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Abstract: Resting state cerebral dynamics has been a useful approach to 

explore the brain’s functional organization. In this study, we employed 

graph theory to deeply investigate resting state functional connectivity (rs-

FC) as measured by near-infrared spectroscopy (NIRS). Our results suggest 

that network parameters are very similar across time and subjects. We also 

identified the most frequent connections between brain regions and the 

main hubs that participate in the spontaneous activity of brain 

hemodynamics. Similar to previous findings, we verified that symmetrically 

located brain areas are highly connected. Overall, our results introduce new 

insights in NIRS-based functional connectivity at rest. 
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1. Introduction 

The human brain is seen as a complex system due to its functional capabilities and structural 

organization. Indeed, complex systems’ tools have been successfully employed to 

neuroimaging data recently, which has allowed researchers to explore intrinsic features of the 

brain. Of major interest in the literature is the brain’s functional interaction between different 

regions, which can be investigated with graph theory approaches [1–4]. Recent studies from 

Blood Oxygen Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) 

has presented remarkable features of brain networks, such as highly connected hubs [5], 

hierarchy [6], assortativity [6,7], and small-worldness [8]. 

In particular, the study of the human brain at rest has gained attention mainly because of 

its potential for diagnosing the diseased brain [9–13]. In the resting state, the brain lacks 

external input, so the subjects do not have to perform any task, avoiding the subjective need 

of computing effort and task demand among subjects and groups. Cerebral hemodynamic 

fluctuations of the human brain at rest, also known as spontaneous brain fluctuations, are 

characterized by low-frequency (< 0.1 Hz) oscillations [14–18]. Although the origin of these 

fluctuations is still subject of debate, most of the resting-state patterns reported so far are 

observed among brain areas that share the same functionality and/or that are anatomically 

connected [14,19–21]. This fact supports the hypothesis that resting state networks (RSNs) 

reflect at least part of neuronal activity [19]. 

The first report regarding resting state functional connectivity (rs-FC) dates from 1995 in 

which Biswal et al. correlated the BOLD signal from the right and left somatosensory cortices 

[14]. Since then, fMRI has been employed as a standard technique to explore rs-FC mainly 

due to its high spatial resolution and capability of covering the entire brain, including deep 

areas. A variety of procedures were developed to assess rs-FC from fMRI data, such as seed-

based correlation and Independent Component Analysis (ICA) [13,22–25]. In the seed 

approach, an element or a region of interest (ROI) is arbitrarily chosen as a seed, and a 

similarity measurement (typically, the Pearson correlation coefficient) between the seed’s 

time series and the time series of all other regions is performed. This simple yet powerful 

approach for investigating rs-FC has the advantage of providing a direct interpretation of the 

results and a good sensitivity to identify RSNs [26]. Its main limitation is the need of a priori 

information (by choosing one ROI as a seed), which can bias the analysis to the choice. On 

the other hand, the ICA method does not require a priori information [25]. The ICA approach 

consists of decomposing the temporal signal onto independent components, from which the 

interaction between the regions can be inferred [24,27]. In the last years, ICA has become 

standard in fMRI experiments to investigate RSNs. 

Functional connectivity analysis methods have been previously translated and adapted to 

near-infrared spectroscopy (NIRS) data [28–35], showing that NIRS can also probe 

spontaneous brain fluctuations in human subjects during the resting state. Due to its high 

temporal resolution, high portability and low-cost, NIRS can additionally provide bedside 

and/or longitudinal monitoring of rs-FC in both the healthy and the diseased brain [36–39]. 

The optical technique can also assess populations that would be hardly possible and 

significantly expensive to measure with fMRI, such as neonates [38,40]. In addition, NIRS 

high temporal resolution allows for physiological signal removal quite efficiently [28,29]. On 

the other hand, NIRS data can only provide information from the cortical regions due to the 

principles of photon diffusion through tissue. Even in the cortex, the relatively low number of 

probes in most NIRS systems further limits analysis of the whole brain and makes it difficult 

to understand the interaction among different cortical regions. Very few studies so far have 

presented a detailed analysis about resting state functional connectivity of the whole brain 

using NIRS [29,41–43], and at least some of these studies suggest a high variability, both 

across different subjects and even for different data sets of the same subject. Even fewer 

studies attempted to employ complex networks and graph theory algorithms to analyze NIRS 
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data [41,43]. Unlike fMRI, the translation of graph theory to NIRS is not properly established 

in the literature and lacks further investigation. 

