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Synopsis

This article discusses the contribution of the pediatric cerebellum to locomotion, ocular motor 

control, speech articulation, cognitive function, and behavior modulation. Models of cerebellar 

function are discussed. Clinical features in patients with cerebellar disorders are outlined. 

Cerebellar abnormalities in cognitive and behavioral disorders are detailed.
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 Introduction

The cerebellum, Latin for small brain, weighs only about 10% of the adult human brain; 

however, it contains four times as many cerebral neurons. The cerebellum has undergone a 

rapid size increase in humans and apes that has been even faster than the rapid change in 

neocortex size. 1 This disproportionate increase in size is unlike that seen in other anthropoid 

primates where the neocortex and the cerebellum underwent similar expansion rates. Such 

expansion underscores the relative importance of the cerebellum in humans. Yet despite over 
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100 years of scientific research, the function of the cerebellum remains elusive but there is 

no shortage of possible theories on how the cerebellum works.

The anatomy of the cerebellum is discussed elsewhere in this special edition. For the 

interested reader, physiologic cerebellar anatomy has been reviewed recently. 2 Basically, 

mossy fibres and climbing fibres provide excitatory inputs to the cerebellum via the superior, 

middle, and inferior cerebellar peduncles. Mossy fibres form synapses with granule cells 

while climbing fibres synapse on Purkinje cells. Both fibres also send collaterals to the deep 

cerebellar nuclei. Granule cells form synaptic contacts with Purkinje cells via parallel fibres. 

Inhibitory outputs from Purkinje cells innervate the vestibular nuclei and the deep cerebellar 

nuclei. The latter constitutes the main output of the cerebellum and make excitatory 

synapses on their targets. Other cells in the cerebellar cortex include Golgi cells, Lugaro 

cells, unipolar brush cells, stellate cells, and basket cells. They form interneurons within the 

cerebellar cortex. 2

Different cerebellar regions have important roles in voluntary control of limb movements, 

ocular motor control, balance, walking, and non-motor higher cognitive functions. 3 How 

does the cerebellum provide these functions?

The answer to this question has been addressed indirectly based on studies in patients with 

cerebellar damage. Computational modeling and experimental animal studies using 

pharmacologic, lesion, and genetic manipulations have also contributed further important 

insights. More recently, cerebellar transcranial direct current stimulation has provided a non-

invasive approach to investigating cerebellar functions in health and disease.4

Movement abnormalities resulting from cerebellar impairment include poor coordination, 

increased variability, impaired accuracy, and tremor manifesting during limbs movements, 

walking, stance, talking, and eye movements. 5

Two popular proposals on how the cerebellum functions are actively debated. 6,7 The first 

states that the cerebellum contributes to motor and non-motor control by acting as a timer. 

The second states that the cerebellum functions by updating and/ or storing an internal 

model of body dynamics. 8,9 In this model, the cerebellum essentially predicts the 

consequences of motor command on the body and its surroundings (e.g. how a motor 

command will change the state of a limb or object position and velocity). A feed forward 

(i.e., predictive and planned in advance) signal provides a fast response instead of relying on 

a visual or peripheral sensory feedback system with its attending long delay to ensure a real-

time, correct, and appropriate motor response.6 In addition, the cerebellum improves 

proprioception (i.e. sensing the position of a limb in space in the absence of visual input) 

during active but not passive limb movement, through prediction. 10

Other theories on cerebellar function include temporal and spatial sequence detection within 

the feedforward control mechanism,11 tonic facilitation providing fine tuning of downstream 

target structures, and the initiation of coordinated compound movements. 12
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 Limbs motor control

Parallel fibres link Purkinje cells and deep cerebellar nuclei, where single muscles are 

represented, thus providing a way of linking movements involving many muscles i.e. 

complex sequence of movements.12 It is not known what signal the cerebellum uses to exert 

its modulatory control on movements. Candidate signals that may be used by the cerebellum 

include sensory information from the periphery or copies of the movement commands 

(efference copy) from the primary motor cortex. Another possibility that has not been proven 

is that the cerebellum is capable of generating motor commands that could lead a limb 

towards a desired target.5

Smooth and accurate execution of voluntary movements and adaptation to changing motor 

tasks depend on a healthy cerebellum.13 Through trial and error, the cerebellum can learn 

and store different combinations needed for precise compound movements. Motor learning 

in children is not similar to adults.14 Prior experience but not error size improves motor 

learning in young children. Various types of motor learning are achieved at different ages. In 

children up to 11 years of age, spatial adaptation matured at a slower rate than temporal 

adaptation in locomotion tasks that demanded walking on a split-belt treadmill with each 

leg's speed controlled independently.15 Temporal adaptation (learning a new timing change) 

of a locomotor task matures by age three years.

