
Winter is coming: How humans forage in a temporally
structured environment

Daryl Fougnie # $

Science Division, New York University Abu Dhabi,
Abu Dhabi, UAE

Department of Psychology, Harvard University,
Cambridge, MA, USA

Sarah M. Cormiea $
Department of Psychology, Harvard University,

Cambridge, MA, USA

Jinxia Zhang $

Visual Attention Lab, Brigham and Women’s Hospital,
Cambridge, MA, USA

School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing, China

George A. Alvarez # $
Department of Psychology, Harvard University,

Cambridge, MA, USA

Jeremy M. Wolfe # $

Visual Attention Lab, Brigham and Women’s Hospital,
Cambridge, MA, USA

Harvard Medical School, Boston, MA, USA

Much is known about visual search for single targets, but
relatively little about how participants ‘‘forage’’ for
multiple targets. One important question is how long
participants will search before moving to a new display.
Evidence suggests that participants should leave when
intake drops below the average rate (‘‘optimal foraging,’’
Charnov, 1976). However, the real world has temporal
structure (e.g., seasons) that could influence behavior.
Does it matter if winter is coming and the next display
will be worse than the last? We gave participants a
series of search displays and asked them to collect
targets as fast as possible. Target density was
structured—rising and falling systematically across trials.
We measured the duration for which participants
foraged in each display (trials were terminated by
participants). Foraging behavior was affected by
temporal structure—counter to a simple optimal
foraging account, observers searched displays longer
when quality was falling compared to rising
(Experiments 1 and 2). Additionally, we found that
temporal structure altered explicit predictions about
display quality (Experiment 2). These results
demonstrate that foraging theories need to consider
richer models of observers’ representations of the world.

Introduction

In our daily lives, we are constantly faced with the
problem of spotting items of interest in a complex
visual environment. Over the last fifty years, a
considerable amount of research has explored how we
find such target items in visual displays containing
distractor items (e.g., Chelazzi, Miller, Duncan, &
Desimone, 1993; Duncan & Humphreys, 1989; Eck-
stein, 1998; Eriksen & Schultz, 1979; Klein, 1988;
Neisser, 1964; Palmer, 1990; Treisman & Gelade, 1980;
Wolfe, 1994, 1998, 2003; Wolfe, Cave & Franzel, 1989;
Woodman & Luck, 1999). We now understand a great
deal about this type of visual search. But searching for
a particular target item (e.g., where did I leave my
keys?) is only one example of the set of visual search
problems that we face on a daily basis. Often we are not
trying to find a single item, but are searching for a class
of items of unknown quantity in our environment (e.g.,
picking ripe apples from an orchard or finding items of
interest at a market). These types of search raise
questions that have been rarely studied in classic visual
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search paradigms. For example, if I am picking apples
from a particular tree in an orchard, at what point do I
quit searching the current tree and move onto the next?
Such questions are important, not only because they
address an understudied area of visual search, but also
because they explore the interactions between decision-
making and visual cognition.

Decision-making in visual search tasks has been
explored by studying the foraging behavior of animals
(e.g., Charnov, 1976; Hayden, Pearson, & Platt, 2011;
McNamara, 1982; Mellgren, 1982; Stephens & Krebs,
1986; Wajnberg, Fauvergue, & Pons, 2000; Ydenberg,
1984) and by studying human behavior in laboratory
foraging tasks (e.g., Cain, Vul, Clark, & Mitroff, 2012;
Wolfe, 2013; Hutchinson, Wilke, & Todd, 2008; Pirolli,
2007). One major class of theories, termed Optimal
Foraging Theory, provides an overarching theoretical
framework for deciding when to quit searching a
display (Charnov, 1976; Stephens & Krebs, 1986). One
influential idea in optimal foraging theory, Marginal
Value Theorem, suggests that we measure the rate of
return (e.g., how many apples I am collecting per unit
of time) and that we quit searching the current display
when the rate of return falls below the average rate of
return (for all displays so far) (Charnov, 1976;
Mellgren, 1982; Stephens & Krebs, 1986; Wajnberg et
al., 2000; Ydenberg, 1984). Marginal Value Theorem
correctly predicts that if we increase travel time (e.g.,
increasing the distance between trees in an orchard)
that people will search longer before moving onto a
new display. Targets cannot be acquired during travel,
so increased travel decreases the average rate. Thus,
people search longer because it takes longer for the
current rate to fall to the average rate.