In this work, we hypothesized that the use of network algorithms could be employed to 

further investigate the human brain functional connectivity during the resting state with NIRS 

data. By properly taking account of NIRS specific features, we aimed to characterize the 

structure of the interaction among functional NIRS measurements of the whole head with 

global network parameters. We also analyzed how these parameters varied as function of the 

strength of the interaction. We considered that the behavior of networks built from NIRS data 

could provide a more global picture about cortical connections than the standard seed-based 

approaches. Last, we wanted to investigate whether there were common connectivity patterns 

among different subjects, and we developed a novel methodology based on the frequency of 

appearance of links in a network to find out similar features across different NIRS-based 

networks. We found that global network parameters extracted from NIRS are reproducible 

and therefore reliable to characterize the healthy brain at rest. Similar to previous findings 

with seed-based approach in resting state NIRS, networks extracted from total-hemoglobin 

concentration changes presented the highest reproducibility across different runs and subjects. 

2. Materials and methods 

2.1 Subjects and protocol 

The experimental data used in this study was previously reported [29,44]. Briefly, data were 

acquired from 11 healthy-male subjects with an average (standard deviation) age of 35 (12) 

years old. All subjects were instructed to close their eyes and do nothing (resting state) in a 

recliner chair inside a quiet dark room. For each subject, 300-sec baseline runs were 

performed from 2 to 4 times. The experiment protocol was approved by the Institutional 

Review Board at the Massachusetts General Hospital, where the experiments were carried 

out. All subjects provided written informed consent. 

2.2 NIRS methods 

A continuous-wave near-infrared spectroscopy system (CW5, TechEn Inc., Milford, MA) was 

employed to perform all measurements [45]. The system consisted of 32 laser diodes at 2 

different wavelengths (690 and 830nm, emitting ~10mW each) and 32 avalanche photodiodes 

(APD). The optical probe was designed to cover most of the subject’s head in a configuration 

that allowed measurements of 48 different source-detector pairs (channels). Each channel had 

a source-detector distance of 3.0 cm. All optodes were secured with Velcro and foam 

material. The 48 channels covered frontal (16 channels), parietal (12 channels), temporal (13 

channels), and occipital (7 channels) lobes. Blood pressure was independently and 

simultaneously monitored with a homemade pressure sensor for further background 

physiological noise removal. The temporal resolution of all (optical and blood pressure) data 

was 10 Hz, which provided temporal time series of 3000 data points per channel in each run. 

For each run of each subject, we first removed motion artifacts by employing an 

automated algorithm from a standard NIRS data analysis package (HomER) [46]. Briefly, any 

time point was marked as motion artifact if the signal changed 10 times the standard deviation 

of the time series, or if it changed by more than 20%, over a short period of time (0.5 s). 

Motion correction was performed by using a spline interpolation technique [47,48]. Then, 

channels with signal-to-noise ratio (SNR) less than 25% of the mean SNR of all channels 

were discarded and not included in the analysis. We discarded 2 subjects from analysis due to 

this procedure, since they had a significant lower number of channels with good SNR. 

For rs-FC data analysis, light intensity for each channel and wavelength was first 

converted to relative changes in optical density. Then, we performed a global signal 

regression by applying a Principal Component Analysis (PCA) algorithm and filtering out the 

first principal component (PC), which has been shown to have the highest correlation with the 
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global average signal [44,49]. The regression of the PC-based global effect estimator 

minimizes the effects of global artifacts, mainly the ones from systemic physiology (mostly 

due to cardiac pulsation, respiration, blood pressure and heart rate) [44]. In addition, it has 

been shown that the PCA regression does not introduce spurious anti-correlations unlike the 

general global average signal [49]. Next, the time courses were band-pass filtered between 

0.009 and 0.08 Hz so that low-frequency interference noise could also be removed [30,50,51]. 

This low-pass frequency cutoff also removes high frequency physiological noise due to heart 

beat (~0.8 Hz) and cardiac cycles (~1 Hz). Last, we regressed out the measured blood 

pressure fluctuations from the filtered signal to remove systemic low-frequency blood 

pressure contributions, as previously published [29,52,53]. Due to the importance of this step, 

we discarded 2 other subjects from analysis due to bad blood pressure data. After all 

regressions of spurious sources in the optical signal, the resultant time series was converted to 

oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentration changes by using the 

modified Beer-Lambert law [46]. Total hemoglobin concentration (HbT) was calculated as 

the sum of HbO and HbR. 

