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The genomic evolution inherent to cancer relates directly to a
renewed focus on the voluminous next-generation sequencing data
and machine learning for the inference of explanatory models of
how the (epi)genomic events are choreographed in cancer initiation
and development. However, despite the increasing availability of
multiple additional -omics data, this quest has been frustrated by
various theoretical and technical hurdles, mostly stemming from the
dramatic heterogeneity of the disease. In this paper, we build on
our recent work on the “selective advantage” relation among driver
mutations in cancer progression and investigate its applicability to
the modeling problem at the population level. Here, we introduce
PiCnIc (Pipeline for Cancer Inference), a versatile, modular, and cus-
tomizable pipeline to extract ensemble-level progression models
from cross-sectional sequenced cancer genomes. The pipeline has
many translational implications because it combines state-of-the-
art techniques for sample stratification, driver selection, identifica-
tion of fitness-equivalent exclusive alterations, and progression
model inference. We demonstrate PiCnIc’s ability to reproduce much
of the current knowledge on colorectal cancer progression aswell as
to suggest novel experimentally verifiable hypotheses.

cancer evolution | selective advantage | Bayesian structural inference |
next generation sequencing | causality

Since the late 1970s evolutionary dynamics, with its interplay
between variation and selection, has progressively provided the

widely accepted paradigm for the interpretation of cancer emer-
gence and development (1–3). Random alterations of an organism’s
(epi)genome can sometimes confer a functional selective advantage*
to certain cells, in terms of adaptability and ability to survive and
proliferate. Because the consequent clonal expansions are naturally
constrained by the availability of resources (metabolites, oxygen,
etc.), further mutations in the emerging heterogeneous tumor
populations are necessary to provide additional fitness of different
kinds that allow survival and proliferation in the unstable micro-
environment. Such further advantageous mutations will eventually
allow some of their subclones to outgrow the competing cells, thus
enhancing a tumor’s heterogeneity as well as its ability to overcome
future limitations imposed by the rapidly exhausting resources.
Competition, predation, parasitism, and cooperation have been
in fact theorized as copresent among cancer clones (4).
In the well-known vision of Hanahan and Weinberg (5, 6), the

phenotypic stages that characterize this multistep evolutionary
process are called hallmarks. These can be acquired by cancer cells
in many possible alternative ways, as a result of a complex biological
interplay at several spatiotemporal scales that is still only partially
deciphered (7). In this framework, we distinguish “alterations”
driving the hallmark acquisition process (i.e., drivers) by activating
oncogenes or inactivating tumor suppressor genes, from those that
are transferred to subclones without increasing their fitness (i.e.,
passengers) (8). Driver identification is a modern challenge of
cancer biology, because distinct cancer types exhibit very different

combinations of drivers, some cancers display mutations in hun-
dreds of genes (9), and the majority of drivers are mutated at low
frequencies (“long tail” distribution), hindering their detection only
from the statistics of the recurrence at the population level (10).
Cancer clones harbor distinct types of alterations. The somatic (or

genetic) ones involve either few nucleotides or larger chromosomal
regions. They are usually cataloged as mutations, that is, single nu-
cleotide or structural variants at multiple scales (insertions, deletions,
inversions, or translocations)—of which only some are detectable as
copy number alterations (CNAs), most prevalent in many tumor types
(11). Also epigenetic alterations, such as DNA methylation and
chromatin reorganization, play a key role in the process (12). The
overall picture is confounded by factors such as genetic instability (13),
tumor–microenvironment interplay (14, 15), and the influence of
spatial organization and tissue specificity on tumor development (16).†
Significantly, in many cases, distinct driver alterations can

damage in a similar way the same functional pathway, leading to
the acquisition of new hallmarks (17–21). Such alterations in-
dividually provide an equivalent fitness gain to cancer cells, because
any additional alteration hitting the same pathway would provide no
further selective advantage. This dynamic results in groups of driver
alterations that form mutually exclusive patterns across tumor
samples from different patients (i.e., the sets of alterations that are
involved in the same pathways tend not to occur mutated together).
This phenomenon has significant translational consequences.

Significance

A causality-based machine learning Pipeline for Cancer Inference
(PiCnIc) is introduced to infer the underlying somatic evolution
of ensembles of tumors from next-generation sequencing data.
PiCnIc combines techniques for sample stratification, driver se-
lection, and identification of fitness-equivalent exclusive alter-
ations to exploit an algorithm based on Suppes’ probabilistic
causation. The accuracy and translational significance of the re-
sults are studied in detail, with an application to colorectal
cancer. The PiCnIc pipeline has been made publicly accessible for
reproducibility, interoperability, and future enhancements.
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An immediate challenge posed by this state of affairs is the
dramatic heterogeneity of cancer, both at the intertumor and at
the intratumor levels (22). The former manifests as different
patients with the same cancer type that can display few common
alterations. This observation led to the development of tech-
niques to stratify tumors into subtypes with different genomic
signatures, prognoses, and response to therapy (23). The latter
form of heterogeneity refers to the observed genotypic and
phenotypic variability among the cancer cells within a single
neoplastic lesion, characterized by the coexistence of more than
one cancer clones with distinct evolutionary histories (24).
Cancer heterogeneity poses a serious problem from the di-

agnostic and therapeutic perspective because, for instance, it is
now acknowledged that a single biopsy might not be represen-
tative of other parts of the tumor, hindering the problem of
devising effective treatment strategies (4). Therefore, presently
the quest for an extensive etiology of cancer heterogeneity and
for the identification of cancer evolutionary trajectories is central
to cancer research, which attempts to exploit the massive amount
of sequencing data available through public projects such as The
Cancer Genome Atlas (TCGA) (25).
Such projects involve an increasing number of cross-sectional

