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The Paleocene–Eocene Thermal Maximum (PETM) is a remarkable cli-
matic and environmental event that occurred 56 Ma ago and has
importance for understanding possible future climate change. The
Paleocene–Eocene transition is marked by a rapid temperature rise
contemporaneous with a large negative carbon isotope excursion (CIE).
Both the temperature and the isotopic excursion are well-documented
by terrestrial and marine proxies. The CIE was the result of a massive
release of carbon into the atmosphere. However, the carbon source
and quantities of CO2 and CH4 greenhouse gases that contributed to
global warming are poorly constrained and highly debated. Here we
combine an established oxygen isotope paleothermometer with a
newly developed triple oxygen isotope paleo-CO2 barometer. We at-
tempt to quantify the source of greenhouse gases released during the
Paleocene–Eocene transition by analyzing bioapatite of terrestrial
mammals. Our results are consistent with previous estimates of PETM
temperature change and suggest that not only CO2 but also massive
release of seabed methane was the driver for CIE and PETM.
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The Paleocene–Eocene transition at about 56Ma (1–3) is marked
by an abrupt climate change in conjunction with a large negative

carbon isotope excursion (CIE), ocean acidification, and enhanced
terrestrial runoff—during a period lasting less than 220,000 y (e.g.,
refs. 4–7). During the CIE a global temperature increase of 5–8 °C
has been inferred from a variety of marine and terrestrial proxies
(e.g., refs. 3 and 8–21), hence the name “Paleocene–Eocene
Thermal Maximum,” or PETM is frequently applied to the
transition interval.
The CIE is well-documented by proxy data, and it is largely

accepted that it was caused by the addition of a large amount of
13C-depleted carbon into the exogenic carbon cycle (ref. 22 and
references therein). Considering the atmospheric CIE to be be-
tween –4 and –5‰ (ref. 22 and references therein and refs. 23 and
24), the suggested amount of carbon needed to cause this negative
carbon isotope shift ranges between 2,200 and 153,000 Gt, a range
depending on the isotope composition of the hypothesized carbon
source and secondarily on the model approach used (22, 24–27).
Possible carbon sources are biogenic methane (i.e., methane
clathrates, δ13C ∼–60‰), thermogenic methane or permafrost
soil carbon (δ13C ∼–30‰), carbon released due to wildfires or
through desiccation and oxidation of organic matter due to drying
of epicontinental seas (δ13C ∼–22‰), and mantle CO2 (δ13C
∼–5‰) (22, 28).
A massive release of methane clathrates by thermal dissociation

(29) has been the most convincing hypothesis to explain the CIE
since it was first identified. However, a methane clathrate source is
still debated, and an involvement of other carbon sources—exclu-
sively or additionally—is widely discussed (e.g., refs. 22, 26, and 28).
Global warming during the CIE is attributed to radiative forcing

due to increased concentrations of greenhouse gases, most likely
CO2 and/or CH4, and to accessory phenomena such as aerosol
forcing and reduced cloudiness (26, 30).

Substantially different CO2 scenarios have been discussed for the
PETM. Mass balance estimates range from an increase in atmo-
spheric CO2 concentration of less than 100 ppm to an increase of
several 10,000 ppm, depending on the proposed magnitude of the
CIE and the associated carbon source (10, 22, 24, 25, 27, 31–34).
Existing proxy data for CO2 concentrations in the time interval

surrounding the PETM (50–60 Ma) suggest background partial
pressure of CO2 (pCO2) levels between 100 and 1,900 ppm (ref. 35
and references therein). Only a single estimate (36) of the previously
published data is questionably correlated to PETM strata (670 ppm).
From increased insect herbivory during the PETM Currano et al.

(37, 38) suggested a three- to fourfold increase in atmospheric CO2
but left open the possibility that increased herbivory was an effect of
higher insect diversity and density due to the elevated temperature.
Here we bring evidence to bear on both temperatures and CO2

concentrations through the Paleocene–Eocene transition based on
triple oxygen isotope measurements (δ17O, δ18O) of bioapatite in
mammalian tooth enamel.
The oxygen isotopic composition of mammalian body water is