2.3 Network analysis 

The NIRS networks were defined using the source-detector pairs and the time courses of the 

hemoglobin concentrations. Figure 1 depicts the whole process of network construction. 

Briefly, each channel represented a node in the network. For each NIRS contrast (HbO, HbR, 

and HbT) we computed the Pearson correlation coefficient, r, between two channels for all 

possible combinations. The correlation matrix from a single run of a subject was used to 

define the existence of a link between two nodes of the network [41]. 

The adjacency matrix, A, was obtained by binarization of the correlation matrix. In the 

adjacency matrix, two nodes i and j were considered to be linked if the correlation coefficient, 

aij, was higher than or equal to an arbitrary threshold, rT (i.e., aij  rT). Since there is no 

standard choice for the threshold, we varied rT from 0.05 to 0.90 (in steps of 0.05) so that we 

could analyze the behavior of each network as function of the threshold. For each threshold, 

the network was backprojected onto a topographic map for visualization purposes. 

For network analysis, global network parameters were extracted using standard metrics 

from graph theory [1,3,4,6]. For each network we calculated: 1) the average number of links 

per node, known as the average degree (K) of a network. In terms of the adjacency matrix, K 

can be expressed as 
1

ij

i jn
a ; 2) the dispersion of the links, measured as the standard 

deviation of the degree for each node (StdK); 3) the clustering coefficient (CC) in order to 

provide a metric of how grouped the neighboring nodes are. Specifically, the CC measures 

the fraction of the collection of three nodes that form a loop, and it can be calculated from the 

elements of the adjacent matrix as [1] 
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4) the average of the minimum distance between two nodes, known as the characteristic 

pathlength (L) of the network, and; 5) the maximum distance between two nodes, i.e., the 

diameter of the network (D). Here, distance represents the minimum number of links 

necessary to reach a given node starting from a previous arbitrary node. In a network, L and 

D provide information about how far apart two nodes are from each other. Therefore, in a 

network that is not entirely connected, L and D approach infinite. For this reason, we only 

computed L and D until the maximum correlation coefficient in which the network is entirely 

connected. Since we were interested in studying the behavior of the network as function of 

threshold, K and CC were calculated for all thresholds, independently of whether the network 

is connected or not. 
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Fig. 1. Procedure to construct the topological resting state NIRS networks. (A) Optical 

geometry of the NIRS experiment showing sources (red crosses), detectors (blue circles) and 

channels or source-detector pairs (full black circles). For each hemoglobin concentration time-
course, we computed the Pearson correlation coefficient, r, among all channels to extract (B) 

the correlation matrix of a single run of a subject. (C) The adjacency matrix was obtained after 

choosing a correlation coefficient threshold, rT. (D) The network was backprojected onto a 
topographic map of the optical geometry for visualization. (HbO: oxy-hemoglobin, HbR: 

deoxy-hemoglobin; HbT: total hemoglobin). 

The network parameters were calculated independently for each run of each subject and 

each NIRS contrast. Statistics within a subject (intra-subject analysis) were summarized using 

the mean and the standard deviation of the network parameters across all runs of the same 

subject for each contrast separately. Similarly, results for the whole group (inter-subject 

analysis) were performed averaging over each subject’s individual network metrics results. 

All data analysis and statistics were performed with homemade scripts in MatLab 

(Mathworks, Inc., Natick, MA). 

3. Results 

Before analyzing the networks, we further replicated results previously published in the 

literature with the seed approach [29]. Figure 2 shows HbR correlation matrices (Fig. 2(A)) 

and their topological resting-state functional connectivity maps (Fig. 2(B)) for 3 different runs 

of the same subject. For the topographic maps we arbitrarily chose a channel in the parietal 

lobe as a seed. 
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Fig. 2. Resting-state functional connectivity maps performed with the seed-based approach. A) 
Correlation matrices derived from deoxy-hemoglobin concentration changes in three different 

runs for one illustrative subject. The black rectangle highlights the seed chosen for analysis. B) 

Backprojected functional connectivity topographic maps for the seed chosen in all three runs. 
The black lines represent the source-detector separation (i.e., channels). The thicker line 

represents the channel picked as the seed. 