One of the appeals of Marginal Value Theorem is its
simplicity—it requires an individual to keep track of
only two pieces of information: the rate of target
acquisition within the current patch and across all
patches. However, the minimalistic nature is also a
liability. The theory leaves no room for an under-
standing of the environment to influence behavior (such
as its higher-order structure, Cain et al., 2012). Other
approaches within Optimal Foraging Theory build on
Marginal Value Theorem by proposing that individuals
are building predictions of display/patch quality while
foraging (Cain et al., 2012; McNamara, 1982; Olsson &
Brown, 2006). However, these accounts still propose
that foraging behavior is driven by very limited
information. In particular, the accounts ignore the
knowledge and beliefs individuals have about objects or
the environment.

Optimal foraging models have largely been tested in
tasks where trials are drawn from a randomized design
matrix. Critically, such designs minimize the contextual
information provided by objects and events, and result
in an artificial and unrealistic environment. The real

world has structure—inferences about the nature of the
world can come from a variety of sources (e.g., foraging
in an apple orchard will be more successful in autumn
than winter).

One important source of structure often ignored by
optimal foraging models is temporal context. Many
psychological processes have well-studied hysteresis
effects (current performance depends on past input).
For example, several paradigms reveal strong effects of
a previous trial on performance (e.g., priming of popout:
Maljkovic & Nakayama, 1994, 1996, 2000; attentional
capture: Lamy, Carmel, Egeth, & Leber, 2006; Leber &
Egeth, 2006a, 2006b; Leonard & Egeth, 2008; atten-
tional blink: Potter, Chun, Banks, & Muckenhoupt,
1998; working memory: Huang & Sekuler, 2010; task-
switching: Schneider & Logan, 2005). The perception of
ambiguous or impoverished visual input reveals evi-
dence that perception is an active and predictive
process where recent experience influences current
perceptual processing (Bar, 2007; Brascamp, et al.,
2008; Corbett, Fischer, & Whitney, 2011; Fischer &
Whitney, 2014; Liberman, Fischer, & Whitney, 2014).
Because the immediate past is a better predictor of the
present than the more distant past, experiential effects
fade over time (Corbett et al., 2011; Fischer & Whitney,
2014).

In the present studies, we explored how foraging is
influenced by temporal structure. We created historical
dependencies between trials by adding ‘‘seasons’’ to
foraging tasks. As participants advanced through trials,
the displays would alternate between periods of plenty
(many targets) and periods of scarcity (few targets), in a
systematic fashion. Of interest is whether foraging
behavior depends on whether participants are in rising
(scarcity-to-plenty) or falling phases (plenty-to-scarci-
ty).

To preview our results, we found that temporal
history influenced foraging behavior in a foraging task
for Ts among Ls (Experiment 1)—Participants foraged
longer during falling phases. Note that these findings
are inconsistent with classic optimal foraging theories.
Quitting rules such as Marginal Value Theorem predict
the opposite pattern; people should quit sooner in
falling phases. The rate of target collection has been
relatively high during the immediately preceding period
of plenty. This raises the average rate of target
collection. Thus, in the current patch with its lower
quality, people should quit more quickly as the rate of
return falls below the average.

Since we find that people search longer as patch
quality falls, we will argue that participants are using
temporal context to infer display quality. Searching for
Ts among Ls is challenging, and participants will gain
only limited information about display quality by
scanning items. If a participant checks a handful of
items and finds no targets, is this a bad display or bad
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luck? The visual system uses recent experience to
constrain uncertainty (Fischer & Whitney, 2014).
Therefore, temporal history may alter foraging behav-
ior by altering participants’ beliefs about display
quality. People may forage for longer in falling phases
than rising phases because the expected yield of search
is influenced by the content of the previous displays
(which is higher for falling phases), albeit not in the
manner predicted by the Marginal Value Theorem.

