tropism arises from gp120 modifications at the CD4 bind-
ing site. Specifically, it has been demonstrated that M-tropism
correlates with sensitivity to reagents that block gp120-CD4
interactions, indicating that the HIV gp120 on M-tropic
strains has a higher contact affinity to CD4, enabling it to infect
cells with low CD4 levels.121

FIG. 2. Summary of recep-
tors used by HIV to enter MF.
CD4 is the primary receptor for
gp120, while CCR5 or CXCR4
can act as coreceptors. During
viral propagation, surface pro-
teins such as MHC II, PS, or
ICAM-1 have been shown to
incorporate into the viral enve-
lope and act as ligands that en-
hance virus-MF interactions
through binding to their recep-
tors CD4, annexin A2, and
LFA-1, respectively (protein
interactions indicated by *, **,
and ***). Syndecans, integrins,
alternate chemokine/cytokine
receptors, and MMR have also
been shown to be cofactors that
play a role in HIV infection of
MFs. CCR5, C-C chemokine
receptor type 5; CD4, cluster of
differentiation 4; CXCR4, C-X-
C chemokine receptor type
4; HIV, human immunodefi-
ciency virus; ICAM-1, inter-
cellular adhesion molecule-1;
LFA-1, lymphocyte function-
associated antigen 1; MHC II,
major histocompatibility com-
plex class II; MMR, macro-
phage mannose receptor; PS,
phosphatidylserine. (Color im-
age is available at www
.liebertpub.com/apc).
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Sensitivity to gp120-CD4 inhibitors (i.e., sCD4, PRO 542,
BMS-378806, b12, and human mAbs targeting conserved re-
gions of gp120 or gp41) is characteristic of M-tropic strains,
and the stronger the affinity for either target, the more effective
the agent is at blocking infection.122–124 It remains, however,
that viral replication in macrophages is limited, and in vivo
infection is restricted to a minor percentage of the macrophage
population.105,125 Ultimately, observations of primary HIV
isolates that only infected monocyte and MF populations ra-
ther than T cells promoted research focused on identifying
cofactors specific for the various CD4+ MF subsets.116,117

Coreceptors

MF infection by certain HIV isolates was shown to be in-
hibited by the release of Th1-associated cytokines, including
RANTES and macrophage inflammatory protein 1 alpha (MIP-
1a) and MIP-1b,126 and thus, investigations were performed to
identify the associated coreceptor(s) to explain these results.
Interestingly, in rare cases, it was observed that individuals
were resistant to sexually transmitted HIV infection even if
their T cells could be readily infected by T-tropic variants
in vitro. Researchers elucidated that this was due to a deletion
in the CCR5 gene that conferred protection against M-tropic
strains.127,128 These observations, among others, led to the
identification of CCR5 as the main coreceptor involved in HIV
viral fusion to MFs.129–131 Because of this, M-tropic strains
that exploit CCR5 are now classified as R5-tropic, in line with
the aforementioned nomenclature for X4-tropic isolates that
use CXCR4, although CXCR4 can also be utilized by macro-
phages.132 Since CCR5 has been shown to be essential for HIV
disease progression, much effort has been invested into tar-
geting this coreceptor for therapeutic purposes.133 Specifically,
CCR5 antagonists that impede CCR5-HIV interactions such as
PRO 140, TAK-652, vicriviroc, aplaviroc, and maraviroc have
been investigated.134–138 Among these, only maraviroc has
been approved by the FDA for clinical use.139

Coinciding with the sCD4 group of inhibitors, CCR5
coreceptor mimics have also been investigated and were
shown to synergistically increase the efficacy of sCD4s to
block HIV-1 infection by acting as ‘‘bait’’ CCR5 to the
sCD4-primed virion thus catalyzing a premature discharge of
HIV fusion potential.39 More recently, a peptide that mimics
a sulfated region of HIV-1 V2 (pV2alpha-Tys) was used to
prevent CCR5 utilization and block HIV-1 entry,140 and such
peptidomimetics have been combined with sCD4 in a single
construct to produce a more potent inhibitor.40 MFs can also
be targeted by certain HIV isolates that are phenotypically
considered T-tropic through entry via CXCR4,141 as well as
by dual-tropic strains classified as R5X4, which can utilize ei-
ther CXCR4 or CCR5; however, these R5 or R5X4 strains are
primarily found in advanced stages of disease.142–146 Interest-
ingly, while the majority of M-tropic viruses utilize CCR5, it has
become apparent that not all R5 viruses are M-tropic.147

Therefore, while the interrelation between coreceptor specificity
and HIV tropism has to be taken into consideration, it cannot be
fully relied on to define certain viral isolates, and CCR5 tar-
geting alone may not be sufficient to stop HIV infection.