(epi)genomic profiles collected via single biopsies of patients with
various cancer types, which might be used to extract trends of cancer
evolution across a population of samples.‡ Higher-resolution data
such as multiple samples collected from the same tumor (24), as

well as single-cell sequencing data (26), might be complementarily
used to face the same problem within a specific patient. However,
the lack of public data coupled to the problems of accuracy and
reliability currently prevents a straightforward application (27).
These different perspectives lead to the different mathematical

formulations of the problem of inferring a cancer progression model
from genomic data and a need for versatile computational tools to
analyze data reproducibly—two intertwined issues examined at
length in this paper (28). Indeed, such models and tools can be fo-
cused either on characteristics of a population, that is, ensemble-level,
or on multiple clonality in a single patient. In general, both problems
deal with understanding the temporal ordering of somatic alterations
accumulating during cancer evolution but use orthogonal perspec-
tives and different input data; see Fig. 1 for a comparison. This paper
proposes a computational approach to efficiently deal with various
aspects of the problem at a patient population level, for now.

Ensemble-Level Cancer Evolution
It is thus desirable to extract a probabilistic graphical model
explaining the statistical trend of accumulation of somatic alterations
in a population of n cross-sectional samples collected from pa-
tients diagnosed with a specific cancer. To normalize against the
experimental conditions in which tumors are sampled, we only
consider the list of alterations detected per sample—thus, as 0/1
Bernoulli random variables.
Much of the difficulty lies in estimating the true and unknown

trends of selective advantage among genomic alterations in the data
from such observations. This hurdle is not unsurmountable, if we
constrain the scope to only those alterations that are persistent
across tumor evolution in all subclonal populations, because it
yields a consistent model of a temporal ordering of mutations.
Therefore, epigenetic and trascriptomic states, such as hyper- and

Fig. 1. (A) Problem statement. (A, Left) Inference of ensemble-level cancer progression models from a cohort of n independent patients (cross-sectional). By
examining a list of somatic mutations or CNAs per patient (0/1 variables) we infer a probabilistic graphical model of the temporal ordering of fixation and accu-
mulation of such alterations in the input cohort. Sample size and tumor heterogeneity complicate the problem of extracting population-level trends, because this
requires accounting for patients’ specificities such as multiple starting events. (A, Right) For an individual tumor, its clonal phylogeny and prevalence is usually
inferred from multiple biopsies or single-cell sequencing data. Phylogeny-tree reconstruction from an underlying statistical model of reads coverage or depths
estimates alterations’ prevalence in each clone, as well as ancestry relations. This problem is mostly worsened by the high intratumor heterogeneity and sequencing
issues. (B) The PiCnIc pipeline for ensemble-level inference includes several sequential steps to reduce tumor heterogeneity, before applying the CAPRI (40) algo-
rithm. Available mutation, expression, or methylation data are first used to stratify patients into distinct tumor molecular subtypes, usually by exploiting clustering
tools. Then, subtype-specific alterations driving cancer initiation and progression are identified with statistical tools and on the basis of prior knowledge. Next is the
identification of the fitness-equivalent groups of mutually exclusive alterations across the input population, again done with computational tools or biological
priors. Finally, CAPRI processes a set of relevant alterations within such groups. Via bootstrap and hypothesis testing, CAPRI extracts a set of “selective advantage
relations” among them, which is eventually narrowed down via maximum likelihood estimation with regularization (with various scores). The ensemble-level
progression model is obtained by combining such relations in a graph, and its confidence is assessed via various bootstrap and cross-validation techniques.

‡At the time of this writing, in TCGA, sample sizes per cancer type are in the order of a
few hundred. Such numbers are expected to increase in the near future, with a clear
benefit for all the statistical approaches to analyze cancer data that currently lack a
proper background of data.
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hypomethylations or over- and underexpression, could only be used,
provided that they are persistent through tumor development (29).
Historically, the linear model of colorectal tumor progression by

Vogelstein is an instance of an early solution to the cancer pro-
gression problem (30). That approach was later generalized to ac-
commodate tree models of branched evolution (31–34) and later
further generalized to the inference of directed acyclic graph models,
with several distinct strategies (35–38). We contributed to this re-
search program with the Cancer Progression Extraction with Single
Edges (CAPRESE) and the Cancer Progression Inference (CAPRI)
algorithms, which are currently implemented in TRONCO, an
open-source R package for translational oncology available in
standard repositories (39–41). Both techniques rely on Suppes’
theory of probabilistic causation to define estimators of selective
advantage (42), are robust to the presence of noise in the data,
and perform well even with limited sample sizes. The former
algorithm exploits shrinkage-like statistics to extract a tree model
of progression, and the latter combines bootstrap and maximum
likelihood estimation with regularization to extract general di-
rected acyclic graphs that capture branched, independent, and
confluent evolution. Both algorithms represent the current
state-of-the-art approach to this problem, because they outperform
others in speed, scale, and predictive accuracy.

Clonal Architecture in Individual Patients
A closely related problem addresses the detection of clonal sig-
natures and their prevalence in individual tumors, a problem
complicated by intratumor heterogeneity.
Even though this phylogenetic version of the progression in-

ference problem naturally relies on data produced from single-cell
sequencing assays (43, 44), the majority of approaches still make
use of bulk sequencing data, usually from multiple biopsies of the
same tumors (24, 45). Indeed, several approaches try to extract
the clonal signature of single tumors from allelic imbalance
proportions, a problem made difficult because sequenced sam-
ples usually contain a large number of cells belonging to a col-
lection of subclones resulting from the complex evolutionary
history of the tumor (46–55).
We keep the current work focused on the inference of pro-

gression models at the ensemble level.