determined by its oxygen sources and sinks (Figs. S1 and S2). The
main oxygen input sources for mammals are drinking water, food
water, and inhaled air O2. Sinks are feces, sweat, water loss due to
transpiration, as well as exhaled CO2 and moisture. The fraction-
ation between δ18O of body water and δ18O of bioapatite in
mammals is constant due to a constant body temperature of
∼37 °C, and it has been demonstrated that it is possible to relate
the δ18O of mammalian bioapatite to the oxygen isotope compo-
sition of drinking water (i.e., environmental surface water, δ18OSW)
by empirically developed calibration equations or by modeling
approaches (39–44). Due to the strong correlation between δ18OSW
and mean annual (air) temperatures (MAT) (45), it is in turn
possible to infer paleotemperatures using the oxygen isotope
composition of δ18OSW reconstructed from δ18O of mammalian
bioapatite. This was first applied extensively by Bryant et al. (46).

Significance

Our data suggest that the sudden rise in atmospheric temperature
during the Paleocene–Eocene transition was not accompanied by
highly elevated carbon dioxide concentrations >∼2,500 ppm. In-
stead, the low 13C/12C isotope ratios during the Paleocene–Eocene
Thermal Maximum were most likely caused by a significant con-
tribution of methane to the atmosphere. We present data ap-
plying a newly developed partial pressure of CO2 proxy.
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These studies rely solely on δ18O because, in nearly all terrestrial
fractionation processes, δ18O is correlated to δ17O by the equa-
tion δ17O ≈ 0.52 × δ18O (e.g., ref. 47 and references therein).
However, air O2, which is one of the main oxygen sources of

mammalian body water, carries an isotope anomaly in 17O (48) that
is related to mass independent processes in the stratosphere. The
isotope anomaly of inhaled air O2 is transferred to the body water
and hence to mammalian bioapatite. The 17O anomaly of air O2
scales with atmospheric CO2 level and gross primary productivity
(GPP) (49), and thus triple oxygen isotope analyses of bioapatite
from fossil mammals can be used as a paleo-CO2 proxy (see ref. 50
for more details).
The magnitude of the 17O anomaly in mammalian bioapatite is

connected to the fraction of inhaled anomalous air O2 in relation to
the other oxygen sources. Due to higher specific metabolic rates
(i.e., higher specific O2 respiration), smaller mammals carry a
higher portion of anomalous oxygen in their bioapatite than
larger mammals (50).
Studies relying on the relationship of paleotemperature to δ18O

in mammalian bioapatite already exist for the Paleocene–Eocene
transition in the Clarks Fork and Bighorn Basin (Wyoming) based
on various mammalian taxa, targeting either the carbonate oxygen
component (δ18OCO3) of mammalian tooth enamel, the phosphate
oxygen component (δ18OPO4), or both in a combined approach (8,
17, 20, 21, 51–53).
In the present study, we combine this well-established δ18O

paleothermometer (e.g., refs. 39 and 40) with the recently pub-
lished discovery of a connection between the triple oxygen isotope
composition of mammalian bioapatite and atmospheric CO2
concentration (50).

Materials and Methods
Samples. The most suitable taxa for an application of the approach described
above should have a bodyweight as small as possible (to ensure a high proportion
of inhaled anomalous air oxygen in respect to the other oxygen sources) but large
enough (with respect to fossil samples) to provide an adequate amount of dia-
genetically unaltered sample material (i.e., tooth enamel) (e.g., refs. 54 and 55).

We sampled tooth enamel from teeth from jaws and isolated teeth of 11
individual specimens of the phenacodontid genus Ectocion (Ectocion osbor-
nianus and Ectocion parvus) from the Clarks Fork Basin (Sand Coulee area)
in northwestern Wyoming (e.g., refs. 56 and 57). The enamel was carefully

hand-picked under a binocular microscope before pretreatment. The
samples cover a time interval of several mammalian biozones, from the late
Clarkforkian (Cf-3) to the early Wasatchian (Wa-2), encompassing the
PETM. All samples were acquired from the collections of the Museum of
Paleontology at the University of Michigan, Ann Arbor (localities SC-2, SC-11,
SC-67, SC-107, SC-138, and SC-161). All were molded and cast before de-
structive sampling. Only second molars (M2) were used for the present study
to obtain the highest possible comparability.