Although RSNs have been shown to be reproducible with NIRS data, Fig. 2(B) suggests 

that the connectivity maps can also change considerably over time. As an example, for two 

specific channels the correlation coefficient varied from 0.86 in the second run to 0.97 in the 

last run. Across all channels, the average change in correlation was 0.52 between the first and 

the last runs. The mean correlation coefficients and their dispersion for all subjects in this 

cohort have been previously reported in the literature, with variations of up to 42% [29]. 

Although motion artifacts [54,55] and sample size [56] can significantly contribute to 

contamination in the correlation coefficients (and therefore to large variability in the 

correlation maps), it is unlikely that the variation in our NIRS-based connectivity maps can be 

attributed to these effects only due to our preprocessing steps and number of data points in 

each time series (~3000). The heterogeneity reported in Fig. 2 motivated the search for 

alternative approaches that could yield less variability in order to better understand brain 

spontaneous fluctuations at rest, as measured by NIRS. 

Given the intra-subject variability in the connectivity maps with the seed-based approach, 

we first attempted to investigate the NIRS-based network during the resting state over time 

(i.e., across different runs for the same subject). Figure 3 shows the number of links, N, as 

function of the correlation threshold for each run of a representative subject. As expected, the 

number of connected links decays exponentially as the strength of the interaction (as 

measured by the correlation coefficient) between the regions increases. For all NIRS 

contrasts, we observed a transition in the behavior of the total number of links as function of 

the correlation strength. This transition occurs at rT = 0.7 for HbO and HbT, and at rT = 0.6 

for HbR. For correlation thresholds higher than these transition points, small increases in the 

threshold make the networks abruptly sparser until the point there is no connection between 

regions. Interestingly, such behavior is constant across runs for the same subject, and the 

transition point is very similar for all NIRS contrasts and across all subjects, suggesting that 

the general behavior of the links in the networks (and therefore the network structure) is 

approximately constant despite local variations. 
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Fig. 3. Number of all connected links (N) in the network as function of the correlation 

threshold, rT, for all NIRS contrasts of a representative subject. In the figure, each color 
represents a different 5-minute run from the same subject. 

In order to investigate the reproducibility of the network at different time intervals, we 

computed the network parameters for each run of each subject. The results for a 

representative subject can be seen in Fig. 4. As expected, K and CC are inversely proportional 

to the correlation threshold, since the number of links decreases exponentially with increasing 

threshold. The distribution of the links is highly nonlinear, as indicated by StdK. We typically 

observe a high dispersion of links until rT = 0.3, potentially due to the presence of noise in 

lower correlation coefficients. After this threshold, the distribution of links decreases 

monotonically. Regarding the behavior of the network for long-range interactions, depicted 

by the diameter and the average pathlength, we observed that both parameters increase with 

the correlation threshold, as also expected since the network gets sparser with increasing 

correlation threshold. 

Although the intra-subject variability in functional connectivity maps with the seed-based 

approach can be quite high (Fig. 2), the network parameters were significantly less variable 

than the correlation coefficients across the different runs. We quantified the variability across 

runs of the same subject by calculating the standard deviation of the network parameters over 

all the runs of the subject for all correlation thresholds. The maximum standard deviation of 

the average degree for the subject in Fig. 4 was 15% (at rT = 0.3 in the HbO network). 

Similarly, the CC showed a maximum standard deviation of 18% (at rT = 0.55 in the HbO 

network), while the maximum standard deviation of L and D (whose values are at least 1) was 

0.32 (at rT = 0.3 in the HbO network) and 1.2 (at rT = 0.3 in the HbO network), respectively. 

The low variability in the network parameters was found in all of our subjects. The 

greatest standard deviation across runs of the same subject was 25% for both K (at rT = 0.6 in 

the HbO network) and CC (at rT = 0.45 in the HbR network). The highest standard variation 

of L and D were 0.34 (at rT = 0.55 in the HbR network), and 1.5 (at rT = 0.4 in the HbO 

network), respectively. Among all NIRS contrasts, we found that HbO has the lowest 

reproducibility (i.e., larger standard deviations across runs) for K and D in the intra-subject 

analysis. HbR presented the lowest reproducibility for the CC. 