Patients with cerebellar lesions can perform simple motor tasks, with incoordination and 

impaired initiation of movement appearing when compound complex movements are 

performed, especially at a rapid pace.12 Cerebellar impairment cause greater dysfunction in 

predictive movements than in movements that require feedback, i.e. visual or somatosensory 

feedback information.5 However, the mechanism that utilizes peripheral feedback functions 

suboptimally as the demand on it increases. Patients with cerebellar disorders have been 

shown to have proprioceptive deficits during active but not passive limb movements.10 

Cerebellar dysfunction affects fast movements to a greater extent than slow movements. In 

addition, the ability to adapt to novel changes in movements is impaired. Imprecise 

movements and errors in perception during active predictable movements following 

cerebellar impairment has been attributed to a malfunction in the internal models of body 

dynamics.7 Table 1 shows a list of signs seen in patients with cerebellar impairment.

 Ocular motor control

The cerebellum is important for all types of eye movements and for ensuring fixation 

stability. The vestibulocerebellum is essential for gaze stability, vestibulo-ocular reflex, and 

smooth ocular pursuit. Various types of nystagmus, e.g. gaze-evoked nystagmus and 

saccadic intrusions, which are abnormal fast eye movements that take the fovea off the 

target, occur following cerebellar damage and result in fixation instability. The oculomotor 

cerebellum, which includes the fastigial nuclei and dorsal vermis lobules VI and VII, is 

mostly important for saccade processing; however, it also participates in smooth ocular 

pursuit initiation, horizontal alignment of the two eyes, and vergence processing.16,17
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The cerebellum fine-tunes eye movements and reduces their baseline variability to ensure 

that the two eyes are stable and working together. This is important for bringing and 

maintaining objects of interest on the fovea, which in turn leads to the best visual acuity 

whether the person is moving or not. This fine-tuning occurs online and also over time by a 

process called adaptation. Adaptation ensures the best calibration of the ocular motor 

responses, for example, the amplitude and direction of the vestibulo-ocular reflex, the 

velocity of smooth ocular pursuit relative to target velocity. In addition, the amplitude of 

saccades can undergo adaptation i.e. change in size, for which the cerebellum provides an 

essential role.16 Table 2 shows a list of ocular motor signs seen in patients with cerebellar 

diseases.

 Speech control

Spoken language broadly consists of two different neurological functions with different 

anatomical correlates. Language is discussed in a separate part of this chapter. Here, we 

focus on the production of speech, which is a complex process that involves several 

networks located in the cerebrum and cerebellum.18 The cerebellar contribution to speech 

control is likely similar to its control of limb movements. The production of speech involves 

the coordination of a large number of muscles, in particular the tongue and oro-facial 

muscles.19 Specifically, the cerebellum plays an important role in speech articulation, 

prosody (i.e. characteristics of speech style including rhythm, speed, emphasis, and pitch), 

and planning and processing of speech and language.20 Inputs from premotor, auditory and 

somatosensory areas to the cerebellum provide important information for choosing motor 

commands for speech.

Cerebellar impairment can cause ataxic dysarthria.18 Table 3 shows the characteristic of 

speech abnormalities in patients with cerebellar disorders. Abnormalities in speech motor 

programming through impaired timing and deficits in speech execution are both implicated 

in ataxic dysarthria.20 It is hypothesized that processing abnormalities in the feedforward 

motor commands results in abnormal speech production as it becomes more reliant on 

sensory feedback with its attendant delays. Such a delay may slow speech, produce pauses 

and disrupt speech rhythm.