Does temporal history alter explicit beliefs about
display quality? In Experiment 2, on a subset of trials,
we interrupted the foraging task and asked participants
to directly rate display quality. We replicated the effect
of temporal history on foraging behavior—people
searched longer during falling than rising phases.
Additionally, we found higher quality ratings for
displays during falling phases, even though display
quality was equivalent in falling and rising phases.
Thus, temporal history alters both behavior and beliefs,
consistent with an active inference (or Bayesian)
account of foraging. Taken together, these results
highlight the limitations of existing models and
demonstrate that foraging theories need to consider
richer models of observers’ representations of the
world.

Experiment 1—Evidence for
temporal context effects

Methods

In this study, participants performed a simple
foraging task, collecting Ts among Ls. Versions of this
T among Ls task have been used extensively to study
visual search (e.g., Wolfe, Palmer, & Horowitz, 2010)
but unlike most studies, our task involved searching for
more than one target. As many as 10 targets were

presented in a single display. Participants were not
asked to find all targets in each display, but were
instead asked to find as many targets as possible over
many displays; thus, attempting to maximize their rate.
Participants could quit a display at any time and wait
1s for the next display.

Stimuli

Participants were asked to find a total of 350 Ts in
displays comprised of Ts and Ls at random orienta-
tions (Figure 1). Between 0 and 10 targets were
presented per display. Each display consisted of 49
items each subtending 0.98 3 0.98 visual angle and
presented at jittered locations within an invisible 7 3 7
grid (15.78 315.78) presented at the center of the screen.
The minimum distance between two stimuli was 0.758.
The current score was shown below the T and L
display. To make the search process more difficult, the
vertical line of the ‘‘L’’ stimuli was slightly to the right
of a characteristic L, increasing the similarity with the
T stimuli (Figure 1).

Temporal structure

The measure of interest is whether the foraging
duration differs between ‘‘rising’’ and ‘‘falling’’ phases
in the series of displays. The number of targets varied in
a systematic fashion, determined largely by display
order. To create ‘‘seasons,’’ the number of targets
varied between one and nine targets over a period of 40
trials in a sinusoidal manner. The sinusoid started in
the rising phase for each participant. Pilot studies
found no difference in foraging patterns if the phase of
the sinusoid was initially in a rising or falling phase (see
also Zhang, Gong, Fougnie, & Wolfe, 2015). In
practice, this sine wave was a step function (you cannot
have 4.2 targets; see solid line in Figure 2). Moreover,
the actual number of target presented was jittered by

Figure 1. Methods for Experiment 1: Participants searched for Ts among Ls. Both letters were presented in a 737 display with jittered

locations and randomly oriented letters. Displays contained 0–10 targets. Participants could quit foraging a trial by clicking outside

the search frame. The red circle in the second panel is for illustration purposes to indicate the location of a clicked T. Participants did

not see any red circles.
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one item. Thus, a display that would have held five
targets could have four, five, or six targets). The dotted
line in Figure 2 highlights an example of how target
number could change over the first 80 trials of the
study. Importantly, the total number of displays was
not preset, but was determined by the number of
selections it took a participant to reach 350 points.

Scoring

Participants collected Ts by moving the mouse to the
location of a letter and clicking. If this item was a T,
one point would be awarded and that T would
disappear. If an L was clicked in error, the point
counter would decrease by 2. Errors seldom occurred
for any participants in any condition (less than 2% of
responses). Participants could leave a display at any
point by clicking outside a frame in which the items
were presented. When a participant opted for a new
display, the current search display would clear. After a
‘‘travel time’’ of 1 s, a new display of 49 items would
appear. Participants were explicitly told that it was ok
to leave targets behind, and that their only goal was to
collect as many Ts as possible per unit time. We used a
self-terminating experiment (the experiment would end
after 350 points were collected) to strongly motivate
participants to collect Ts as fast as possible. Partici-
pants were told that the experiment would end once a
certain number of points were reached, but were not
told the exact number. The experiment concluded at the

end of a display once at least 350 points were earned.
Participants were given a chance to take a break every
15 displays.