Cofactors and other components

Despite the identification of CD4 and CCR5 as the primary
receptor and coreceptor for MF infection, their binding to

HIV envelope proteins represents only a small portion of the
myriad of interactions that occur during viral interaction with
the cell surface. Multiple other surface proteins such as in-
tegrins and syndecans are also required for efficient HIV
infection of MFs and transmission to T cells, and can influ-
ence infection rates.148,149 In addition, other receptors can
replace CCR5 in the fusion step preceding entry into MFs.150

These alternate chemokine/chemoattractant receptors in-
clude CCR1, CCR2b, CCR3, CCR8, CX3CR1, CXCR6,
formyl peptide receptor 1, G protein-coupled receptor 1 (GPR1),
GPR15, apelin receptor, and chemokine-binding protein 2
(CCBP2),151,152 exponentially increasing the complexity of
HIV infection. Also, HIV can incorporate numerous host cell
surface molecules into its envelope during budding events,
each of which potentially enhance subsequent infectivity.153

Two highly relevant host-derived molecules, which have
been found in the viral envelope, are ICAM-1 as previously
mentioned and major histocompatibility complex class II
(MHC II), which bind to the receptors LFA-1 and CD4, re-
spectively. Integration of either of these surface proteins was
shown to increase the virulence of HIV in vitro as well as its
ability to replicate in target cells.86,154

It was also shown that the efficient virological synapse-
mediated transmission of HIV-1 from macrophages to T cells
in vitro was facilitated by interactions between ICAM-1 and
LFA-1, where antibodies against either protein decreased
transfer to T cells.155 Interestingly, forced expression of
the recently identified membrane-associated RING CH 8
(MARCH8) protein, a member of the RING (really interesting
new gene)-finger E3 ubiquitin ligases, was shown to block the
incorporation of MHC II into the viral envelope and thus de-
crease viral entry, and MARCH8 knockout in macrophages
increased the infectivity of progeny virions produced within
them.156 Moreover, these results highlight the novel role of
MARCH8 as a potent endogenous antiviral protein that may be
of interest for future research. Additional promiscuity of Env
proteins has also been reported, as gp120 was shown to bind to
macrophage mannose receptor (MMR), a C-type lectin re-
ceptor, and that MMR-bound HIV on MFs could be trans-
mitted to T cells. It is worth noting that this method of
transmission does not result in productive infection of MFs,
and a similar mechanism will be discussed later that involves a
C-type lectin receptor in HIV transmission by DCs.157

Another molecule that, when incorporated into the viral
envelope, can act as a significant cofactor in MF infection is
phospholipid phosphatidylserine (PS). A notable property of
PS is that it is a marker of apoptosis when present on the outer
leaflet of a cell.158 Because HIV-infected cells may express
more PS on their surface due to viral-induced apoptotic events,
PS can be incorporated into the HIV envelope, which then
influences the infection rates and tropism of progeny virions.
Experimental evidence for this was provided by in vitro studies
of primary monocyte-derived MFs and three differentiated
monocytic cell lines. In this study, it was demonstrated that
PS-containing vesicles blocked HIV infection without altering
viral binding to MFs, whereas phosphatidylcholine vesicles
did not.159 The ability of host-derived PS to influence HIV-1
infection led to the prediction that an unknown interacting
partner on target cells facilitated viral binding and/or fusion
through PS interactions leading to entry.