There is some evidence for specific sites within the cerebellum that are important for speech 

articulation. Increased signal intensity on fMRI over the medial parts of the anterior lobe of 

the cerebellum has been described in association with tongue and lip movements in healthy 

volunteers. Lesions caused by stroke involving the superior paravermal area of the right 

cerebellar hemisphere may lead to dysarthria.19

 A role beyond motor systems

With the transition from 19th to 20th centuries, work from such distinguished neurologists as 

Babinski and Holmes postulated exclusive roles for the cerebellum in motor control with 

isolated cerebellar lesions resulting in deficits of motor coordination, motor speech output, 

and ocular motor function.21-23 Over the next three quarter century, as cerebellar circuitry 

Salman and Tsai Page 4

Neuroimaging Clin N Am. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was further elucidated and theories postulated regarding its mechanisms of actions, few 

studies challenged this view of a motor cerebellum.

The first challenge to this idea of a strictly motor cerebellum was postulated by Leiner et al 

1986, after examination of the development of the dentate nucleus during evolution.24 From 

more primitive species to primates, dentate nuclear development occurred most dramatically 

in the ventral dentate, an expansion mirrored by growth in the prefrontal cortex. By 

comparing dentatethalamic and thalamic-cortical projections, they postulated that these 

newly expanded areas of the dentate were connected to nonmotor areas of the cortex and 

thus were likely to have roles outside of strict motor constructs.

These hypotheses were supported over the next decade by the work of Schmahmann 25,26 

and Strick 27,28 and colleagues. These two groups utilized new developments in anterograde 

and retrograde tracing methodologies to define afferent and efferent circuits connecting the 

cerebellum to the cortex. Although these studies detailed connections to cortical motor areas 

as expected, these studies also identified extensive connections to non-motor cortical areas.

These tracing studies have since been supported by imaging studies examining both 

anatomic and functional connectivity of the human cerebellum. From functional magnetic 

resonance imaging and resting state connectivity studies, extensive connections between 

non-motor cortex and cerebellum have been established.29-33 In fact, these studies have 

remarkably demonstrated that the majority of cerebellum appears to be connected, not to 

motor, but to non-motor cortical areas.

In addition, cerebellar abnormalities and dysfunction have been identified in cognitive and 

neuropsychiatric disorders. Moreover, clinical evidence, functional imaging, and targeted 

pre-clinical studies further support non-motor roles for the cerebellum in multiple areas of 

cognition and behavior which will be detailed below with a specific emphasis on the 

pediatric population.

 Language

Roles for the cerebellum in speech initially revolved around motor control of speech. 

However, a role for the cerebellum in non-motor aspects of language has emerged.18,34-36 

Initial functional imaging studies demonstrated activation of the cerebellum, predominantly 

in lateral cerebellum on the opposite side to cortical language domains, in tasks of verbal 

fluency.37 Moreover, cerebellar lesions have been demonstrated to result in verbal fluency 

deficits.38,39 The cerebellum has also been implicated in production and comprehension of 

syntax, prosody, and grammar 40 with cerebellar dysfunction resulting in disturbances in 

these domains. Furthermore, clinical case studies have produced a picture of a cerebellar 

aphasia with difficulties in syntax, anomia, perseveration, reduced speech output and speed. 

Although these deficits again correlate mostly with cerebellar lesions localized to the 

opposite side of the dominant language cortex, evidence has emerged for a more 

complicated role and involvement for both lateral cerebellar hemispheres.41,42

Most of these studies, however, have involved adult patients. In the pediatric population, a 

role for the cerebellum in language has been postulated since the initial description by Daly 
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and Love of posterior fossa syndrome, a syndrome characterized by mutism, behavioral and 

affective disturbance, and executive dysfunction in children after posterior fossa surgery.43 

Although the mutism often improves, children frequently continue to have persistent 

language dysfunction.44,45 This syndrome has since been shown to involve disruption of 

afferent and efferent tracts of the cerebellum.46 Similar findings have been identified in 

patients with acute disseminated encephalomyelitis involving the cerebellum 47,48 while 

residual language disturbance has also been identified in pediatric multiple sclerosis in 

patients with cerebellar lesions.49 Similar to adults, in pediatric patients with epilepsy, 

language appears to localize mostly to the cerebellar hemisphere contralateral to cortical 

language areas.50

Cerebellar language involvement has also been implicated in reading. The cerebellum has 

been implicated in brain networks critical for reading on functional MR imaging.51-54 