We also hypothesized that the stability of the network parameters still holds across 

different subjects. Figure 5 shows the mean and standard deviation of the network parameters 

for all NIRS contrasts and for all subjects. Similarly to what we saw for individual subjects, 

the behavior of the network parameters as function of the threshold is similar for the whole 

group. We did not observe significant differences in how the network parameters vary as 

function of the threshold between the NIRS contrasts. As expected, the variability among 

different subjects is higher than the intra-subject variability, but still surprisingly low. Table 1 

summarizes the largest variability found for each of the global network metrics. One can note 

that HbT provides the lowest range and standard deviation among different subjects for most 

of the network metrics we calculated, similar to what have been previously reported with 

seed-based approaches [29]. Overall, the global network parameters appear to be a reliable 

metric to characterize functional connectivity during the resting state with NIRS. 
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Fig. 4. Average degree (K), standard deviation of the degree (StdK), clustering coefficient 

(CC), characteristic pathlength (L) and the diameter (D) as function of the correlation threshold 

for a representative subject over four different runs. All network parameters are highly 
reproducible over time. 

Last, we were interested in analyzing the common links of the networks across different 

subjects in order to find NIRS-based network patterns for the group. To do so, we arbitrarily 

increased r until the average degree of the network was 20, which corresponds to 

approximately 40% of the maximum average degree. We arbitrarily chose this average degree 

for illustrative purposes, since we wanted to visually analyze the topographic network. We 

repeated this process for every run of each subject. The resultant network of each subject was 

created with the links that repeated in at least 67% (or 2/3) of all runs for that subject. This 

choice guarantees that we would always look at the most frequent links, regardless of the 

number of runs for each subject. 
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Fig. 5. Network parameters for HbO (red circles), HbR (blue squares) and HbT (green 
triangles) data as function of the correlation threshold across all subjects. The error bars 

represent the standard deviation across all runs of all volunteers. 

Figure 6 shows the resultant network with the most frequent links across all subjects for 

each NIRS contrast. Overall, we found a total of 68, 40 and 67 connections common to all 

subjects (i.e, connections that appeared in at least 6 of 7, or 85%, of all subjects) for HbO, 

HbR and HbT networks, respectively. Such number of connections represents an average 

degree of approximately 3, indicating that the common pattern must not be densely connected 

and therefore information transfer should be efficient across most of the brain regions. One 

quantitative measurement of such efficiency in networks can be performed by the giant 

component [57,58]. Briefly, the giant component of a network is the largest subgraph of the 

network in which starting from an arbitrary node it is possible to reach any other. HbO, HbR 

and HbT resultant networks had giant components of 75%, 41% and 81% of all nodes, 

respectively. Interestingly, HbT networks had the highest reliability in terms of global 

network parameters (both inter- and intra-subject analysis) as well as the largest giant 

component among all NIRS contrasts. 

Table 1. Variability of the network parameters across all subjects. Variability was 

quantified by the largest range and standard deviation of the parameters at a given 

threshold, rT. The maximum variation represents the ratio of the standard deviation and 

the mean value. 

 Average Degree (K)   Clustering Coefficient (CC) 

rT mean (range) Max. variation  rT mean (range) Max. Variation 

HbO 0.4 19 (13 - 26) 28%  0.6 0.59 (0.44 - 0.72) 20% 

HbR 0.55 14 (9 - 31) 54%  0.6 0.65 (0.56 - 0.87) 17% 

HbT 0.15 23 (20 - 27) 13%  0.6 0.53 (0.32 - 0.64) 19% 

     rT   

 Average Pathlength (L)   Diamater (D) 

 rT mean (range) Max. variation  rT mean (range) Max. Variation 

HbO 0.45 1.8 (1.6 - 2) 14%  0.35 4.2 (3 - 5) 23% 

HbR 0.4 1.6 (1.4 - 1.8) 15%  0.4 4 (3.7 - 5.3) 30% 

HbT 0.3 1.9 (1.8 - 2) 5%  0.35 4.8 (4 - 5.5) 21% 
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Fig. 6. Most frequent links across all subjects for all NIRS contrasts. The colorbar indicates the 

normalized frequency of each link across all subjects. Black dots represent the nodes (i.e., the 

channels) of the network. Hubs in the networks are represented by the bigger gray dots. 