Sample Pretreatment. To ensure analysis was limited to the phosphate oxygen
isotope composition (δ18OPO4), other oxygen-bearing components of the
sample material (e.g., organic matter, sorbed water, structural carbonate, and
OH– groups) were removed by treating the tooth enamel in an Ar-flushed
horizontal tube furnace for 10–15 min at 1,000 °C. Subsequently, the samples
were cooled to below 100 °C while remaining in an Ar atmosphere, followed
by immediate storage in a desiccator until analysis (50). This procedure follows
Lindars et al. (58), who demonstrated safe removal of all of the unwanted
compounds at temperatures between 850 and 1,000 °C. Ar is used to avoid
exchange with atmospheric water, which was reported to be a problem by
Lindars et al. (58) when heating samples to 1,000 °C in ambient air.

Triple Oxygen Isotope Analysis. Variations in the oxygen isotope ratios (17O/16O,
18O/16O) are reported relative to the international isotope reference standard
Vienna Standard Mean Ocean Water 2 in the form of the δ17O and δ18O no-
tation (59). In mass-dependent (equilibrium or kinetic) fractionation processes,
variations in δ17O broadly correlate with variations in δ18O. To better display
small deviations from an otherwise good correlation, the Δ17O value has been
introduced. We follow the definition scheme for Δ17O as presented in Pack
and Herwartz (60) with Δ17O = 1,000*ln(δ18O/1,000 + 1) – 0.5305*1,000*ln(δ18

O/1,000 + 1). The Δ17O has been normalized to a revised composition of NBS
28 quartz with δ17O = 5.03‰ and δ18O = 9.60‰ (Δ17O = −0.05‰).

A slope derived from analytical data of terrestrial rocks andminerals as done
in previous studies (50, 55) has not been used because of its arbitrary selection
depending on the specific samples analyzed to obtain it. However, the data
can easily be converted for comparison with results from other studies and/or
other laboratories.

Oxygenwas released from the samples by infrared laser fluorination (61) and
analyzed by gas chromatography isotope ratio monitoring gas mass spec-
trometry in continuous flow mode (e.g., refs. 50, 55, and 62). Typically, ∼0.3 mg
of pretreated fossil tooth enamel was loaded into an 18-pit polished Ni sample
holder along with ∼0.3 mg of pretreated tooth enamel from a modern African
Elephant (Loxodonta africana) as an internal standard and ∼0.2 mg NBS
28 quartz. Following evacuation and heating of the sample chamber to 70 °C
for at least 12 h, fluorination was implemented by heating the samples with a
SYNRAD 50 W CO2 laser in a ∼20–30 mbar atmosphere of F2 gas, purified

Table 1. Oxygen isotope composition (δ18OPO4, Δ17OPO4) of tooth enamel from second molars of Ectocion osbornianus and Ectocion
parvus from the Clarks Fork Basin in north-western Wyoming

Species Biozone Level, m Locality Sample no. δ18OPO4, ‰ Δ17OPO4, ‰ N
pCO2 (model),
ppm by volume

pCO2 (model, 2.3× GPP),
ppm by volume

E. osbornianus Wa-2 1,720 SC-2 85906 13.0 ± 0.4 −0.17 ± 0.04 5 500 −400 +600 1,150 −1,000 +1,400
E.osbornianus Wa-2 1,720 SC-2 66572 (sample A) 12.4 ± 0.3 −0.18 ± 0.02 8 625 −400 +600 1,440 −1,000 +1,400
E.osbornianus Wa-2 1,720 SC-2 66572 (sample B) 13.0 ± 0.5 −0.19 ± 0.03 7 750 −400 +600 1,730 −1,000 +1,400

Mean 12.8 ± 0.2 -0.18 ± 0.02 20 630 −230 +350 1,450 −500 +800
E.osbornianus Wa-2 1,665 SC-161 80705 13.5 ± 0.4 −0.14 ± 0.02 3 225 −200 +400 520 −500 +1,000
E.osbornianus Wa-2 1,665 SC-161 98404 13.2 ± 0.3 −0.13 ± 0.03 4 200 −200 +400 460 −500 +1,000
E.osbornianus Wa-2 1,665 SC-161 68200 12.3 ± 0.3 −0.15 ± 0.03 4 250 −250 +500 580 −600 +1,200