The PiCnIc Pipeline
We report on the design, development, and evaluation of the
Pipeline for Cancer Inference (PiCnIc) to extract ensemble-
level cancer progression models from cross-sectional data (Fig.
1). PiCnIc is versatile, modular, and customizable; it exploits
state-of-the-art data processing and machine learning tools to
do the following:

i) identify tumor subtypes and then in each subtype;
ii) select (epi)genomic events relevant to the progression;
iii) identify groups of events that are likely to be observed as

mutually exclusive;
iv) infer progression models from groups and related data and

annotate them with associated statistical confidence.

All these steps are necessary to minimize the confounding
effects of intertumor heterogeneity, which are likely to lead to
wrong results when data are not appropriately preprocessed.§
In each stage of PiCnIc different techniques can be used, al-

ternatively or jointly, according to specific research goals, input
data, and cancer type. Prior knowledge can be easily accommo-
dated into our pipeline, as well as the computational tools dis-
cussed in the following subsections and summarized in Fig. 2. The
rationale is similar in spirit to workflows implemented by consortia
such as TCGA to analyze huge populations of cancer samples (56,
57). One of the main novelties of our approach is the exploitation
of groups of exclusive alterations as a proxy to detect fitness-
equivalent trajectories of cancer progression. This strategy is only
feasible by the hypothesis-testing features of the recently developed
CAPRI algorithm, an algorithm uniquely addressing this crucial
aspect of the ensemble-level progression inference problem (40).
In Results we study in detail a specific use case for the pipeline,

processing colorectal cancer (CRC) data from TCGA, where it
is able to rediscover much of the existing body of knowledge
about CRC progression. Based on the output of this pipeline,

Fig. 2. The PiCnIc pipeline. We do not provide a unique all-encompassing rationale to instantiate PiCnIc because all steps refer to a research area currently
under development, where the optimal approach is often dependent on the type of data available and prior knowledge about the cancer under study.
References are provided for each tool that can be used to instantiate PiCnIc: NMF (61), k-means, Gaussian mixtures, hierarchical/spectral clustering (62), NBS
(66), MutSigCV (68), OncodriveFM (69), OncodriveCLUST (70), MuSiC (71), Oncodrive-CIS (72), Intogen (73), Ratio (74), RME (75), MEMO (76), MUTEX (77),
Dendrix (78), MDPFinder (79), Multi-Dendrix (80), CoMEt (81), MEGSA (82), ME (83), CAPRI (40), CAPRESE (39), Oncotrees (31, 33), distance-based (32), mixtures
(34), CBN (35, 36), Resic (37), and BML (38).

§The genuine selectivity relationship sought to be inferred are subject to the vagaries of
Simpson’s paradox; it can change, or worst reverse, when we try to infer them from data
not suitably preprocessed. This effect (due to such paradox) manifests as data are sam-
pled from a highly heterogenous mixture of populations of cells (40). PiCnIc uses various
mechanisms to avoid these pitfalls. In this context, it should be pointed out that input
bulk sequencing data suffers also from intratumor heterogeneity issues, which are un-
fortunately intrinsic to the technology.
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we also propose several previously unidentified experimentally
verifiable hypotheses.

Reducing Intertumor Heterogeneity by Cohort Subtyping. In general,
for each of n tumors (patients) we assume relevant (epi)genetic
data to be available. We do not put constraints on data gathering
and selection, leaving the user to decide the appropriate “reso-
lution” of the input data. For instance, one might decide whether
somatic mutations should be classified by type or by location, or
aggregated. Or, one might decide to lift focal CNAs to the lower
resolution of cytobands or full arms [e.g., in a kidney cancer cohort
where very long CNAs are more common than focal events (58)].
These choices depend on data and on the overall understanding of
such alterations and their functional effects for the cancer under
study, and no single all-encompassing rationale may be provided.
With these data at hand, we might wish to identify cancer

subtypes in the heterogeneous mixture of input samples. In some
cases the classification can benefit from clinical biomarkers, such
as evidences of certain cell types (59), but in most cases we will
have to rely on multiple clustering techniques at once (see, e.g.,
refs. 56 and 57). Many common approaches cluster expression
profiles (60), often relying on nonnegative matrix factorization
techniques (61) or earlier approaches such as k-means, Gaussian
mixtures, or hierarchical/spectral clustering (see the review in ref.
62). For glioblastoma and breast cancer, for instance, mRNA
expression subtypes provide good correlation with clinical phe-
notypes (63–65). However, this stratification strategy is not al-
ways applicable [e.g., in CRC such clusters mismatch with survival
and chemotherapy response (63)]. Clustering of full exome mu-
tation profiles or smaller panels of genes might be an alternative,
as was shown for ovarian, uterine, and lung cancers (66, 67).
Using pipelines such as PiCnIc we expect that the resulting

subtypes will be routinely investigated, eventually leading to
distinct progression models characteristic of the population-level
trends of cancer initiation and progression.

Selection of Driver Events. In subtype detection, it becomes easier
to find similarities across input samples when more alterations
are available, because features selection gains precision. In progres-
sion inference, instead, one wishes to focus on m � n driver alter-
ations, which ensures also an appropriate statistical ratio between
sample size (n, here the subtype size) and problem dimension (m).
Multiple tools filter out driver from passenger mutations.

MutSigCV identifies drivers mutated more frequently than back-
ground mutation rate (68). OncodriveFM avoids such estimation
but looks for functional mutations (69). OncodriveCLUST scans
mutations clustering in small regions of the protein sequence (70).
MuSiC uses multiple types of clinical data to establish correlations
among mutation sites, genes, and pathways (71). Some other tools
search for driver CNAs that affect protein expression (72). All these
approaches use different statistical measures to estimate signs of
positive selection, and we suggest using them in an orchestrated
way, as done by platforms such as Intogen (73).
We anticipate that such tools will run independently on each

subtype, because driver genes will likely differ across them, mim-
icking the different molecular properties of each group of samples;
also, lists of genes produced by these tools might be augmented
with prior knowledge about tumor suppressors or oncogenes.