Regarding location of the most frequent connections, all NIRS contrasts exhibited links 

between symmetrical hemisphere regions. The parietal and occipital lobes have 

approximately 6.5% and 28% of all possible inter-hemisphere connections linked, 

respectively. The number of regions connected in the frontal lobe is lower, with only 3.1% of 

all possible inter-hemisphere connections linked in the resultant network. 

Last, we also questioned whether there were highly connected nodes (hubs) that could 

affect or drive NIRS networks at rest. In order to find the hubs in each network, we first 

computed a topological measure of centrality based on the weighted degree, w, of each node, 

and then we found the nodes with w  90% of the maximum w of each network [59]. Here, 

the value of 90% was arbitrarily chosen considering previous studies of centrality [59,60]. We 

found 4, 5 and 8 hubs in the HbO, HbR and HbT networks (gray nodes in Fig. 6). Most of the 

hubs were located in the frontal and parietal lobes, with a slightly predominance in the left 

hemisphere. 

4. Discussion 

In this work, we aimed to present and to validate a novel approach based on graph theory to 

deeply investigate the interactions of spontaneous hemodynamic activity between different 

regions of the brain during the resting state with NIRS. Several studies – mostly with fMRI 

data – show evidences that hemodynamics throughout the brain is dynamically connected 

through some sort of network structure. Graph theory has recently been employed as a useful 

tool to analyze the topology of functional connectivity brain hemodynamics in fMRI 

[8,21,61,62]. Similarly, networks from human brain electrophysiology have also been 

previously analyzed with magnetoencephalography and electroencephalography [63–65]. 

Distinct from most BOLD-fMRI works, NIRS offers a direct measurement of hemoglobin 

concentration changes. However, NIRS measurements are limited by the short depth of light 

penetration – it ranges from ~0.5 to 2 cm in adult humans, – which is just enough to probe the 

cerebral cortex [66]. Since most of resting state networks reported with BOLD-fMRI has 

cortical activation [27], NIRS networks could also be employed to investigate interactions 

between hemodynamic regions during the resting state. Unlike most of NIRS studies in the 

literature, we took advantage of a large spatial coverage from a previous data set to get 

hemodynamic information from the whole head. The spatial extension of our probe was 

crucial to analyze the interaction among different regions of the brain with the network 

approach. On the other hand, it does not allow measurements of short channels to be used as 

regressors for removal of extra-cortical contributions. However, we have shown in the past 

that by independently measuring systemic signals, such as blood pressure oscillations, most of 

systemic bias present in the NIRS signal could be removed [29]. 

Few studies so far have used NIRS to study rs-FC considering the whole head [29,41,43], 

and even fewer combined NIRS data and graph theory [41,43]. A previous study found that 

NIRS-based networks are as efficient as random networks to globally process information 

[41], which is in agreement with our high giant components estimates (75%, 41% and 81% 
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for HbO, HbR and HbT networks, respectively). The same authors showed previously that the 

network parameters were reproducible among subjects, similar to what we have found here 

(Fig. 5). 

Our present study extends on previous findings by showing that the network parameters 

are also stable within subject variability, as opposed to variations previously reported in rs-FC 

with NIRS using the seed approach [29]. Some authors have previously discussed that the 

seed correlation approach is biased to variations in the seed location and size [27]. Since 

NIRS lacks a high spatial resolution, different runs could be highly affected by variations in 

the optode displacement during the experiment, and even more across subjects. Figure 2 

shows that these variations do exist, and they can be quite large. In addition, compared to 

most of rs-FC approaches performed with NIRS so far, including ICA, the network approach 

has the advantage of characterizing global information and structure with well-developed and 

highly explored global network metrics. By using the network approach we could find a 

remarkably and consistent dynamics of global network parameters as function of the strength 

of coherence at every run for each subject (Fig. 4). Despite large local variations over time, 

global network features seem to remain stable over time. Over all NIRS contrasts, HbT 

provided the most reproducible networks both within subjects and across subjects. However, 

given the small sample size in this pilot study, future validation of the technique in a larger 

group of healthy subjects is needed. It would also be interesting to compare the global 

network metrics measured in healthy subjects with the parameters of the diseased and injured 

brain. We are inclined to believe that the powerfulness of network analysis coupled with 

some intrinsic features of NIRS enriches the potential to investigate the human brain at rest 

and to future diagnose the diseased brain. 

