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Abstract

Metastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways 

unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block 

cancer spread to, and colonization of distant sites without affecting primary tumor formation. 

Genes have been identified with expression patterns inverse to a single MSG, and found to encode 

functional, druggable signaling pathways. We now hypothesize that common signaling pathways 

mediate the effects of multiple MSGs. By gene expression profiling of human MCF7 breast 

carcinoma cells expressing a scrambled siRNA or siRNAs to each of 19 validated MSGs (NME1, 

BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, 
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GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose 

expression was significantly opposite to at least five MSGs. Five genes were selected for further 

analysis: PDE5A, UGT1A, IL11RA, DNM3 and OAS1. After stable downregulation of each 

candidate gene in the aggressive human breast cancer cell line MDA-MB-231T, in vitro motility 

was significantly inhibited. Two stable clones downregulating PDE5A (phosphodiesterase 5A), 

enzyme involved in the regulation of cGMP-specific signaling, exhibited no difference in cell 

proliferation, but reduced motility by 47 and 66% compared to the empty vector-expressing cells 

(p=0.01 and p=0.005). In an experimental metastasis assay, two shPDE5A-MDA-MB-231T clones 

produced 47–62% fewer lung metastases than shRNA-scramble expressing cells (p=0.045 and p= 

0.009 respectively). This study demonstrates that previously unrecognized genes are inversely 

related to the expression of multiple MSGs, contribute to aspects of metastasis, and may stand as 

novel therapeutic targets.
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 Introduction

In 2013, an estimated 232,340 new cases of invasive breast cancer were expected to be 

diagnosed among women and approximately 39,620 women were expected to die from 

breast cancer in the US [1]. Despite improvements in surgery, radiation and chemotherapy, 

metastatic disease remains the most common contributor to breast cancer-related mortality 

[2]. Treatment methods developed by focusing on the primary tumor eventually fail in many 

cases, and metastatic disease remains incurable. Thus, to increase survival, metastasis 

prevention and more effective treatments for established metastases are necessary.

The metastasis suppressor gene (MSG) family includes genes that, when re-expressed in a 

metastatic tumor cell, are able to inhibit the metastatic process without reducing primary 

tumor size. Often, MSGs are downregulated in the metastatic site compared to the primary 

tumor [3]. Since the discovery in 1988 of the first metastasis suppressor, NM23-H1 (or 

NME1), the number of confirmed MSGs has increased to over 30 [3–8]. MSGs are involved 

in cellular processes such as context-specific cellular proliferation, motility, adhesion, 

invasion, resistance to apoptosis, and angiogenesis. Understanding the biological 

mechanisms of the MSGs will be crucial to developing treatments that target this process. To 

date, studies have almost universally concentrated on one specific MSG, rather than 

investigating commonalities.

Attempts to therapeutically target MSG pathways have been proposed (reviewed in [9]). The 

identification of drugs that reactivate silenced MSGs has been reported [10–13]. An inverse 

correlation approach was successfully used to identify new druggable targets to each of two 

MSGs, RHOGDI2 (ARHGDIB) and NM23 [14, 15]. By re-expressing RHOGDI2 in 

metastatic bladder cancer cells and identifying transcripts repressed by RHOGDI2 and 

overexpressed in invasive bladder tumors, Titus et al discovered both endothelin-1 and 

neuromedin-U [15]; atrasentan, an inhibitor of endothelin-1, is a new therapeutic agent. For 
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NM23-H1, Horak et al discovered that LPAR1 (EDG2/LPA1), a lysophosphatidic acid 

receptor, was inversely expressed. Re-expression of LPA1 overcame NM23-H1 inhibition of 

motility and metastasis [14, 16]. Pharmacologic LPA1 inhibition resulted in significantly 

reduced metastasis formation with induction of cancer cell dormancy at the metastatic sites 

in in vivo models [17].