Also, secretory leukocyte protease inhibitor (SLPI) was
shown to inhibit HIV-1 infection of MFs independent of its
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antiprotease activity, and SLPI expression in the mucosa was
implicated in viral susceptibility.160–162 Ma et al. later re-
vealed that SLPI directly interacted with annexin A2, a PS-
binding moiety, and that it disrupted interaction between
annexin A2 and PS on the HIV-1 envelope in vitro.163

Moreover, the authors demonstrated that mAbs against or
RNA silencing of annexin A2 dramatically reduced HIV-1
infection of MFs similar to that of SLPI blocking, indicating
that annexin A2 was a cofactor for HIV-1 infection of MFs.
In addition, it was shown that HIV-1 produced from
monocyte-derived MFs that had been treated with annexin
A2 siRNA exhibited decreased infectivity.164 However,
small-molecule inhibitors of the annexin A2 heterotetramer
failed to block HIV infection of MFs in vitro, indicating that
the monomer form rather than the heterotetramer form may
be active in HIV infection (unpublished data). An overview
of HIV receptor usage on MFs is provided in Fig. 2.

Professional APCs

As previously mentioned, HIV-1 is most often sexually
transmitted across mucosal epithelial barriers, in which APCs
(Fig. 3), particularly DCs and DC subtypes, are highly
abundant.165–167 Depending on the localization and expres-
sion of different molecules such as C-type lectins,168 DCs are
commonly divided into subsets that include dermal DCs and
epidermal Langerhans cells (LCs), which have been exten-
sively investigated as HIV targets, reservoirs, and vectors for
viral dissemination.169,170 Therefore, the following sections
will distinguish between the roles played by DCs and LCs in
HIV entry and processing through different receptors and
pathways, which can lead to productive infections, viral
dissemination, as well as viral degradation used to limit viral
spread.

Dendritic cells

DCs are potent APCs found in the dermis as immature DCs
(iDCs), and on infection or capture of viruses, including but
not limited to HIV, can mature and migrate toward lymphoid
tissues to present viral antigens to T cells.171,172 Once bound
to DCs, the fate of HIV particles depends on several factors:
the particular DC subtype they are bound to, the state of DC
maturation, and the receptor through which they interact with
at the DC surface. Furthermore, HIV can be transmitted from
DCs to T cells through so-called trans-infection via immu-
nological synapse formation occurring independent of HIV
replication.173–176 However, transmission to T cells can also
occur by DCs productively infected with HIV in a process
known as cis-infection,177 and this difference is largely de-
termined by the maturation state of the DC.178,179 Although
DCs express both CXCR4 and CCR5, only R5 strains were
shown to efficiently replicate in DCs, thus contributing to the
high proportion of R5 variants present during sexual trans-
mission.180 Below, different pathways of HIV entry and
processing in DCs will be discussed in more detail.

CD4 and coreceptor usage in DCs

Primary peripheral blood iDCs were shown to have the
highest surface expression of CCR5 among different leuko-
cyte subsets, but had low CXCR4 expression; however, on
in vitro maturation, DCs had dramatically increased CXCR4

expression, although HIV itself was not able to induce sig-
nificant activation.181 Also, it was shown that iDCs expressed
the primary HIV binding receptor, CD4, at low levels, but
these levels likely remained above the threshold to permit
initial gp120 interaction and viral entry. Furthermore, it was
demonstrated that ex vivo-isolated myeloid DCs were more
susceptible to an R5 isolate, whereas donor-matched plas-
macytoid DCs were more susceptible to an X4 isolate, further
suggesting the differential expression of coreceptors on the
surface of DC subsets.182 Moreover, R5 isolates replicate
readily in iDCs, while mature DCs transmit both R5 and X4
isolates to T cells.183 Taken together, these results suggest
that DC maturation status and resultant chemokine receptor
profile have a major impact on the efficiency of infection by
different HIV variants. Other chemokine coreceptors,