Fitness Equivalence of Exclusive Alterations. When working at the
ensemble level, identification of “groups of mutually exclusive”
alterations is crucial to derive a correct inference. This step of
PiCnIc is another attempt to resolve part of the intertumor
heterogeneity, because such alterations could lead to the same
phenotype (i.e., hence resulting in “equivalent” in terms of pro-
gression), despite being genotypically “alternative” (i.e., exclusive
across the input cohort). This information shall be used to detect
alternative routes to cancer progression that capture the specificities
of individual patients.
A plethora of recent tools can be used to detect groups of

fitness equivalent alterations, according to the data available for

each subtype: greedy approaches (74, 75) or their optimizations,
such as MEMO, which constrain search-space with network
priors (76). This strategy is further improved in MUTEX, which
scans mutations and focal CNAs for genes with a common
downstream effect in a curated signaling network and selects
only those genes that significantly contributes to the exclusivity
pattern (77). Other tools such as Dendrix, MDPFinder, Multi-
Dendrix, CoMEt, MEGSA, or ME use advanced statistics or
generative approaches without priors (78–83).
In such groups, we distinguish between hard and soft forms of

exclusivity, the former assuming strict exclusivity among alter-
ations, with random errors accounting for possible overlaps (i.e.,
the majority of samples do not share alterations from such
groups), the latter admitting cooccurrences (i.e., some samples
might have common alterations, within a group) (77).
CAPRI is currently the only algorithm that incorporates this

type of information in inferring a model. Each of these groups is
in fact associated with a “testable hypothesis” written in the well-
known language of propositional Boolean formulas.¶ Consider
the following example: We might be informed that APC and
CTNNB1 mutations show a trend of soft exclusivity in our cohort
(i.e., some samples harbor both mutations), but the majority just
one of the two mutated genes. Because such mutations lead to
β-catenin deregulation (the phenotype), we might wonder
whether such a state of affairs could be responsible for pro-
gression initiation in the tumors under study. An affirmative
response would equate, in terms of progression, the two muta-
tions. To test this hypothesis, one may spell out formula APC ∨
CTNNB1 to CAPRI, which means that we are suggesting to the
inference engine that, besides the possible evolutionary trajec-
tories that might be inferred by looking at the two mutations as
independent, trajectories involving such a “composite” event
shall be considered as well. It is then up to CAPRI to decide
which, of all such trajectories, is significant, in a statistical sense.
In general, formulas allow users to test general hypotheses

about complex model structures involving multiple genes and al-
terations. These are useful in many cases: for instance, where we
are processing samples that harbor homozygous losses or inacti-
vating mutations in certain genes (i.e., equally disruptive genomic
events), or when we know in advance that certain genes are
controlling the same pathway, and we might speculate that a single
hit in one of those decreases the selection pressure on the others.
We note that, with no hypothesis, a model with such alternative
trajectories cannot be analyzed, due to various computational
limitations inherent to the inferential algorithms (see ref. 40).
From a practical point of view, CAPRI’s formulas/hypotheses-

testing features “help” the inference process but do not “force” it
to select a specific model (i.e., the inference is not biased). In this
sense, the trajectories inferred by examining these composite
model structures (i.e., the formulas) are not given any statistical
advantage for inclusion in the final model. However, despite a
natural temptation to generate as many hypotheses as possible, it
is prudent to always limit the number of hypotheses according to
the number of samples and alterations. Note that this approach
can also be extended to accommodate, for instance, cooccurrent
alterations in significantly mutated subnetworks (84, 85).

Progression Inference and Confidence Estimation.We use CAPRI to
reconstruct cancer progression models of each identified mo-
lecular subtype, provided that there exist a reasonable list of
driver events and the groups of fitness-equivalent exclusive al-
terations. Because currently CAPRI represents the state of the
art, and supports complex formulas for groups of alterations
detected in the earlier PiCnIc step, it was well-suited for the task.
CAPRI’s input is a binary n× ðm+ kÞ matrix M with n sam-

ples (a subtype size), m driver alteration events (0/1 Bernoulli

¶There, logical connectives such as ⊕ (the logical “xor”) act as a proxy for hard exclusivity,
and ∨ (the logical “disjunction”) for soft exclusivity. Besides from exclusivity groups,
other connectives such as logical conjunction can be used.
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random variables), and k testable formulas. Each sample in M is
described by a binary sequence: the 1’s denote the presence of
alterations. CAPRI first performs a computationally fast scan of
M to identify a set S of plausible selective advantage relations
among the driver alterations and the formulas; then, it reduces S
to the most relevant ones, Ŝ ⊂S. Each relation is represented as
an edge connecting drivers/formulas in a graphical model, which
shall be termed the Suppes–Bayes causal network. This network
represents the joint probability distribution# of observing a set of
driver alterations in a cancer genome, subject to constraints
imposed by Suppes’ probabilistic causation formalism (42).
Set S is built by a statistical procedure. Among any pair of

input drivers/formulas x and y, CAPRI postulates that x→ y∈S
could be a selective advantage relation with “x selecting for y” if
it estimates that two conditions hold:

i) “x is earlier than y”;
ii) “x’s presence increases the probability of observing y.”