Participants

Twelve participants were tested. They were between
the ages of 18 and 28 years, had normal or corrected-
to-normal vision and received either $10 per hour or
course credit. The studies were performed in accor-
dance with the Declaration of Helsinki and with
Harvard University regulations. Data from one par-
ticipant was excluded because that participant did not
view enough different displays (the cutoff was 80, or
two full cycles, and the participant only viewed 62
displays).

Results and discussion

We measured the time participants foraged in each
display (the time between display onset and offset).
Figure 3 shows average foraging times as a function of
trial number. We tested for effects on the number of
targets in the display by conducting an ANOVA on
foraging duration with target number as a factor.
Unsurprisingly, foraging duration was heavily deter-
mined by the number of targets in the display F(10,
100) ¼ 24.35, p , 0.001.

More importantly, we asked whether temporal
context influenced foraging duration. We split displays
into falling and rising phases according to whether they
were on the decreasing or increasing portion of the
sinusoid that determined target quantity (Figure 2).
Displays where the target quantity step function was at

Figure 2. Target density varied systematically In Experiment 1 via

a quantized sine wave pattern between one and nine targets

over a period of 40 displays (Solid Line). Target density

increased during rising phases (red) and decreased during

falling phases (blue). For each participant, we included a one-

item jitter on target number. The dashed line is a representative

example of what one participant might experience. The 40-

period temporal structure repeated until the participant

completed the study, with independent jitter for each display.

Figure 3. Time before quitting on each trial (black line; averaged

across participants) for the first four periods of the temporal

pattern of target density (red and blue step function).

Participants foraged longer in displays with higher target

density.
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ceiling or floor were not included because these trials
are ambiguously associated with rising / falling phases.
Rising and falling displays had equivalent numbers of
targets, even accounting for target jitter (p¼ 0.88), and
differed only in temporal context. Figure 4A plots the
quitting time for rising and falling phases as a function
of target quantity (before jitter). We found that
participants foraged longer during falling than rising
phases (Figure 4B), t(10)¼ 2.73, p¼ 0.021, Cohen’s d¼
0.26 (paired t test).1 A similar result was found when
we compared the number of targets found per trial
between falling (4.14) and rising (3.63) phases, t(10) ¼
5.54, p , 0.01, Cohen’s d ¼ 0.73. This effect was not
significantly different from the foraging duration effect
(p¼ 0.15). In addition, equivalent qualitative results
were found for all subsequent comparisons of rising
versus falling phases suggesting that the two measures
are tapping the same construct. For brevity, we report
foraging duration measures for subsequent analyses.

This study features a reliable temporal structure in
the form of ‘seasons’ that created falling and rising
phases. Is the large-scale temporal structure necessary
or is it merely that performance on the current patch
depends on the immediately preceding patch? To
explore this we conducted a new study on 10 naı̈ve
participants using the same task as Experiment 1 but
without temporal structure. Trials were categorized as
‘‘rising’’ or ‘‘falling’’ based on whether the Nth display
had greater (rising phase) or fewer (falling phase)
targets than the N–1 display. To address the problem of
differences in target quantity between rising and falling
conditions (trials where the Nth display has fewer
targets than the N–1 display are more likely to be trials
with a low target count), we computed separate
averages based on target quantity (only trials with three
to seven targets were included in the analysis) and

averaged these conditions within participants. We
found no difference between rising and falling phases,
t(9)¼ 1.6, p ¼ 0.14, using a paired t test. This null
finding does not preclude the possibility that the
previous trial influences foraging behavior. Indeed, a
recent study (Zhang et al., 2015) did observe small
hysteresis effects in a foraging task with a randomized
trial design. However, it does appear that the effects of
temporal structure are cumulative over several patches.