Mean 13.0 ± 0.2 -0.14 ± 0.02 11 230 −200 +320 530 −460 +750
E.parvus Wa-0 1,520 SC-67 83478 14.3 ± 0.3 −0.15 ± 0.04 2 250 −200 +400 580 −500 +1,000
E.parvus Wa-0 1,520 SC-67 87354 14.3 ± 0.6 −0.18 ± 0.03 5 625 −400 +600 1,440 −1,000 +1,400
E.parvus Wa-0 1,520 SC-67 86572 (sample A) 15.1 ± 0.2 −0.17 ± 0.03 7 625 −400 +600 1,440 −1,000 +1,400
E.parvus Wa-0 1,520 SC-67 86572 (sample B) 14.4 ± 0.3 −0.15 ± 0.03 2 250 −200 +400 580 −500 +1,000

Mean 14.5 ± 0.2 -0.16 ± 0.02 16 440 −160 +250 1,010 −400 +600
E.osbornianus Cf-3 1,502 SC-107 66621 11.0 ± 0.5 −0.14 ± 0.03 11 250 −250 +500 580 −600 +1,200
E.osbornianus Cf-3 1,495 SC-138 67243 (sample A) 13.7 ± 0.3 −0.16 ± 0.03 7 500 −400 +500 1,150 −1,000 +1,200
E.osbornianus Cf-3 1,495 SC-138 67243 (sample B) 13.8 ± 0.6 −0.19 ± 0.05 4 825 −400 +600 1,900 −1,000 +1,400
E.osbornianus Cf-3 1,485 SC-11 64726 12.1 ± 0.3 −0.14 ± 0.02 3 225 −200 +500 520 −500 +1,200

Mean 12.7 ± 0.2 −0.16 ± 0.02 25 450 −200 +260 1,040 −450 +600

The reported pCO2 data were calculated for modern gross primary productivity (GPP) and 2.3× elevated GPP on basis of the mass balance model (for
details, see Supporting Information). Uncertainty estimates are ±1σ SD.
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according to Asprey (63). Liberated excess F2 was reacted with heated NaCl
(∼180 °C) to NaF and Cl2. The latter was cryotrapped by liquid N2 until all
samples were analyzed. Sample O2 was cryofocused on a molecular sieve trap
at –196 °C (liquid N2) then expanded into a stainless steel capillary and trans-
ported with He as carrier gas through a second molecular sieve trap, where a
fraction of the sample gas was again cryofocused at –196 °C. After releasing
this back into the He carrier gas stream by heating it in a hot water bath
(∼92 °C), the sample O2 was purified by passing it through a 5-Å molecular sieve
GC column of a Thermo Scientific GasBench II and then injected via an open
split valve of the GasBench II into the source of a Thermo MAT 253 gas mass
spectrometer. The signals of 16O16O, 17O16O, and 18O16O were simultaneously
monitored on three Faraday cups. Reference O2 was injected before each
sample measurement through a second open split valve of the GasBench II.
Sample and reference gas peaks (m/z = 32) had an amplitude of 20–30 V.

The SD for replicates of the same bioapatite samples from different runs is
typically better than ±0.5‰ in Δ18O and ± 0.04‰ in Δ17O for a single analysis.

A total of 72 single laser fluorination analyses were made using 14 different
Ectocion tooth enamel samples (from the 11 Ectocion specimens used for the
present study, 3 were sampled twice to have a reproducibility control between
different analytical runs) (Table 1).

Results and Discussion
Temperature Change Across the PETM Inferred from δ18O of Ectocion
Tooth Enamel. The mean oxygen isotope composition of tooth
enamel phosphate (δ18OPO4) in the Ectocion specimens investigated
increases by 2.2‰ from the late Clarkforkian (Cf-3) to the CIE in
the early Wasatchian (Wa-0), considering the mean values for
each mammalian biozone. FromWa-0 to Wa-2, a decrease in mean
δ18OPO4 of 1.6‰ is observed (different meter levels withinWa-2 do
not show any difference in δ18OPO4, so they were combined (Fig. 1
and Tables 1 and 2). This is in agreement with previous results from
δ18OPO4 (17, 20), as well as δ18OCO3 (17, 20, 21) for mammals
covering the same biozones in the same study area. To estimate the
change of δ18OSW from δ18OPO4, we used the relationship for
modern herbivorous mammals (δ18OSW = 1.32 × δ18OPO4), which
Secord et al. (20) adapted from Kohn et al. (64).
Applying this to our results, δ18OSW became enriched by 2.9‰

from Cf-3 to Wa-0 followed by a depletion of 2.1‰ to Wa-2
(Table 2).
The δ18OSW/MAT slope is sensitive to the latitudinal gradient