Such claims, grounded in Suppes’ theory of probabilistic cau-
sation, are expressed as inequalities over marginal and condi-
tional distributions of x and y. These are assessed via a standard
Mann–Withney U test after the distributions are estimated from
a reasonable number (e.g., 100) of nonparametric bootstrap
resamples of M (SI Appendix). CAPRI’s increased performance
over existing methods can be motivated by the reduction of the
state space within which models are searched, via S.
Optimization of S is central to our tolerance to false positives

and negatives in Ŝ. We would like to select only the minimum
number of relations that are true and statistically supported and
build our model from those. CAPRI’s implementation in TRONCO
(41) selects a subset by optimizing a score function that assigns
to a model a real number equal to its log likelihood (probability
of generating data for the model) minus a penalty term for
model complexity—a regularization term increasing with Ŝ’s
size, and hence penalizing overly complex models. It is a stan-
dard approach to avoid overfitting and usually relies on the
Akaike or the Bayesian information criterion (AIC or BIC) as
regularizers. Both scores are approximately correct; AIC is
more prone to overfitting but also likely to provide good pre-
dictions from data and is better when false negatives are more
misleading than positive ones. BIC is more prone to underfitting
errors, thus more parsimonious and better in the opposite di-
rection. As is often done, we suggest approaches that combine but
distinguish which relations are selected by BIC versus AIC. Details
of the algorithm are provided in the SI Appendix.

Statistical Confidence of a Model. In vitro and in vivo experiments
provide the most convincing validation for the newly suggested
selective advantage relations and hypotheses, such a validation
scheme is out of reach in some cases.
Nonetheless, statistical validation approaches can be used al-

most universally to assess the confidence of edges, parent sets,
and whole models, either via hypothesis testing or bootstrap and
cross-validation scores for graphical models. We briefly discuss
approaches that are implemented in TRONCO and refer to the
SI Appendix for additional details.
First, CAPRI builds S by computing two P values per edge, for

the confidence in conditions i and ii. In addition, for each edge
x→ y, it computes a third P value via hypergeometric testing
against the hypothesis that the cooccurrence of x and y is due to

chance. These P values measure confidence in the direction of
each edge and the amount of statistical dependence among x and y.
Second, for each model inferred with CAPRI we can estimate

(a posteriori) how frequently our edges would be retrieved if we
resample from our data (nonparametric bootstrap), or from the
model itself, assuming its correctness (parametric bootstrap)
(86). Also, we can measure the bias in CAPRI’s construction of S
due to the random procedure which estimates the distributions
in conditions i and ii (statistical bootstrap).
Third, scores can be computed to quantify the consistency for

the model against bias in the data and models. For instance,
nonexhaustive k-fold cross-validation can be used to compute the
entropy loss for the whole model, and the prediction and pos-
terior classification errors for each edge or parent set (87).

Results
Evolution in a Population of Microsatellite Unstable/Microsatellite
Stable Colorectal Tumors. It is common knowledge that CRC is
a heterogeneous disease comprising different molecular entities.
Indeed, it is currently accepted that colon tumors can be classi-
fied according to their global genomic status into two main types:
microsatellite unstable tumors (MSI), further classified as high
or low, and microsatellite stable (MSS) tumors (also known as
tumors with chromosomal instability). This taxonomy plays a
significant role in determining pathologic, clinical, and biological
characteristics of CRC tumors (88). Regarding molecular pro-
gression, it is also well established that each subtype arises from a
distinctive molecular mechanism. Whereas MSS tumors gener-
ally follow the classical adenoma-to-carcinoma progression de-
scribed in the seminal work by Vogelstein and Fearon (89), MSI
tumors result from the inactivation of DNA mismatch repair
genes such as MLH-1 (90).
With the aid of the TRONCO package, we instantiated PiCnIc

to process colorectal tumors freely available through the TCGA
project COADREAD (“Human Colon and Rectal Cancer”) (56)
(SI Appendix, Fig. S1) and inferred models for the MSS and MSI-
HIGH tumor subtypes (shortly denoted MSI) annotated by the
consortium. In doing so, we used a combination of background
knowledge produced by TCGA and new computational predic-
tions; to a different degree, some knowledge comes from manual
curation of data and other from tools mentioned in PiCnIc’s
description (Fig. 2). Data and exclusivity groups for MSI tumors
are shown in Fig. 3; the analogous information for MSS tumors is
provided as SI Appendix, Figs. S4 and S5.
For the models inferred, which are shown in Figs. 4 and 5, we

evaluated various forms of statistical confidence measured as
P values, bootstrap scores (in what follows, npb denotes non-
parametric bootstrap and the closer to 100 the better), and cross-
validation statistics reported in the SI Appendix and Dataset S1.
Many of the postulated selective advantage relations (i.e., model
edges) have very strong statistical support for COADREAD
samples, although events with similar marginal frequency may
lead to ambiguous imputed temporal ordering (i.e., the edge di-
rection). In general, we observed that overall the estimates are
slightly better in the MSS cohort (entropy loss <1% versus 3.8%),
which is expected given the difference in sample size of the two
datasets (152 versus 27 samples); see the SI Appendix for details.

Interpretation of the Models. Our models capture the well-known
features distinguishing MSS and MSI tumors: for the former,
APC, KRAS, and TP53mutations as primary events together with
chromosomal aberrations; for the latter, BRAF mutations and
lack of chromosomal alterations. Of all 33 driver genes, 15 are
common to both models (e.g., APC, BRAF, KRAS, NRAS, TP53,
and FAM123B, among others, mapped to pathways such as
WNT, MAPK, apoptosis, or activation of T-cell lymphocytes),
although in different relationships (position in the model),
whereas new (previously unimplicated) genes stood out from our
analysis and deserve further research.
MSS. In agreement with the known literature, in addition to
KRAS, TP53, and APC as primary events, we identify PTEN as a

#Technically, for a set ofm alterations modeled by variables x1, . . . , xm, such a network is a
graphical model representing the factorization of the joint distribution—Pðx1, . . . xmÞ—
of observing any of the alterations in a genome (i.e., xi = 1). This factorization is made
compact as the model encodes the statistical dependencies in its structure via

Pðx1, . . . , xmÞ= ∏
m

i=1
Pðxi jπiÞ, where πi = fxj jxj →xi ∈ Ŝg are the “parents” of the i-th node.