We also explored whether participants explicitly
noticed the temporal structure and whether this played
a role in determining the temporal effects. During
participant debriefing, participants were asked a series
of three questions to determine whether they noticed a
temporal pattern. We first asked participants if they
noticed anything that they want to report. Second, we
asked participants if they noticed any patterns. Finally,
we asked participants if they noticed any temporal
patterns. Only five participants noticed a pattern and
those five could only report that target quality had
streaks of scarcity and plenty. The differences in
foraging duration for rising and falling phases were not
reliably different for noticers and nonnoticers (the
difference between average foraging durations for
falling versus rising phases was 2.07s for noticers (6
1.26 s standard error) and 1.17s (6 0.31 s standard
error) for nonnoticers. An independent samples t test
found no difference between these numbers, t(9)¼ 0.76,
p¼ 0.47). With only five noticers and six nonnoticers
and with substantial variability between participants,
this study may lack the power to determine if awareness
of the temporal pattern had an effect on performance.
In any case, these results do suggest that being aware of
the temporal pattern did not play a decisive role in
driving the effect.

Figure 4. (A) Time before quitting in Experiment 1 for falling (blue) and rising (red) period as a function of the number of targets

(before jitter). (B) The average foraging duration was longer for falling than rising phases. Error bars in panels A and B represent

standard error of the difference in foraging duration between falling and rising displays.
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Participants foraged longer during falling than
during rising displays, even though the displays were
equivalent in everything but temporal structure. Classic
optimal foraging theories cannot explain such temporal
effects. Why are participants inclined to forage longer
during falling phases? Here we consider two broad
possibilities. One possibility is that people’s beliefs
about the potential return of a display may be biased by
the experience of the recent past. As participants forage
they only gain partial information—there is a great deal
of uncertainty about the likely number of targets in the
display. When confronted with uncertainty, our visual
system may use recent past experience to form
predictions about the world (Bar, 2007; Fischer &
Whitney, 2014). On this account, if recent displays had
few Ts, then the current display probably contains only
a few Ts. If the prior displays were rich, it would be
worth staying a little longer in the current display to
look for the Ts that ought to be present there.

Another possibility is that temporal structure is not
altering people’s beliefs about the potential of a display,
but that participants are making strategic decisions to
maximize returns over the short-term. This account
assumes that participants notice (either implicitly or
explicitly) that the quality of displays is rising or falling.
If participants are maximizing rewards for the imme-
diate future, the potential reward of future displays
could influence foraging time of the current display.
For example, if a participant senses that subsequent
displays will be worse than the current display, it would
be reasonable to spend a bit more time extracting the
relative riches from the current display.

A key distinction between these accounts is whether
temporal history is altering participants’ beliefs about
displays. We tested this in Experiment 2 by interrupting
the foraging task on a subset of trials and asking
participants to make judgments about the target
density of the current display. Moreover, we used quite
a different foraging task in Experiment 2, allowing us
to determine if the results of Experiment 1 generalize.
To preview our results, we replicated the basic findings
of Experiment 1 and established that temporal context
alters both foraging behavior and beliefs about the
world.

Experiment 2—Temporal context
alters beliefs about display quality

The goal of Experiment 2 was to determine whether
temporal context alters participants’ beliefs about the
number of targets in a display. To achieve this aim, this
experiment differed from Experiment 1 in a number of
respects. The principle difference was that, on a subset
of trials, the foraging display was replaced by a screen

asking participants to estimate the number of targets in
the current display (including those targets as yet
unseen and unclicked). In addition, we altered the
foraging task to give us control over what items a
participant saw in the displays. Instead of searching for
targets in a crowded visual display, participants were
shown items one at a time. Finally, the sinusoid (with a
period of 40) that determined target number in
Experiment 1 was replaced with a triangle wave (with a
period of 12). This change was made because a sinusoid
results in many displays that are near ceiling or floor,
limiting the number of useful displays.