and other factors (e.g., ref. 65), so an important precondition for
estimating the corresponding change in temperature is to adjust
this slope as closely as possible to early Cenozoic conditions. The
modern temperature dependence for a MAT of 0–20 °C ranges
between 0.5 and 0.6‰ per degree Celsius (66–68). During the
Paleocene–Eocene transition in the Bighorn Basin, Secord et al.
(20) proposed δ18OSW/MAT slopes of 0.39 and 0.36 (per mille per
degree Celsius), based on two different approaches.
For the Ectocion tooth enamel data of the present study, this

implies an increase of 7.4 °C (8.1 °C) from Cf-3 to Wa-0 and a
decrease of 5.4 °C (5.8 °C) from Wa-0 to Wa-2 (the value in pa-
rentheses refers to the slope for 0.36). These results are in general
agreement with previous studies from Fricke et al. (17) and Secord
et al. (20) based on tooth enamel δ18OPO4 of Coryphodon and
Phenacodus, respectively. Calculated on the same basis, the data
from Fricke et al. (17) indicate a temperature increase of 6.2 °C
(6.7 °C) from Cf-2 to Wa-0 and a decrease of 4.6 °C (5.0 °C) from
Wa-0 to Wa-3. The data from Secord et al. (20) suggest a tem-
perature increase of 7.2 °C (7.8 °C) from Cf-3 to Wa-0, if mean
biozone values are used (Table 2).

Atmospheric CO2 Levels Across the PETM Inferred from δ17O of
Ectocion Tooth Enamel. Tooth enamel of the investigated Ectocion
specimens has a distinctly negative 17O anomaly, with Δ17O ranging
between –0.19 and –0.13‰ (Table 1). The anomaly is due to the
portion of oxygen in the bioapatite that comes from inhaled iso-
topically anomalous air O2 (50). To estimate the Δ17O of PETM air
oxygen from the tooth enamel measurements, we used the oxygen
mass balance model of Pack et al. (50), developed for terrestrial
herbivorous mammals (for details see Supporting Information). The

Fig. 1. Oxygen isotope composition (δ18OPO4, ±1σ SD) of Ectocion (white
squares, this study; Table 1), Phenacodus [gray diamonds; Secord et al. (20)],
and Coryphodon specimens [gray squares; Fricke et al. (17)]. Red circles are
mean values for Ectocion (this study). Missing error bars indicate single anal-
yses. The stratigraphic level is expressed in meters above the K-T boundary in
the Clarks Fork Basin. Age of Ectocion samples is in the range of −56 to −55Ma
(see Fig. 2).

Table 2. Estimated change in δ18OSW and temperature at the Paleocene–Eocene transition in
the Clarks Fork and Bighorn Basin

Biozone interval Δ18OPO4, ‰ Δ18OSW, ‰ ΔT (0.58‰/°C) ΔT (0.39‰/°C) ΔT (0.36‰/°C)

This study
Wa-0 to Wa-2 −1.6 −2.1 −3.6 −5.4 −5.8
Cf-3 to Wa-0 +2.2 +2.9 +5.0 +7.4 +8.1

Secord et al. (20)
Cf-3 to Wa-0 +2.1 +2.8 +4.8 +7.2 +7.8

Fricke et al. (17)
Wa-0 to Wa-3a −1.4 −1.8 −3.1 −4.6 −5.0
Cf-2 to Wa-0 +1.8 +2.4 +4.1 +6.2 +6.7

Based on δ18OPO4 of Ectocion (this study), Phenacodus [Secord et al. (20)] and Coryphodon [Fricke et al. (17)],
for three different MAT/δ18OSW slopes [the modern and two calculated values for early Eocene conditions from
Secord et al. (20)].
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body weights of E. osbornianus and E. parvus are estimated to have
been 9 and 5 kg, respectively (e.g., refs. 69 and 70).
Combining the approach of Pack et al. (50) with the linear re-

lationship between Δ17Oair and pCO2 given by Bao et al. (49), the
estimated mean pCO2 values are 450, 440, 230, and 630 ppm for
Cf-3 (1,485- to 1,502-m level), Wa-0 (1,520-m level), Wa-2 (1,665-m
level), and Wa-2 (1,720-m level), respectively (Fig. 2A and Table 1).
The uncertainty estimate is in the range of ± several hundred ppm.
However, these numbers are based on modern O2 and GPP