These are those from which the presence of the i-th alteration is predicted. In our
approach these edges are the pictorial representation of the selective advantage rela-
tions where the alterations in πi select for xi.
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late event in carcinogenesis, as well as NRAS and KRAS con-
verging in IGF2 amplification, the former being “selected by”
TP53 mutations (npb 49%), the latter “selecting for” PIK3CA
mutations (npb 81%). The leftmost portion of the model links
many WNT genes, in agreement with the observation that mul-
tiple concurrent lesions affecting such pathway confer selective
advantage. In this respect, our model predicts multiple routes for
the selection of alterations in SOX9 gene, a transcription factor
known to be active in colon mucosa (91). Its mutations are di-
rectly selected by APC/CTNNB1 alterations (although with low
npb score), by ARID1A (npb 34%), or by FBXW7mutations (npb
49%), an early mutated gene that both directly, and in a re-
dundant way via CTNNB1, relates to SOX9. The SOX family of
transcription factors have emerged as modulators of canonical
WNT/β-catenin signaling in many disease contexts (92). Also
interestingly, FBXW7 has been previously reported to be in-
volved in the malignant transformation from adenoma to carci-
noma (93). The rightmost part of the model involves genes from
various pathways, and outlines the relation between KRAS and
the PI3K pathway. We indeed find selection of PIK3CA muta-
tions by KRAS ones, as well as selection of the whole MEMO
module (npb 64%), which is responsible for the activation of the
PI3K pathway (56). SMAD4 proteins relate either to KRAS (npb
34%) and FAM123B (through ATM) and TCF7L2 converge in
DKK2 or DKK4 (npb 81, 17, and 34%).
MSI-HIGH. In agreement with the current literature, BRAF is the
most commonly mutated gene in MSI tumors (94). CAPRI
predicted convergent evolution of tumors harboring FBXW7 or
APC mutations toward deletions/mutations of the NRAS gene
(npb 21, 28, and 54%), as well as selection of SMAD2 or SMAD4
mutations by FAM123B mutations (npb 23 and 46%), for these
tumors. Relevant to all MSI tumors seems again the role of the
PI3K pathway. Indeed, a relation among APC and PIK3CA
mutations was inferred (npb 66%), consistent with recent ex-
perimental evidences pointing at a synergistic role of these mu-
tations, which cooccur in the majority of human CRCs (95).
Similarly, we find consistently a selection trend among APC and
the whole MEMO module (npb 48%). Interestingly, both mu-

tations in APC and ERBB3 select for KRAS mutations (npb 51
and 27%), which might point to interesting therapeutic impli-
cations. In contrast, mutations in BRAF mostly select for muta-
tions in ACVR1B (npb 36%), a receptor that once activated
phosphorylates SMAD proteins. It forms receptor complex with
ACVR2A, a gene mutated in these tumors that selects for
TCF7L2 mutations (npb 34%). Tumors harboring TP53 muta-
tions are those selected by mutations in AXIN2 (npb 32%), a
gene implicated in WNT signaling pathway, and related to unstable
gastric cancer development (96). Inactivating mutations in this gene
are important, as it provides serrated adenomas with a mutator
phenotype in the MSI tumorigenic pathway (97). Thus, our results
reinforce its putative role as driver gene in these tumors.
By comparing these models we can find similarity in the pre-

diction of a potential new early event for CRC formation,
FBXW7, as other authors have recently described (93). This tu-
mor suppressor is frequently inactivated in human cancers, yet
the molecular mechanism by which it exerts its antitumor activity
remains unexplained (98), and our models provide a previously
unidentified hypothesis in this respect.

Discussion
This paper represents our continued exploration of the nature of
somatic evolution in cancer and its translational exploitation
through models of cancer progression, models of drug resistance
(and efficacy), left- and right-censoring, sample stratification,
and therapy design. Thus, this paper emphasizes the engineering
and dissemination of production-quality computational tools as
well as validation of its applicability via use cases carried out in
collaboration with translational collaborators (e.g., CRC, analyzed
jointly with epidemiologists currently studying the disease ac-
tively). As anticipated, we reasserted that the proposed model of
somatic evolution in cancer not only supports the heterogeneity
seen in tumor population but also suggests a selectivity/causality
relation that can be used in analyzing (epi)genomic data and
exploited in therapy design—which we introduced in our earlier
work (39, 40). In this paper, we have introduced an open-source
pipeline, PiCnIc, that minimizes the confounding effects arising

Fig. 3. (A) MSI-HIGH colorectal tumors from the TCGA COADREAD project (56), restricted to 27 samples with both somatic mutations and high-resolution
CNA data available and a selection out of 33 driver genes annotated to WNT, RAS, PI3K, TGF-β, and P53 pathways. This dataset is used to infer the model in
Fig. 5. (B) Mutations and CNAs in MSI-HIGH tumors mapped to pathways confirm heterogeneity even at the pathway level. (C) Groups of mutually exclusive
alterations were obtained from ref. 56—which run the MEMO (76) tool—and by MUTEX (77) tool. In addition, previous knowledge about exclusivity among
genes in the RAS pathway was exploited. (D) A Boolean formula input to CAPRI tests the hypothesis that alterations in the RAS genes KRAS, NRAS, and BRAF
confer equivalent selective advantage. The formula accounts for hard exclusivity of alterations in NRAS mutations and deletions, jointly with soft exclusivity
with KRAS and NRAS alterations.
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from intertumor heterogeneity, and we have shown that PiCnIc
can be effective in extracting ensemble-level evolutionary tra-
jectories of cancer progression.
When applied to a highly heterogeneous cancer such as CRC,

PiCnIc was able to infer the role of many known events in CRC
progression (e.g., APC, KRAS, or TP53 in MSS tumors and
BRAF in MSI tumors), confirming the validity of our approach.jj
Interestingly, new players in CRC progression stand out from
this analysis such as FBXW7 or AXIN2, which deserve further
investigation. In colon carcinogenesis, although each model iden-
tifies characteristic early mutations suggesting different initiation
events, both models seem to converge in common pathways and
functions such as WNT or MAPK.
However, both models have some clear distinctive features.