FIG. 3. Summary of receptors used by HIV to enter pro-
fessional APCs (i.e., DCs and LCs). CD4 is a primary re-
ceptor for gp120, while CCR5 or CXCR5 can act as
coreceptors. Entry through these pathways can yield pro-
ductive infections. Alternatively, HIV has been shown to
interact with the C-type lectin receptors DC-SIGN, DCIR,
and langerin at the surface of DCs and LCs. Association
with these receptors can result in viral transmission to T
cells via trans-infection, or potentially in viral degradation.
APC, antigen-presenting cell; CCR5, C-C chemokine re-
ceptor type 5; CD4, cluster of differentiation 4; CXCR5,
C-X-C chemokine receptor type 5; DCs, dendritic cells;
DCIR, DC immunoreceptor; DC-SIGN, DC-specific ICAM-
3-grabbing nonintegrin; LCs, Langerhans cells; HIV, human
immunodeficiency virus. (Color image is available at www
.liebertpub.com/apc).
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including CCR3, CCR8, CCR9, and CXCR6, have also been
implicated in HIV entry into DC.177,184 Although the CD4
and coreceptor pathways can allow DCs to be infected by
HIV via canonical membrane fusion mechanisms, several
factors are able to impede HIV from efficiently replicating in
these cells, potentially explaining their low infectivity com-
pared to T cells.185 For example, tripartite motif-containing
protein 5 alpha (TRIM5a) and sterile a motif and HD
domain-containing protein 1 (SAMHD1) both interfere with
the HIV reverse transcription process within DCs.186,187

Since the activation status of DCs contributes both to HIV
transmission to T cells and anti-HIV immune responses, DC-
targeted HIV vaccine strategies have focused on activating
DCs and improving DC function to elicit anti-HIV cellular
immunity.188

DC-specific ICAM-3-grabbing nonintegrin promotes
HIV trans-infection

DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is
a C-type lectin receptor highly expressed on the surface of
DCs that binds to and cointernalizes with HIV-1 gp120.189

Importantly, DC-SIGN does not lead to canonical HIV entry,
but rather promotes trans-infection of T cells by trapping
HIV on the surface or within endocytic vesicles where their
infectivity is retained or augmented.189,190 This facilitates
viral transmission in trans from mature DCs to resting T cells
in lymphoid organs through high-affinity interactions be-
tween DC-SIGN on DCs and ICAM-3 on the T-cell sur-
face.191 Interestingly, the three-dimensional structure of
DC-SIGN revealed that the particular interaction with ICAM-
3 occurs through a binding site distinct from that of the DC-
SIGN-gp120 interaction site.192 By exploiting this alternative
receptor, HIV persists in a highly infective state due to sta-
bilization mechanisms and acts as a passenger on migrating
DCs to get from the initial site of exposure in the periphery to
its target site of infection in lymphoid tissues.189

In a more recent study, it was shown that DC-SIGN en-
hances HIV infection not only by promoting viral dissemi-
nation to T cells but also by increasing CD4-gp120 affinity.
Specifically, it was shown that soluble variants of gp120 had a
higher affinity to CD4 in the presence of soluble DC-SIGN via
surface plasmon resonance analysis with immobilized HIV-1
gp140 molecules (soluble variants of gp120).193 Moreover,
the authors showed that the affinity of the b12 neutralizing
mAb, containing an overlapping gp120 binding site that
competes with CD4,194 was enhanced by DC-SIGN, provid-
ing further evidence that this receptor increases the exposure
of the CD4-gp120 binding site. Recently, lactoferrin, a protein
found in colorectal mucus, was shown to bind to DC-SIGN
and block HIV-1 trans-infection of both R5 and X4 strains,
acting as a natural barrier of HIV-1 infection.195 Despite these
studies indicating a role for DC-SIGN in trans-infection,
Burleigh et al. demonstrated that DC-SIGN-mediated HIV
internalization was dispensable for trans-enhancement
through the use endocytosis-defective DC-SIGN, and the
authors further suggested that DC-SIGN cooperates with
HIV entry receptors to facilitate cis-infection by which new
viral progeny from DC contribute to HIV dissemination to T
cells.196 Therefore, future studies are needed to clarify these
controversies and to determine if DC-SIGN is a viable target
to control HIV during the early stages of pathogenesis.