Furthermore, abnormalities in structural cerebellar (volumetric and diffusion) imaging have 

been found in individuals with developmental dyslexia with functional MRI demonstrating 

significant differences between children with dyslexia and age matched controls.52,55 In 

addition, motor deficits have been identified in individuals with dyslexia, prompting the 

generation of a cerebellar developmental dyslexia hypothesis.56 Further supporting a role for 

the cerebellum in reading, individuals with cerebellar disorders demonstrate significant 

reading impairments.57-60

 Cognition

As with language, studies investigating cortical-cerebellar connections support roles for the 

cerebellum in cognitive processes. Functional imaging has revealed cerebellar activation 

during numerous cognitive tasks. One of the more consistent processes associated with 

cerebellar activation involves tasks related to working memory or executive function.31,61-66 

Cerebellar activation has also been identified with tasks of attention and timing.67-70 As with 

the cerebellar role in language, studies on a cerebellar contribution to cognition largely 

support a role for the lateral cerebellar hemispheres in supporting cognitive processes.31 

Clinical and pre-clinical studies have corroborated these findings from imaging studies. 

Preclinical models and individuals with cerebellar lesions display diverse cognitive deficits: 

executive function deficits; deficiencies in procedural memory, declarative memory, and 

associative memory such as eye blink conditioning; and deficits in timing/attention.71-76

In the pediatric population, a similar picture emerges with significant cognitive disruption 

associated with pediatric cerebellar disruptions ranging from cerebellar developmental 

abnormalities to inflammatory insults, ischemic injury, oncologic and post-surgical 

injury.45,47-49,77-82 These cognitive deficits involve disruptions in executive dysfunction, 

working memory, procedural memory, and processing abilities in addition to impacting 

intellectual quotient and visuospatial abilities.

 Behavior

In addition to cognitive and language processes, the cerebellum has been proposed to play 

roles in regulating behavior. Schmahmann in his initial description of cerebellar cognitive 
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affective syndrome described significant behavioral disruption in 20 patients with cerebellar 

disruption with behaviors ranging from affective changes to disinhibited behaviors.40 In fact, 

Daly and Love in their initial description of the posterior fossa syndrome in 1958 43 

described a similar dysfunction with loss of affective responses, marked apathy, social 

disinterest, and emotional blunting. Subsequent studies of cerebellar lesions have supported 

these initial descriptions with numerous associated behavioral disruptions including affective 

disruption, alterations in attention, anxious behaviors, emotional and social blunting, 

obsessive and compulsive behaviors.40,44,77,83 Conversely, examination of behavioral 

disorders has further supported a contributory role for the cerebellum in behavioral 

regulation with significant cerebellar abnormalities identified in a number of 

neurodevelopmental and behavioral disorders. Here, we will highlight cerebellar 

involvement in three such disorders: attention deficit hyperactivity disorder (ADHD), 

schizophrenia, and autism spectrum disorders (ASD).

 Attention Deficit Hyperactivity Disorder (ADHD)

ADHD is estimated to affect 5% of the pediatric population with estimates approaching 50% 

of these individuals having persistent symptoms into adulthood.84 Cerebellar lesions as 

noted previously are often accompanied by impaired attention and disinhibited behavior.85,86

As in developmental dyslexia, children with ADHD manifest high rates of motor 

abnormalities of up to 50% with motor deficits correlating with worse outcomes.87,88 

Multiple studies have reported decreased size of the cerebellum in patients with ADHD, 

with many studies demonstrating decreases in the posterior cerebellum (lobules VIII-