The goal of these changes to the task was to focus on
the decisional aspects of foraging tasks. Variation in
search processes presumably accounts for a large
portion of variability in the efficiency with which
participants found targets in Experiment 1. De-
emphasizing search difficulty should therefore increase
our ability to accurately measure decision processes. In
addition, the changes in methodology allow us to test
the generalizability of our effects by exploring whether
they can be observed in an altered task. If a comparable
difference between rising and falling displays were
observed, this would suggest that the methodological
changes did not disrupt the temporal effects observed
in the first study.

Methods

We presumed that our measures would be noisier in
this study due to the infrequency of target estimation
trials and the reduction in the numbers of rising and
falling phase displays. Consequently, we increased our
participant sample size. The twenty participants were
between the ages of 18 and 28 years, had normal or
corrected-to-normal vision and received either $10 per
hour or course credit. In addition, participants were
told that they could earn up to $10 in bonus pay based
on accuracy during the target estimation task. All
participants were given the full $10 bonus. The studies
were performed in accordance with Harvard University
regulations and approved by the Committee on the Use
of Human Subjects in Research under the Institutional
Review Board for the Faculty of Arts and Sciences. The
data from all participants was included in the analyses
because all participants completed at least two full
cycles of temporal order.

The visual search component of the task was
simplified (Figure 5). The display consisted of an 8 3 8
grid of locations (148 visual angle). A subset (0–24) was
assigned as target locations; the rest were distractor
locations. Participants were not able to see the content
of each location because each location was filled with a
small black circle (0.168). However, the content of a
random location was revealed every 500 ms. If the
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revealed location was a target location, a green square
appeared at the location (0.478). If the location did not
have a target, a red square appeared instead. Partici-
pants were instructed to click the left mouse button
whenever a green square appeared. Participants did not
have to click on the square: A click anywhere within the
display would count. In addition, clicks counted if they
were within 1s of the onset of the target, giving
participants sufficient time for responses. The task
required constant attention, but was not too demand-
ing (less than 1% of targets were missed). A clicked
square disappeared, along with its location marker.
New locations were sampled randomly, with replace-
ment, from all locations with a marker. Thus, as in
visual search, there were diminishing returns for
remaining in a display for long periods.

Participants could leave a patch any time by clicking
the right mouse button. As in Experiment 1, partici-
pants were instructed to collect targets as fast as
possible and that they were not required to find every
target in a display. The experiment terminated when
participants collected 350 points. Correct targets added
1 point. False alarms subtracted 2 points (false alarms
were rare, 1.4% of responses).

At specific points in the temporal structure, the
foraging task was interrupted, and replaced by a
quality judgment screen. These interruptions occurred
at trials with eight and 16 targets in rising and falling
phases (Figure 6). The task was interrupted either at the
start of a display, after onset of the 8 3 8 display of
dots, or during foraging, after 16 items were shown. In
the 16-item reveal condition, the 16 chosen items were
constrained to show two or four targets (equally often
for both the eight and 16 target conditions). If
participants quit foraging the display before the 16th

item was revealed, the quality judgment task was
skipped (this happened infrequently, less than 3% of
target estimation trials (2.8% of falling phase trials;
2.4% of rising phase trials).

The quality judgment screen contained a white slider
that filled from left to right. Participants were
instructed that the proportion of the slider that was
filled represented the estimated proportion of the
display that functioned as targets (including seen and
unseen items). Participants adjusted the slider by
moving the mouse cursor left or right, and clicked the

Figure 5. Methods for Experiment 2. Left: Every 500 ms a square was revealed from a random location with a location marker. If the

location contained a target, the square was green (otherwise it was red). Participants were instructed to left-click the mouse to collect

targets. Location markers with clicked targets were removed. Participants could terminate search at any point by right-clicking the

mouse. Right: On a subset of trials, the foraging task was interrupted by a target estimation task. Participants were instructed to move

a slider to the left or right to indicate the estimated proportion of targets in the 64-item display (including seen and unseen items).

Participants were given practice with the slider task to ensure the onscreen instructions were understood.