Specific events in MSS include mutations in intracellular genes
such as CTNNB1 or in PTEN, a well-known tumor suppressor
gene. On the contrary, specific mutations in MSI tumors appear
in membrane receptors such as ACVR1B, ACVR2A, ERBB3,
LRP5, TGFBR1, and TGFBR2, as well as in secreted proteins
such as IGF2, possibly suggesting that such tumors need to dis-
turb cell–cell and/or cell–microenvironment communication to
grow. At the pathway level, genes exclusively appearing in the
MSI progression model accumulate in specific pathways such as
cytokine–cytokine receptor, endocytosis, and TGF-β signaling

pathway. However, genes in MSS progression model are implicated
in p53, mTOR, sodium transport, or inositol phosphate metabolism.
Our study also highlighted the translational relevance of the

models that we can produce with PiCnIc (SI Appendix, Fig. S12).
The evolutionary trajectories depicted by our models can, for in-
stance, suggest previously uncharacterized phenotypes, help in
finding biomarker molecules predicting cancer progression and
therapy response, explain drug-resistant phenotypes, and predict
metastatic outcomes. The logical structure of the formulas de-
scribing alterations with equivalent fitness (i.e., the exclusivity
group) can also point to novel targets of therapeutic interventions.
In fact, exclusivity groups that are found to have a role in the
progression can be screened for synthetic lethality among such
genes—thus explaining why we do not observe phenotypes where
such alterations cooccur. In this sense, our models describe also
such clonal signatures which, though theoretically possible, are not
selected. We call such conspicuously absent phenotypes antihall-
marks (100).
Our models have other applications to both computational and

cancer research. Our models, as encoded by Suppes–Bayes causal
networks, could be used as informative generative models for the
genomic profiles for the cancer patients. In fact, as known in machine
learning, such generative models are extremely useful in creating
better representation of data in terms of, for instance, discriminative
kernels, such as Fisher (101). In practice, this change of representa-
tions would allow framing common classification problems in the
domain of our generative structures, that is, the models, rather than
the data. As a consequence, it is possible to create a new class of
more robust classification and prediction systems.

Fig. 4. Selective advantage relations inferred by CAPRI constitute MSS progression; the input dataset is given in SI Appendix, Figs. S4 and S5. Formulas
written on groups of exclusive alterations (e.g., SOX9 amplifications and mutations) are displayed in expanded form; their events are connected by dashed
lines with colors representing the type of exclusivity (red for hard, orange for soft). Logical connectives are squared when the formula is selected and circular
when the formula selects for a downstream node. For this model of MSS tumors in COADREAD we find strong statistical support for many edges (P values,
bootstrap scores, and cross-validation statistics shown in the SI Appendix), as well as the overall model. This model captures both current knowledge about
CRC progression—for example, selection of alterations in PI3K genes by the KRAS mutations (directed or via the MEMO group, with BIC)—as well as novel
interesting testable hypotheses [e.g., selection of SOX9 alterations by FBXW7 mutations (with BIC)].

jjAs a further investigation for CRC, we leave as future work to check whether the inferred
progressions are also representative of other subtyping strategies for CRC, with particular
reference to recent works that showmarked interconnectivity between different independent
classification systems coalescing into four consensus molecular subtypes (99).
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One may think of these representations as those bringing us
closer to phenotypic (and causal) representation of the patient’s
tumor, replacing its genotypic (and mutational) representation.
We suspect that such representations will improve the accuracy
of measurement of the biological clocks dysregulated in cancer
and critically needed to be measured to predict survival time,
time to metastasis, time to evolution of drug resistance, and so
on. We believe that these “phenotypic clocks” can be used im-
mediately to direct the therapeutic intervention.
Clearly, applicability and reliability of techniques such as PiCnIc

are very much dependent on the background of data available. At
the time of this writing, the quality, quantity, and reliability of (epi)
genomic data available (e.g., in public databases) is related to the
ever-increasing computational and technological improvements

characterizing the wide area of cancer genomics. Of similar im-
portance is the availability of wet-laboratory technologies for
model validation. Our recent work on SubOptical Mapping
technology, for instance, points to the ability to cheaply and ac-
curately characterize translocation, indels, and epigenomic modifi-
cations at the single-molecule and single-cell level (102, 103). This
technology also provides the ability to directly validate (or refute)
the hypotheses generated by PiCnIc via gene correction and single
cell perturbation approaches.
To conclude, the precision of any statistical inference tech-

nique, including PiCnIc, is influenced by the quality, availability,
and idiosyncrasies of the input data—the goodness of the out-
comes improving along with the expected advancement in the
field. Nevertheless, the strength of the proposed approach lies in

Fig. 5. (A) Selective advantage relations inferred by CAPRI constitute MSI-HIGH progression; the input dataset is given in Fig. 3. Formulas written on
groups of exclusive alterations are expanded as in Fig. 4. For each relation, confidence is estimated as for MSS tumors and reported in the SI Appendix. In
general, this model is supported by weaker statistics than MSS tumors—possibly because of this small sample size (n= 27). Still, we can find interesting
relations involving APC mutations that select for PIK3CA ones (via BIC) as well as selection of the MEMO group (ERBB2/PIK3CA mutations or IGF2 de-
letions) predicted by AIC. Similarly, we find a strong selection trend among mutations in ERBB2 and KRAS, despite the fact that in this case the temporal
precedence among those mutations is not disentangled because the two events have the same marginal frequencies (26%). (B) Branching and confluent
evolutionary trajectories of clonal expansion inferred from the selective advantage relations implicit in the data. Such trajectories capture progression
trends that are representative of alternative trajectories among patients, as driven by different types of genomic lesions. Note, that while the majority of
the selectivity inferences are genuine, some of them could be spurious: e.g., the suggestion that APC-mutated clones shall enjoy expansion, up to ac-
quisition of further selective advantage via mutations or homozygous deletions in NRAS. Nonetheless, the putative genuine selectivity relations need to
be further validated: e.g., the suggestion that the clones of patients harbouring distinct alterations in ACVR1B—and different upstream events—will
enjoy further selective advantage from mutation in the TGFBR2 gene.
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the efficacy in managing possibly noisy/ biased or insufficient data,
and in proposing refutable hypotheses for experimental validation.