X).89-93 Reductions in the posterior cerebellar volumes themselves correlated with severity 

of illness.85,94,95 Longitudinal studies of ADHD demonstrated persistent reductions in 

cerebellar size whereas initial changes in the caudate resolved with time.96 Compared to 

typically developing siblings, individuals with ADHD demonstrated reductions in right 

cerebellar volumes while prefrontal regions showed changes in both individuals with ADHD 

and their typical developing siblings.97 White matter abnormalities have also been identified 

in ADHD with involvement of bilateral middle cerebellar peduncles while functional 

connectivity is also significantly disrupted.98-100 As further evidence of cerebellar 

involvement, changes in cerebellar activation was visualized after just a single dose of the 

stimulant methylphenidate, one of the mainstays of ADHD therapy, while cerebellar 

volumes in patients receiving methylphenidate therapy were significantly larger than 

volumes in untreated cohorts.95,101,102

 Schizophrenia

Schizophrenia is a devastating psychiatric disorder characterized by a constellation of 

symptoms including hallucinations, delusions, impaired judgement, disorganized speech and 

behavior, motor disruptions, and negative symptoms (decrease/absence of thoughts, actions, 

affect). The disorder is associated with impairment in cognitive domains including memory, 

learning, and executive function.

The cerebellum has been implicated in the pathogenesis of schizophrenia. Cerebellar lesions 

result in psychiatric disturbances applicable to schizophrenia including both positive and 
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negative symptoms.103 As with ADHD and developmental dyslexia, schizophrenia is also 

accompanied by elevated rates of motor abnormalities.104,105 Studies have revealed 

numerous structural changes in the cerebellum of patients with schizophrenia, including 

reduced posterior vermis size, reductions in Purkinje cell size, and abnormal white matter 

connectivity, while reduction in cerebellar size correlates with symptom severity.106-109 

Functional studies also have revealed disruptions in cortico-cerebellar connections, with 

alterations in cerebellar-cortical activity during performance of many cognitive tasks 

including memory, executive function, and working memory 110-113 with other studies 

demonstrated abnormalities in cerebellar activity with theory of mind tasks.114,115 

Intriguingly, treatment of a small cohort of treatment resistant patients with cerebellar 

vermal theta burst stimulation demonstrated significant improvement in mood and negative 

symptoms in addition to improvements in cognitive measures.116 The exact mechanism 

underlying these benefits are not understood, although modulation of cortico-cerebellar 

loops has been postulated.117

Although onset of the schizophrenia occurs mostly in adolescence or early adulthood, less 

commonly, symptoms will emerge in childhood. Childhood onset schizophrenia tends to 

portend a more severe diagnosis and is often accompanied by more severe premorbid 

symptoms such as language, social, and motor disturbance.118-120 In this pediatric 

population, studies have documented reductions in cerebellar volume as seen in adult onset 

schizophrenia.121,122 Longitudinal studies demonstrated that volumes were initially 

comparable to controls with volume decreases noted only on subsequent studies.121,123 

Disruptions in functional connectivity have also been identified in the cerebellum during a 

verbal working memory task in childhood onset schizophrenia.124

 Autism Spectrum Disorders (ASD)

ASDs are prevalent neurodevelopmental disorders (affecting 1:68 children in the US from 

latest estimates) that are characterized by social dysfunction and repetitive behaviors/

restricted interests.125 Numerous studies have implicated the cerebellum in the pathogenesis 

of the disorder. As documented earlier, cerebellar activation is demonstrated in social 

paradigms.126,127 As with the above disorders, motor dysfunction is prominent in ASDs 

with prevalent motor apraxias, alterations in tone, and abnormalities in eye movements 

affecting the majority of patients (reviewed recently by Mosconi et al 128).

Pathologic findings have also implicated the cerebellum in these disorders. In fact, the most 

consistent pathologic feature identified in post-mortem tissue from individuals with ASD is 

cerebellar Purkinje cell loss and/or reductions in Purkinje cell size.129-132 ASD pathologic 

specimens also reveal evidence of increased oxidative stress in the cerebellum.133-135 

Abnormal gene networks associated with ASD have also been identified in the cerebellum in 

animal models.136

Structural changes have also been demonstrated in ASD with initial studies focused on 

alterations in vermis volume.137,138 Subsequent studies have been able to narrow that focus 

to more specific areas, most localized to the posterior cerebellum.139-141 Abnormalities in 

structural connectivity have also been identified in patients with ASD,142,143 while studies 
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have also revealed abnormalities in functional connectivity.144 In addition, studies 

demonstrate reduced function in the cerebellum in patients with ASD.145,146

Supporting a critical role for the cerebellum in ASDs, isolated cerebellar injury also 

significantly increases the risk of developing ASD symptoms. Limperopoulos et al 

demonstrated that approximately 37% of children with isolated cerebellar hemorrhage 

demonstrated autistic behaviors.147 When location of hemorrhage was considered, 

involvement of cerebellar vermis resulted in an increased rate ranging from 80-100%. 