Figure 6. Target density varied systematically in Experiment 2 via

a triangle wave pattern between 0 and 24 targets with a period

of 12 displays. Target density increased during rising phases

(red) and decreased during falling phases (blue). Hollow circles

indicate trials that were interrupted by a target estimation

judgment.
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mouse to submit a response. No feedback was provided
after the response. Participants were instructed that
accuracy in this task would be used to determine bonus
monetary compensation, but were not provided any
details on how this reward was calculated. In practice,
all participants were awarded the $10 bonus.

As in Experiment 1, temporal order varied in a
systematic fashion. Here we used a triangle wave that
varied between 0 and 24 targets with a period of 12
displays (each step changed target quantity by 4 items)
(Figure 6). We no longer added jitter to target
number—target density was completely determined by
trial order. Jitter was removed because participants
only saw a portion of any display, rendering the value
of jitter minimal. Importantly, falling and rising phases
were matched in target number.

Results and discussion

We tested for effects on the number of targets in the
display by conducting an ANOVA on foraging
duration with target number as a factor. Foraging
duration was heavily determined by the number of
targets in the display, F(6, 114) ¼ 28.86, p , 0.001.
More importantly, we replicated the effect of temporal
order: Participants searched longer during falling than
rising periods, t(19) ¼ 2.09, p ¼ 0.05, Cohen’s d¼ 0.32
(Figure 7A). Thus, the effect of temporal structure
appears to generalize across methodological changes
such as whether the task requires guided search or
whether items are revealed to participants. Addition-
ally, we note that similar effects of temporal structure
were also seen in an easier, nonguided search task
(Zhang et al., 2015) further demonstrating that this
effect is resilient across differences in methodology.

Do temporal structure effects at least partially reflect
changes in participants’ beliefs about display quality?

Figure 7B plots the average quality judgments for rising
and falling phases in the 0-item revealed and 16-item
revealed conditions. Averaged across all conditions,
participants estimated that 24.2% of items were targets
(the equivalent of estimating 15.5 targets), which was
close to the actual average of 18.8% (or 12 targets).
This indicates that participants understood the task
and were motivated to respond accurately. Quality
estimates were entered into a 2 3 2 ANOVA with
conditions of Items Revealed (0 or 16) and Temporal
Period (Falling or Rising). We found a main effect of
Temporal Period—participants judged displays as
containing more targets during falling phases even
though the target quality was equivalent for falling and
rising phases, F(1, 19)¼ 12.05, p , 0.005. We also
examined whether revealing information about display
quality influenced the strength of the temporal struc-
ture effect. If participants are using the past to
constrain uncertainty, then temporal effects should be
largest when participants have the most uncertainty
about display quality. Consistent with this prediction,
while we found no main effect of number of Reveals,
F(1, 19) ¼ 0.15, p ¼ 0.7, we did see an interaction
between number of Reveals and Temporal Period,
F(1, 19)¼ 8.73, p , 0.01. This interaction likely
indicates that participants were less influenced by
temporal order when more information about the
current display could guide their judgments.

Taken together, the results suggest that the temporal
order effects seen here (as well as those seen by Zhang
et al., 2015) are not driven just by expectations about
an upcoming winter or spring, but at least in part by
the past influencing participants’ beliefs about the
present. Note that this result does not rule out other
potential influences of temporal order on foraging
behavior, as there may be multiple contributions to this
effect.

Figure 7. (A) Foraging duration for rising (red) and falling (blue) phases in Experiment 2. (B) Quality estimate percentages for the 0-

reveal (darker colors) and 16-reveal conditions (lighter colors) plotted for rising and falling phases. Error bars in panels A and B

represent standard error of the difference in foraging duration or quality estimation between falling and rising displays.
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General discussion

Many tasks that we need to perform on a daily basis
require surveying an environment for items of interest
and making decisions about how to maximize the
number or quality of items that are obtained. The
current work explores how decisions are made in visual
cognition tasks using foraging as a case study. Which
factors influence when you quit searching one display
and move on to the next?