conditions. Whereas pO2 remains more or less unchanged within
the last 60 Ma (71), a considerably different GPP of 2.3 times the
modern value has been estimated by Beerling (72) for the
early Eocene. Because a doubling of GPP results in a halving of
Δ17Oair (49, 50), a 2.3 GPP would imply pCO2 mean values of
1,040, 1,010, 530, and 1,450 ppm for Cf-3 (1,485- to 1,502-m
level), Wa-0 (1,520-m level), Wa-2 (1,665-m level), and Wa-2
(1,720-m level), respectively (Fig. 2B and Table 1).
The results for the modern GPP scenario agree well with other

proxy data for the time slice between 50 and 60 Ma from δ13C of
paleosols (1, 36, 73), leaf stomata (36, 74–76), and δ13C of marine
phytoplankton (77), which nearly all range between 300 and 800
ppm (Fig. 2B). A few paleosol estimates propose a considerably
lower pCO2 of ∼100 ppm [ref. 78, reevaluated by Breecker et al.
(73)], and a single estimate from δ13C of fossil liverworts (79)
suggests a considerably higher pCO2 of ∼1,900 ppm for the
Early Eocene.
Following Beerling and Royer (35), Paleocene and Eocene pCO2

estimates from δ11B of planktonic foraminifera were not considered
for the present comparison due to several uncertainties (e.g., re-
garding diagenetic alteration and unknown vital effects of the ana-
lyzed foraminifera). Geochemical modeling (GEOCARBSULFvolc,
refs. 80–82) predicts slightly higher pCO2 than nearly all proxy re-
sults. However, the low resolution (10-Ma time steps) precludes
tracking pCO2 fluctuations within shorter time intervals.
Nearly all previously published proxy data represent either pre- or

post-PETM estimates of pCO2. Only Royer et al. [ref. 36, updated
by Beerling et al. (76); compare also Beerling and Royer (35)] report
a single stomatal index estimate revised to 670 ppm. This estimate is
based on material from the Isle of Mull, United Kingdom, which
was initially stated to correlate potentially to the PETM, within a
data series of slightly older late Paleocene and younger early Eocene
pCO2 estimates ranging between 300 and 570 ppm.
Thus, the pCO2 data presented here from the Wa-0 biozone,

which to our knowledge are the first to track CO2 levels directly
through the CIE and PETM, are of particular interest and provide
independent information on the potential carbon source gener-
ating the CIE.
Even when considering the large uncertainty in pCO2 and a 2.3

times higher bioproductivity than today, all mean biozone esti-
mates suggest a peak pCO2 (upper error limit) not higher than
about 2,500 ppm before and during the PETM and CIE, from Cf-3
to the start of Wa-2 (Fig. 2B and Table 1).
In the spectrum of pCO2 values associated with different carbon

sources considered as generating a global CIE in a range of –4 to
–5‰, our results are compatible with dissociation of ∼2,500 to
∼4,500 Gt of highly 13C-depleted marine methane clathrates, as
initially proposed by Dickens et al. (29), which would require only
a moderate pCO2 increase (e.g., refs. 22, 24, and 27).
The model of Zeebe et al. (27) requires an increase in pCO2

from a pre-PETM 1,000 ppm baseline to ∼1,700 ppm during the
PETM main phase, based on an initial input of 3,000 Gt C from
methane clathrates with a δ13C lighter than –50‰. Furthermore,
Zeebe et al. (27) claim that this 70% increase in pCO2 is largely
independent from the initial pre-PETM pCO2, arguing for an in-
crease from 500 to ∼850 ppm as likewise possible. A similar result
was obtained by Cui et al. (24) when 2,500 Gt C from methane
clathrates with a δ13C of –60‰ was assumed as the potential
carbon source (increase in pCO2 from a baseline of 835 ppm to
∼1,500 ppm). In addition, the mass balance presented by McI-
nerney and Wing (22) estimated a pCO2 increase to ∼1,500 ppm,
potentially triggered by a release of 4,300 Gt C from methane
clathrates required to generate a CIE of –4.6‰. In a recent ap-
proach, Schubert and Jahren (83) calculated initial and peak-
PETM CO2 levels using the difference between the magnitude of
the marine and terrestrial CIE (ΔCIE) and proposed a pCO2 in-
crease from 670 to 1,380 for the methane clathrate scenario.