Furthermore, in children with developmental malformations of the cerebellum, rates of 

social dysfunction and positive autism screening are elevated and associated with vermian 

involvement.77,78,148 Children with posterior fossa syndrome also demonstrate increased 

rates of autistic behavior.44

Preclinical models similarly suggest cerebellar dysfunction in ASDs. Cerebellar 

abnormalities have been identified in multiple rodent models of ASD.149,150 The cerebellar 

mediated associative learning paradigm – eye blink conditioning – was also found to be 

abnormal in multiple ASD rodent models.73 Moreover, in mouse models of Tuberous 

Sclerosis Complex, a neurodevelopmental disorder with high rates of ASD, genetic 

disruption limited to cerebellar Purkinje cells 151,152 resulted in these mice displaying 

autistic-like behaviors with social impairments, repetitive behaviors, and behavioral 

inflexibility. These models also displayed pathology consistent with clinical pathology with 

ASD loss, increased markers of oxidative stress, and abnormalities in dendritic spines 152,153 

while also displaying on electrophysiology studies, impaired Purkinje cell function and 

excitability, consistent with functional imaging in ASD.145,146,152 Thus, whereas previous 

studies were unable to address whether cerebellar dysfunction can result in ASD behaviors 

or whether cerebellar abnormalities are secondary to other distal processes, these studies 

demonstrated that cerebellar dysfunction by itself was sufficient to generate abnormal 

behaviors seen in patients with ASD.

 Other Disorders

In addition, the cerebellum has been implicated in a diverse array of additional behavioral 

disorders – including bipolar disorder, depression, and anxiety (reviewed by Phillips et 

al 154). However, for the purposes of this review, we have tried to focus on those disorders 

that affect the pediatric population and for which sufficient data generated from children 

were available.

 Conclusions

Roles for the cerebellum beyond traditional roles in motor coordination continue to emerge 

(Table 4). Clear roles for the pediatric cerebellum have been identified in motor functions, 

cognition, and behavior in both normal development and in disease. With a significant 

portion of cerebellar development extending from the third trimester into the initial postnatal 

years, disruptions of cerebellar function from diverse causes may contribute to the 

pathogenesis of neurodevelopmental disorders. Attainment of a better understanding of the 

cerebellar involve ment in these disorders should not only lead to a better mechanistic 
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understanding of cerebellar function but should also lead to development of targeted 

therapies for neurodevelopmental disorders of childhood.
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Key points

• The pediatric cerebellum is important for processing, controlling, and 

modulating movement, cognition, and behavior

• Pediatric cerebellar dysfunction causes poor coordination, increased 

variability, impaired accuracy, and tremor manifesting during limbs 

movements, walking, stance, talking, and eye movements

• Pediatric cerebellar dysfunction results in cognitive and behavioral 

dysregulation.

• Cognitive and behavioral disorders such as developmental dyslexia, 

attention deficit hyperactivity disorder, autism spectrum disorder, and 

schizophrenia display cerebellar abnormalities/dysfunction.
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Table 1

Cerebellar signs causing abnormal control of voluntary movement

Sign Comment

Dysmetria Inaccurate movement trajectory with under or overshooting a target. It can be observed during finger-nose-finger 
exam

Intention (kinetic) tremor Oscillation of a limb especially when approaching a target during voluntary movements

Dysdiadochokinesia Irregular and slow movements observed during rapid alternating movements of the hand involving successive 
pronation and supination

Action tremor Oscillations observed during postural tasks e.g. maintaining the heel of one foot over the contralateral knee for a 
few seconds

Essential tremor Oscillations of a body part e.g. the head or outstretched arms during a maintained posture

Palatal tremor Rhythmic oscillations of the palate

Dysrhythmokinesia Abnormal rhythm observed during tapping of a limb

Hypotonia Decreased resistance to passive stretch

Motor delay Slow acquisition of motor milestones

Rebound Abnormally large displacement of an outstretched arm following a tap on the wrist with overshooting followed by 
few oscillations around the primary position