This question has been addressed in classic optimal
foraging models by proposing that participants opti-
mize input by leaving whenever the current intake
drops below the average rate (Marginal Value Theo-
rem). This simple rule has been highly influential
because it provides an overarching framework that can
be used to study everything from parasitic insects
(Wajnberg et al., 2000), to birds (Ydenberg, 1984), to
humans (Cain, et al., 2012; Wolfe, 2013). Further, this
theory can explain behavior while proposing minimal
cognitive machinery—the rule relies on basic arithmetic
and forgoes the need for internal representations or
theories about the world. But one important limitation
in this approach is the assumption that foraging
behavior can be explained by ignoring cognitive states.
We are not passive observers to the world—perception
is inferential (Brady & Chun, 2007; Brady & Tenen-
baum, 2013; Chun & Jiang, 1998; Feldman, Griffiths, &
Morgan, 2009; Fischer & Whitney, 2014).

One reason for the success of classic optimal foraging
theories is that they have been tested in tasks in which
experimenter control and randomization strip structure
and context from the world. In such cases, the
limitations of this approach may not be apparent. Here
we introduced temporal structure to the world by adding
seasons. As participants advanced through the study,
they experienced transitions from plenty-to-scarcity
(falling) and scarcity-to-plenty (rising). In contrast to
existing accounts, we found that participants would
forage longer in falling than rising phases (Experiments
1 and 2). Furthermore, this temporal context effect not
only altered foraging behavior, but was found to
influence explicit judgments of target density (Experi-
ment 2). Taken together, these findings argue that
foraging behavior is driven not only by estimates of
current and average intake, but by inferences about the
current state of the world shaped by previous experience.

Our findings are consistent with other literature
demonstrating how past experience can influence
current perception, recognition, or memory through
Bayesian inference (Crawford, Huttenlocher, & Enge-
bretson, 2000; Feldman et al., 2009; Fischer &
Whitney, 2014). Bayesian inference provides a natural
account for how previous experience can influence
foraging behavior. We come into a display with prior
beliefs about the world. These prior beliefs are

informed by experience. Consistent with this, the prior
experience effect on estimates of target density (Ex-
periment 2) became weaker when participants were
given some experience of the current display. The
mechanism by which prior beliefs combine with
experience need not be explicitly Bayesian (Sailor &
Antoine, 2005; Crawford, Huttenlocher, & Hedges,
2006), but Bayesian inference provides a compelling
account for how this could be achieved.

There is a considerable amount of research on
animal foraging behavior, but our research highlights
an area that is not well understood. Studies show
seasonal variation in foraging patterns (e.g., Conner,
1981; Owen-Smith, 1994; van Marken Lichtenbelt,
1993), but do nonhuman animals use recent experience
to guide foraging behavior? Studies have found that
poor foraging experiences (e.g., low target quantity at a
particular location) can lead to longer search durations
in the subsequent foraging episode (Tentelier, Desou-
hant, & Fauvergue, 2006; Visser, van Alphen, & Nell,
1992), consistent with the predictions of a moment-to-
moment optimal foraging model. But what would
happen if predictable, short-term temporal signals were
given to nonhuman animals? To our knowledge, no
existing study directly addresses this question.

Our findings highlight the limitations of existing
models. Classic optimal foraging models often give
observers considerable information (such as the distri-
bution of possible states of the world) but ignore how
observers acquire this information (Charnov, 1976;
Hutchinson, Wilke, & Todd, 2008). Optimal foraging
models may make good rules of thumb for approxi-
mating behavior, but they are only a starting point. It
may be tempting to ignore context effects as nuances on
theory. But context effects reveal the aspects of the
environment that an observer uses to shape beliefs
about the world. Foraging theories will need to account
for these context effects. Here we show that foraging is
altered by temporal context. Future work will no doubt
reveal a rich tapestry of context effects. Understanding
these context effects will give valuable insights on the
interaction between vision and decision-making.

Keywords: visual search, foraging, temporal structure,
hysteresis
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Footnote

1 The experiment was self-terminating and therefore
participants saw different numbers of displays. Could this
explain the results? To test this, we ran a second analysis
with only the first two cycles of the target quantity step-
function, which all participants completed.We still found
a difference between rising and falling phases, t(10)¼
2.59, p¼ 0.027, inconsistent with this possibility.
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