Fig. 2. Existing proxy data for pCO2 between 50 and 60Ma adapted from the
compilation of Beerling and Royer (35), compared with pCO2 estimates from
Δ17O of Ectocion bioapatite (red circles, this study). pCO2 has been calculated
for (A) modern global GPP conditions and (B) GPP 2.3 times the modern value,
as proposed by Berner (71). White diamonds, paleosols; gray squares, leaf
stomata; white squares, marine phytoplankton; gray diamonds, liverworts.
pCO2 results here are the first to our knowledge to come unquestionably from
the PETM interval. Note that pCO2 results for the PETM here are not elevated
but consistent with earlier and later pCO2 values reported by Beerling and
Royer (35).
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All other sources in discussion for the CIE (thermogenic
methane, permafrost soil carbon, carbon released due to wildfires
or through desiccation and oxidation of organic matter due to
drying of epicontinental seas as well as mantle CO2) would have
led to significantly higher CO2 levels than suggested by our results.
If the observed CIE would have been induced by the release

of thermogenic methane or permafrost soil carbon (10,000 Gt C,
δ13C ∼–30‰), McInerney and Wing (22) proposed a pCO2 in-
crease to ∼3,000 ppm. Using ΔCIE, Schubert and Jahren (83)
calculated an increase from 920 to 2,480 ppm until the peak of the
PETM for this scenario (Fig. 2). Such a scenario would still be
within the uncertainty range of our data and cannot be completely
excluded here.
Higher pCO2 estimates have been proposed for carbon input

from wildfires and/or desiccation and oxidation of organic matter
from drying epicontinental seas (with a δ13C of ∼–22‰). The mass
balance of McInerney and Wing (22) suggests CO2 levels >4,000
ppm induced by a release of ∼15,400 Gt of carbon. This is nearly
identical to the model of Cui et al. (24), who proposed a release of
13,000 Gt C from the same source, resulting in a pCO2 increase
from 835 to 4,200 ppm. The proposed CO2 concentrations are
considerably higher than estimated from the present study.
An alternative model (25) suggests a minimum pulse of carbon

with a δ13C of –22‰ to be 6,800 Gt to trigger a CIE of –4‰,
associated to an increase in pCO2 to levels considerably above
2,000 ppm. The approach of Schubert and Jahren (83) suggests for
the same carbon sources an increase from an initial value of 1,030
ppm to 3,340 ppm atmospheric CO2 during the PETM.
Thus, the present study supports the initial idea of Dickens et al.

(29) that massive releases of methane from clathrates caused the
positive temperature excursion and the CIE during the PETM, at
least to a considerable amount. Some criticisms to the methane
clathrate scenario proposed in the last decade have turned out to
be poorly constrained. One widely discussed argument is that pCO2
values associated with the methane clathrate hypothesis are in-
sufficient to explain the PETM temperature increase. However,
alternative mechanisms, such as direct radiative forcing due to an

increased pCH4, and associated indirect effects (26, 27, 30, 31) may
overrule this objection. The assumption that early Paleogene
methane clathrate reservoirs were too small (84) has recently been
discredited (26, 85). The idea that the amount of carbon released
from methane clathrates would have been insufficient to explain
observed shoaling of the carbonate compensation depth (86) has
also been criticized (26). A massive release of CO2 from soils,
wildfires, or by oxidation of organic matter from drying epi-
continental seas is not supported by the results of this study.

Conclusions
Triple oxygen isotope analysis of fossil mammalian bioapatite has the
potential to trace fluctuations in temperature and CO2 levels si-
multaneously, representing a powerful new tool for paleoclimato-
logical research. Our Ectocion bioapatite data agree well with
previous estimates of temperature change from the oxygen isotope
composition of mammalian tooth enamel and from other proxies
across the Paleocene–Eocene transition. Our results support existing
proxy data for late Paleocene and early Eocene pCO2. Our samples
originate directly from pre-, peak- and post-PETM/CIE strata,
making it possible for the first time to our knowledge to recognize
any substantial change in CO2 concentration within the respective
time interval. Our data suggest that CO2 levels during the PETM/
CIE remained, within uncertainty of a few hundreds of parts per
million, at pre- and post-PETM/CIE levels. Our data hence support
the hypothesis that the CIE was mainly caused by a massive release
of seabed methane to the atmosphere, and carbon emissions from
other sources have made a subordinate contribution.
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