Materials and Methods
Processing COADREAD Samples with PiCnIc. We instantiated PiCnIc to process
clinically annotated high MSI-HIGH andMSS colorectal tumors collected from
TCGA project COADREAD (56) (SI Appendix, Fig. S1). Details on the imple-
mentation and the source code to replicate this study are available in the SI
Appendix. COADREAD has enough samples, especially for MSS tumors, to
implement a consistent and significant statistical validation of our findings
(SI Appendix, Table S1).

In brief, we split subtypes by the microsatellite status of each tumor as
annotated by the consortium (so, step I of PiCnIc is done by exploiting
background knowledge rather than computational predictors). It should be
expected that if this step is skipped or this classification is incorrect, the
resulting models would noticeably differ. Once split into groups, the input
COADREAD data are processed tomaintain only samples for which both high-
quality curated mutation and CNA data are available; for CNAs we use focal
high-level amplifications and homozygous deletions.

Then, for each samplewe select only alterations (mutations/CNAs) froma list of
33 driver genesmanually annotated to five pathways in ref. 56:WNT, RAF, TGF-β,
PI3K, and p53 (SI Appendix, Figs. S2 and S3). This list of drivers, step II of PiCnIc, is
produced by TCGA, as a result of manual curation and running MutSigCV.

In the next module of the pipeline, we fetch groups of exclusive alter-
ations.We scanned these groups by using theMUTEX tool (SI Appendix, Table
S2) and merged its results with the group that TCGA detected by using the
MEMO tool, which involves mainly genes from the PI3K pathway. Knowl-
edge on the potential exclusivity among genes in the WNT (APC and
CTNNB1) and RAF (KRAS, NRAS, and BRAF) pathways was exploited as well.
Groups were then used to create CAPRI’s formulas; we also included hy-
potheses for genes that harbor mutations and CNAs across different samples
(SI Appendix, Table S3). Data and exclusivity groups for MSS tumors are
shown in SI Appendix, Figs. S4 and S5.

CAPRI was run, as the last step of PiCnIc, on each subtype, by selecting
recurrent alterations from the pool of 33 pathway genes and using both AIC/
BIC regularizer. Timings to run the relevant steps of the pipeline are reported
in the SI Appendix. In the models of Figs. 4 and 5 each edge mirrors selective
advantage among the upstream and downstream nodes, as estimated by
CAPRI; Mann-Withney U test is carried out with statistical significance 0.05,
after 100 nonparametric bootstrap iterations.

The significance of the reconstructed models and the input data is assessed
by computing all of the statistics/tests discussed in the main text (temporal
priority, probability raising and hypergeometric testing P values, bootstrap,
and cross-validation scores). Motivation and background on each of these
measures is available in the SI Appendix. A table with their values for edges
with highest nonparametric bootstrap scores is in SI Appendix, Fig. S8.

For the MSS cohort all of the P values are strongly significant (P � 0.01)
except for the temporal priority of the edges connecting mutations in

FAM123B and ATM, and ERBB2 alterations (mutations and amplifications),
which leads us to conclude that, even if these pairs of genes seem to un-
dergo selective advantage, the temporal ordering of their occurrence is
ambiguous and failed to be imputed correctly from the datasets, analyzed
here. The same situation occurs in MSI-HIGH tumors, for the relation be-
tween KRAS and ERBB3. Nonparametric and statistical bootstrap estima-
tions are used to assess the strength of all of the findings (SI Appendix, Figs.
S6 and S7). Moreover, any bias in the data is finally evaluated by cross-
validation (SI Appendix, Figs. S8–S11) and common statistics such as entropy
loss, posterior classification, and prediction errors. In general, most of the
selective advantage relations depicted by the inferred models present a
strong statistical support, with the MSS cohort presenting the most
reliable results.

Summary implementation for COADREAD (PiCnIc steps; Fig. 2): (i) TCGA
clinical classification, (ii) MutSigCV and TCGA manual curation, (iii) MEMO,
MUTEX, and knowledge of WNT and RAF pathways, and (iv) CAPRI.

Implement Your Own Case Study with PiCnIc/TRONCO. TRONCO started as a
project before PiCnIc and is our effort at collecting, in a free R package,
algorithms to infer progression models from genomic data. In its current
version it offers the implementation of the CAPRI and CAPRESE algorithms, as
well as a set of routines to preprocess genomic data. With the introduction of
PiCnIc, began to incorporate software routines to easily interface CAPRI and
CAPRESE to some of the tools that we mention in Fig. 2. In particular, in its
current 2.0 version it supports input/output for the MATLAB Network Based
Stratification tool (NBS) and the Java MUTEX tool, as well as the facility to
fetch data available from the cBioPortal for Cancer Genomics (www.cbioportal.
org), which provides a web resource for exploring, visualizing, and analyzing
multidimensional cancer genomics data.

We plan to extend TRONCO in the future to support other similar tools and
become an integral part of daily laboratory routines, thus facilitating ap-
plication of PiCnIc to additional use cases.
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