Ataxia of stance Swaying of the body while standing up

Ataxia of gait Wide-based gait with staggering and swaying

Head tilt Lateral displacement of the head

Titubation Involuntary rhythmic oscillations of a body part e.g. head or trunk

Pendular reflexes Excessive oscillations of a limb (like the swing of a pendulum) observed after eliciting a deep tendon jerk
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Table 2

Cerebellar ocular motor signs

Sign Comment

Gaze-evoked nystagmus Ocular oscillations observed while trying to hold gaze eccentrically (i.e. off-center), horizontally 
and/ or vertically. The fast phase of the nystagmus is towards the direction of gaze

Downbeat nystagmus Ocular oscillations observed with the eyes in central position (i.e. the eyes are located in the 
primary mid orbital position). The fast component beats downwards. The nystagmus is 
exacerbated in downgaze and lateral gaze

Upbeat nystagmus Ocular oscillations observed with the eyes in central position. The fast component beats upwards. 
The nystagmus is exacerbated in upgaze

Rebound nystagmus Transient ocular oscillations observed with the eyes in central position after returning from a 
maintained eccentric gaze

Periodic alternating nystagmus Horizontal ocular oscillations observed with the eyes in central position that change direction 
gradually after a silent phase. It occurs in a periodical manner, usually every 1-2 minutes

Opsoclonus Conjugate, random, involuntary, and multidirectional back-to-back fast eye movements observed 
during attempted fixation or movement of the eyes

Ocular flutter Conjugate, random, involuntary, and horizontal back-to-back fast eye movements observed during 
attempted fixation or movement of the eyes

Ocular bobbing Fast downward displacement of the eyes followed by slow return back to the central orbital 
position

Square wave jerks/ macro-saccadic 
oscillations

Fast, intruding, unwanted, involuntary, and conjugate eyes movements, which take the eyes off 
fixation. They may occur repetitively

Saccadic dysmetria Inaccurate fast eye movement that either undershoot (hypometria) or overshoot (hypermetria) a 
visual target

Saccade initiation delay (ocular motor 
apraxia)

Increased latency of fast eye movements that can usually be overcome with a head thrust or a 
blink

Slowing of smooth pursuit velocity 
(especially initiation)

Jerky (instead of smooth) eye movements that are observed during visual tracking

Impaired vestibulo-ocular reflex 
cancellation (VORc)

The ability to fixate objects moving in the same direction of the head requires cancellation of the 
vestibulo-ocular reflex, which normally drives the eyes contralateral to the direction of the head 
movement. Patients with cerebellar disease may not be able to cancel the vestibulo-ocular reflex

Abnormal optokinetic nystagmus Fast ocular oscillations (jerk nystagmus) are normally observed while tracking a rotating drum 
with alternating white and black stripes. The nystagmus generated with such a stimulus may be 
exaggerated with chronic cerebellar disease or dampened with acute cerebellar lesions

Impaired adaptation of eye movements Motor learning (adaptation) of the ocular motor system usually occur physiologically or 
following disease to repair and improve the accuracy or velocity of eye movements. Adaptation 
may be impaired in cerebellar disease.

Skew deviation Vertical misalignment of the eyes (i.e. one eye is higher than the fellow eye) which changes as a 
function of horizontal gaze position

Abnormalities in the control of torsion Abnormal rotational control of the eye around an axis perpendicular to the center of the pupil
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Table 3

Speech abnormalities in cerebellar diseases

Scanning speech (e.g. hesitation, accentuation of some syllables, omission of appropriate pauses, addition of inappropriate pauses)

Explosive speech

Slowness of speech

Syllables or words are not understandable with lack in speech clarity

Slurring of speech

Loss of intonation (abnormal rhythm and emphasis)

Voice tremor
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Table 4

Cognitive and behavioral abnormalities in cerebellar diseases

Language (non-motor speech, reading, writing)

Executive function and working memory

Autistic behavior (repetitive/restricted, social impairment)

Attention deficit hyperactivity disorder

Schizophrenia

Anxiety behavior

Mood disorders
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