Another C-type lectin receptor similar to DC-SIGN that can
act as an attachment factor for HIV is the DC immunoreceptor
(DCIR), although recently it was shown that DC-SIGN played
a stronger role than DCIR in trans-infection of a broader range
of isolates.197 Moreover, DC-SIGN is downregulated upon
DC activation, while trans-infection is strongly enhanced via
a glycoprotein-independent capture pathway that involves
sialyllactose-containing membrane gangliosides, which was
recently shown to be mediated by sialic acid-binding Ig-like
lectin 1 (siglec-1 or CD169) on mature DCs.198 Hence,
siglec-1 represents yet another target to block DC-mediated
trans-infection of T cells. HIV-1 opsonization by comple-
ment proteins has also been shown to enhance HIV entry into
DCs via DC-SIGN and complement receptor 3 (CR3).199,200

Moreover, complement opsonized HIV-1 (C-HIV) interac-
tions with CR3 may be part of an immune escape mechanism
utilized by the virus to establish infection in the host, as CR3
engagement of C-HIV decreased inflammatory responses by
DCs in vitro.201

Langerhans cells

Since their discovery in 1868 by Paul Langerhans,202 LCs
have been extensively investigated in relation to viruses be-
cause of their proximity to pathogen entry portals of the epi-
dermis and mucosal epithelia, including the ectocervix, vagina,
and foreskin.203,204 This makes LC likely to be the first immune
cell to encounter HIV during sexual transmission,205 and they
are the only resident cell of the epithelium that harbor pro-
ductive infections.206,207 Hence, it is not surprising that LCs are
readily infected via the canonical CD4 and multiple coreceptor
pathways.208,209 While it has been demonstrated that nonpro-
ductive HIV entry into LCs results in virions remaining within
the cytoplasm, eventually contributing to productive infection
of T cells in vivo,210,211 LCs have also been implicated in a
protective role against HIV in which the virus is degraded in
LC-specific organelles known as Birbeck granules.212 In light
of these different roles, both the HIV transmission and de-
struction pathways will be discussed below.

CD4 and coreceptor usage in LCs

LCs are known to express both the CD4 receptor and the
CCR5 coreceptor,208,213 and are therefore vulnerable to R5
strains.214 Although it has also been reported that some LCs
express functional levels of both CXCR4 and CCR5 cor-
eceptors and thus can be infected by both X4 and R5
strains.209,215 Particularly, it was shown that 9% of fresh LCs
isolated and purified from the epidermis expressed CXCR4
on the cell surface and 16% expressed CCR5 (95% expressed
CD4), and the expression of these coreceptors was signifi-
cantly increased on maturation.209 Moreover, mature LCs
were susceptible to both R5 and X4 variants. In a more recent
study utilizing an ex vivo tissue model, primary LCs were
infected by both R5 and X4 strains, but only R5 strains were
selectively transmitted by immature LCs to T cells, which
was dependent on de novo progeny in cis-infections; how-
ever, activation facilitated the transmission of both R5 and
X4 variants.215 Therefore, given the specific location of these
cells, it may be advantageous to target both CCR5 and
CXCR4 through topically applied microbicides to prevent
LC-mediated HIV transmission to T cells.
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Langerin-mediated HIV degradation

Just as DCs can be defined by their expression of the
C-type lectin receptor DC-SIGN, LCs exclusively express a
C-type lectin receptor known as langerin, which is also
structurally involved in the formation of the aforemen-
tioned Birbeck granules.216,217 Birbeck granules are organ-
elles found only in LCs and are speculated to be involved in
the antigen-processing pathway.218,219 Moreover, after entry
into LCs, HIV virions have been detected in Birbeck granules
by immunoelectron microscopy, in what was determined to
be through a degradation pathway.212 Receptor binding as-
says coupled with flow cytometry analysis demonstrated that
langerin interacted with soluble gp120 with a higher avidity
than that of DC-SIGN,168 and mAbs specifically designed to
disrupt the langerin-gp120 interaction enhanced HIV infec-
tion and transmission to T cells.212 A later study further
corroborated the protective role of langerin in HIV infection
by showing that HIV virions were taken up and destroyed in
langerin-containing Birbeck granules.220

Taken together, these results led to the conclusion that
langerin-mediated entry and degradation in Birbeck granules
act as a natural barrier for HIV, as this mechanism prevents
transmission to T cells. However, future studies are required
to resolve the inconsistencies between these results and the
aforementioned studies demonstrating that LCs are readily
infected by HIV and are involved in viral dissemination, al-
though one may speculate that experimental viral load may
have caused a saturation of the langerin route and allowed
alternative interactions leading to productive infection. If
langerin is determined to be protective, preventative strate-
gies could be used to enhance its expression and subsequently
enhance HIV degradation in the epithelium. An overview of
HIV receptor usage on DCs and LCs is provided in Fig. 3.