Although MSGs appear to have different cellular localizations and functions, pathway 

interrelationships and redundancies are beginning to emerge [18, 19]. Berger et al described 

the involvement of three MSGs, NM23, MAP2K4 and PEBP1 (RKIP) in two biochemically 

interconnected Map kinase signaling pathways, MAPK/ERK and JNK signaling [7]. It is 

likely that multiple common signaling pathways are used by the MSGs, and that some of 

these pathways can represent interesting translational targets for the development of anti-

metastatic strategies. We present herein a first gene expression analysis of multiple MSGs: 

AKAP12 (SSeCKS/GRAVIN) [20], ARHGDIB [21], BRMS1 [22], CASP8 [23], CD44 [24, 

25], CD82 (KAI-1) [26, 27], CDH1 [28, 29], CDH2 [30], CDH11 [31], DRG1 [32], GSN 
[33], KISS1 [34], MAP2K4 [35], MAP2K6 [36], MAP2K7 [37], MAPK14 (p38-α) [36], 

NME1 (NM23/NDPK), PEBP1 [38], and RRM1 [39]. We have identified and validated five 

genes: DNM3, OAS1, IL11RA, UGT1A, and PDE5A as having expression patterns inverse 

to at least five (and up to 11) MSGs. As proof of principle, when the expression of each gene 

was silenced using shRNAs, in vitro motility of MDA-MB-231T cells was decreased. 

PDE5A was upregulated in eight of nineteen siRNA-MSG samples. The stable silencing of 

PDE5A in MDA-MB-231T cells using two different shRNAs reduced experimental 

metastasis by 47 and 62%, respectively.

 Materials and Methods

 Cell culture conditions

Human breast cancer cell lines MCF7 and BT474, and immortalized kidney cell line 

HEK293TN were obtained from ATCC (Manassas, VA). BT474-M1 subline was obtained 

from MC Hung, MD Anderson Cancer Center, TX [40]. A sub-line of human MDA-MB-231 

cells, designated MDA-MB-231T, was used [10]. Cells were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM) (Invitrogen, Grand Island, NY) supplemented with 10% 

FBS, and antibiotics (100 U/ml penicillin, 100 μg/ml streptomycin; Invitrogen), under a 

humidified 37°C incubator at 5% CO2.

 Gene silencing

RNAis were purchased from Qiagen (Valencia, CA, Supplementary Table S1) and 

transfected into MCF7 cell line using Lipofectamine™ RNAiMax (Invitrogen) according to 

the manufacturer’s protocol. Briefly, either 2×106 or 1×106 cells were plated in 100-mm 

petri dishes and incubated for either 48 h or 96 h, respectively, with 30 nM siRNAs and 30 μl 

Lipofectamine RNAiMax. These two time points were chosen in order to analyze both the 

early (48 h) and late (96 h) effects of the MSGs silencing in terms of alteration in 

downstream gene expression.
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To stably knockdown the target genes’ expression in MDA-MB-231T cells, Mission-shRNA 

(Sigma, St. Luis, MO) were used and insertion into the cells was performed using lentiviral 

particle production and infection according to the manufacturer’s protocol. Briefly, 1×106 

HEK293TN cells were transfected with 1 μg each of shRNA-MSG plasmids and 2 μl 

packaging mix (Clontech, Montain View, CA) using 3 μl FuGENE HD transfection reagent 

(Roche, Indianapolis, IN). After 48 h incubation, the medium containing the newly formed 

viral particles was collected, filtered with Millex-HV 0.45 μm filters (Millipore, 

Carrigtwohill, CO) and added to 1×106 MDA-MB-231T cells together with 5 μg/ml 

polybrene solution (Sigma). After 24 h infection, cells were washed with PBS, and DMEM 

containing 1μg/ml Puromycin (Invitrogen) was added to select the infected cells. The 

following Mission-shRNA plasmids were used: pLKO (SHC001), NT (SHC216), shPDE5A 

(TRCN0000048743, TRCN0000048745), shDNM3 (TRCN0000051405, 

TRCN0000051407), shOAS1 (TRCN0000005007, TRCN0000005009), shUGT1A1 

(TRCN0000029530, TRCN0000029531), shUGT1A9 (TRCN0000034655, 

TRCN0000034656).

 Microarray analysis

siRNA-MSG transfected MCF7 cells were collected at 48 h and 96 h using TRIzol Reagent 

method (Invitrogen). RNA was extracted using RNeasy® mini Kit (Qiagen, Valencia, CA) 

and DNase I (Qiagen) following manufacturer’s instructions.