The similar behavior of the network across runs can be viewed as a conservation of the 

network properties over time. The seed-based topographic map can be seen as a ‘picture’ of 

the system at a certain time from interactions of one particle with the others, similar to a 

microstate in a many-particle system. Different times will show different ‘pictures’ of the 

system, from different microstates. The global network properties define the macrostate of the 

system, which can be assessed by different microstates. This statistical perspective is an 

alternative approach to explain the local variations in seed-based approaches as well as the 

global stability of the network properties. 

Regarding the network methodology, most network approaches published in the 

neuroimaging literature are built with a fixed parameter (in most cases, it is used the 

correlation threshold or the average number of links) [4,5,63]. Here, we chose to study the 

behavior of the networks as function of a free parameter. Therefore, we treated the strength of 

interaction as a degree of freedom of the system, which is mathematically represented by the 

Pearson correlation coefficient. The threshold can be seen as the order parameter of our 

NIRS-based networks. Indeed, Fig. 3 shows an abrupt change in the number of links of the 

network as function of threshold. After the threshold reaches 0.6-0.7, the slope of the decay 

changes abruptly, suggesting a different behavior of the network after this point. 

Last, we wanted to further understand the topology of the interactions between the 

different regions in our data. Despite the fact that the connectivity pattern can be unique to 

every subject (and can even change over long periods of time due to brain plasticity), we 

hypothesized that there must be common links across our population cohort. In order to find 

the most repeatable links we introduced a simple way to quantify the frequency of each link. 

While our approach enabled us to find the most connected regions and the hubs of the 

network, it was based on arbitrary assumptions for the parameters. Due to the small number 

of subjects, we chose to be very conservative in our choices, so that our procedure could 

indeed represent a common network across all volunteers. More importantly, we certified that 

our choices did not add bias in our results, since changing the values of the parameters did not 

remove any of the links that we reported in this study. An alternative choice of parameters 

added more links that were not presented in our choice. Nevertheless, these assumptions are 
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limited due to our sample size, and they could be adjusted accordingly in future studies with a 

larger number of subjects. 

The frequency map of common links across the population presented in Fig. 6 is 

elucidative because it provides interesting insights from NIRS-based functional connectivity 

at rest. First, we have found that most of the hubs are located in frontal and parietal regions, 

and they are not symmetrically distributed between the hemispheres. Similar to previous 

studies with BOLD-fMRI [67], there are more hubs in the left hemisphere. Brain asymmetry 

is a subject of debate in current neuroscience, and we need more studies to better understand 

and validate our results, but it is interesting to find this asymmetry as a consequence of our 

approach. In addition, we observed that several of the most frequent links connects regions 

that resemble the most published networks with BOLD-fMRI during the resting state 

[14,20,21,24]. However, the lack of spatial resolution in our data does not allow us to 

properly compare our maps of frequency with the BOLD-fMRI networks. A future study that 

simultaneously combines NIRS and fMRI is currently ongoing in order to further understand 

the similarities between our NIRS-based derived networks and the standard fMRI-based 

networks. 

5. Conclusion 

In summary, we have investigated network properties of the human brain at rest by applying 

network theory on NIRS data from the whole head, including frontal, parietal, temporal and 

occipital lobes from both hemispheres. We found that global network parameters extracted 

from NIRS data are a reliable metric to characterize the human brain organization at rest. 

Among all NIRS contrasts, our results showed that the HbT provides the most robust 

networks with the highest reproducibility over time and among different subjects. When we 

analyzed the most frequent links across all volunteers, we found connections among different 

brain areas that are in agreement with the fMRI literature. Brain areas that are symmetrically 

located have high density of links and long clusters. Most of the connected regions are located 

in the frontal and parietal regions. Overall, our present work enhances the feasibility of NIRS 

and networks to investigate resting state connectivity of the whole head. It also contributes to 

the understanding of how the brain works at rest and how it is organized as a complex 

network. Future studies with a larger number of healthy subjects are desirable to test some of 

the arbitrary choices we made in this work. The powerfulness of network analysis coupled 

with some intrinsic features of NIRS, such as portability, low cost, and high-temporal 

resolution, enriches the potential to investigate spontaneous brain activity and to future 

diagnose the diseased brain. 
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