Other Immune Cells

B cells

While it is well established that HIV-1 infection leads to the
progressive depletion of CD4+ T cells, infection also negatively
impacts B cells in the humoral arm of adaptive immunity (re-
viewed in Moir and Fauci221). Although little evidence sug-
gests that HIV can productively infect B cells, strong evidence
has shown that HIV can bind to B cells in vivo through inter-
actions with the complement receptor CD21,222 and that this
interaction promotes trans-infection of T cells in peripheral
blood and lymphoid tissues.223 A similar mechanism of HIV
transmission has been suggested for follicular dendritic cells
expressing CD21.224 Interestingly, DC-SIGN expression on
activated B cells was also shown to enhance trans-infection of
T cells.225 Despite the ability of CD21 to promote trans-
infection, a high proportion of B cells lose CD21 expression
during HIV infection,226 and this may be associated with B-cell
dysfunction, a common comorbidity during HIV infection.

Granulocytes

Granulocytes, primarily neutrophils, eosinophils, and ba-
sophils, were recently shown to express a variety of HIV-1
attachment factors.227 Particularly, basophils expressed DC-
SIGN, DCIR, heparan sulfate proteoglycan, and a4b7 in-
tegrin and exhibited the most efficient capture of HIV-1 on
their cell surface among all granulocytes. Neutrophils ex-

pressed DCIR and eosinophils expressed a4b7 integrin, but
showed limited and no virus-binding capacity, respectively.
Accordingly, basophils, but not neutrophils and eosinophils,
efficiently facilitated trans-infection of CD4+ T cells,227 and
thus, strategies designed to prevent basophil-mediated viral
capture and transfer may represent a novel approach to
control HIV infection.

Summary and Perspectives

In the current review, we underlined the important recep-
tors, coreceptors, and cofactors involved in HIV tropism for
different immune cells, and highlighted that the location of
HIV infection plays an important role in which immune cells
are targeted. In addition, different therapeutic approaches
that have targeted some of these factors were discussed. A
summary of the different molecules associated with HIV
entry and infection of different immune cells is provided in
Figs. 1–3, and compounds that have been used to target them
are provided in Table 1. In the perpetual battle against HIV,
immune escape mechanisms in addition to the multitude and
promiscuity of entry mechanisms, all may explain why a cure
for AIDS has remained elusive. Among the immune escape
mechanisms used by HIV, the high mutation rate and con-
formational fluctuations of gp120 stand out, as even slight
modifications in its structure/conformation can modify neu-
tralizing antibody recognition and receptor binding228 and
can allow for HIV receptor/coreceptor use in an inhibitor-
resistant manner.229 Moreover, as an enveloped virus, HIV
can take advantage of cellular budding events to incorporate
host molecules into its outer leaflet to enhance infectivity.159

Finally, as the number of surface molecules that HIV ex-
ploits to efficiently enter target cells continues to grow, it
becomes apparent that therapies aimed at multiple infectious
pathways simultaneously with antiretroviral (ARV) drugs
that inhibit reverse transcription may ultimately prove to
be the best preventative/therapeutic strategy. Combinations
of ARVs are currently used in highly active antiretroviral
therapy for HIV+ individuals,230 but topical preventative
trials to date have been based on a single ARV.231–233 More
recently, however, a preclinical study with tissue explants
demonstrated that ARVs in combination with the CCR5 in-
hibitor maraviroc could be used as an effective pre-exposure
prophylactic (PrEP) strategy in line with newer PrEP ap-
proaches.234 In conclusion, elucidating the mechanisms and
identifying the specific molecules by which HIV preferen-
tially exploits different receptors, coreceptors, and cofactors
on certain immune cells provide a foundation for developing
novel strategies to prevent AIDS, which remains one of the
deadliest diseases in the world.
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