The RNA concentration was assessed using Nanodrop ND-1000 spectrophotometer 

(ThermoScientific, Wilmington, DE). RNA quality was measured by calculating RNA 

integrity number on Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).

Following quantification, 1 μg of total RNA was used for microarray analysis and sent to 

Affymetrix Core Service (NIH, Frederick, MD) where labeling and hybridization reactions 

were performed using standard Affymetrix protocols. The platform used was the 

Affymetrix-Genechip Human Genome-U133_Plus_2.0 Array. Expression values were 

calculated using Affymetrix GeneChip analysis software MAS 5.0. Microarray data can be 

obtained via the Gene Expression Omnibus repository, accession no. GSE53668. Probes of 

selected genes are listed in Table 1 and Supplementary Table S2.

 Quantitative Reverse-Transcription-Polymerase Chain Reaction (qRT-PCR)

Expression of MSGs or selected target genes was measured by qRT-PCR. Total RNA was 

extracted as described above. cDNA was synthesized using iScript™ cDNA synthesis Kit 

(Bio-Rad, Hercules, CA). One μg total RNA was added to the reaction mix (1 μl iScript 

reverse trancriptase, 4 μl 5X reaction mix, nuclease-free water to 20 μl final volume). The 

mixture was incubated at 25°C for 5 min, 42°C for 30 min, 85°C for 5 min and 4°C until 

use. cDNA (10 ng) was used as template with primers (Sigma, listed in Supplementary Table 

S3) and SYBR Green (Bio-Rad) for qRT-PCR using an iQ5-detection system (Bio-Rad) 

following manufacturer’s instructions. Expression levels of the genes were normalized to 

GAPDH levels. Results were analyzed using iQ5-Optical System software (Bio-Rad).
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 Cloning and gene overexpression

IL11RA cDNA was obtained from pOTB-IL11RA plasmid (ATCC, MGC-2146) and 

subcloned into a lentiviral pCDH-CMV-MCS-EF1-NEO vector (CD514B-1, System 

Biosciences, Mountain View, CA) using EcoRI and XhoI restriction sites. Lentiviral 

particles were prepared as described above and MCF7 cells were infected for 48 h and 

selected with neomycin (1mg/ml).

 Western blot analysis

Protein lysates were prepared as previously reported [16]. Membranes were probed over-

night at 4°C with the following rabbit polyclonal antibodies: anti-IL11RA (Santa Cruz 

Biotechnology, Santa Cruz, CA), anti-UGT1A1 (Abcam, Cambridge, MA), anti-OAS1 

(Abcam), anti-PDE5A (Abcam), anti-DNM3 (ProteinTech, Chicago, IL). Mouse anti-β-

Actin antibody (Sigma) was used as loading control.

 Cell migration assay

Transwell migration assays were performed in Boyden chambers as previously described 

[16]. Each condition for all cell lines was assayed in triplicate wells and each experiment 

was performed in triplicate.

 Cell proliferation assay

Cellular proliferation was measured by 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay. 1,000 cells/well were plated in 96 well plates and grown for 24, 48 

and 72 h prior to the addition of 10% MTT (Sigma). After 2 h incubation, MTT was 

solubilized by addition of 100μl/well of DMSO. Plates were incubated for 30 min at 37°C 

and read on a SpectraMax M2 plate reader (Molecular Devices, Sunnyvale, CA) at 570 nm.

 Experimental Pulmonary Metastasis Mouse Model

Experiments were performed under an approved National Cancer Institute (NCI) Animal 

Use Agreement. Female six-week-old athymic nude mice were obtained from Charles River 

Laboratories (NCI-Frederick Animal Production Area, Frederick, MD). 5×105 MDA-

MB-231T cells were injected into the lateral tail vein of each mouse [10]. A total of 10 

mice /experimental group was used. At week 9, mice were sacrificed and lungs collected in 

Bouin’s solution (70% picric acid, 25% Formaldehyde, 5% glacial acetic acid). Surface lung 

metastatic lesions were counted before paraffin-embedding and sectioning (10μm) the 

tissues. Hematoxylin and Eosin (H&E) staining was performed to visualize and count the 

metastatic lesions in each section. To measure proliferation rate in metastasis, lungs were 

stained with rabbit anti-Ki67 antibody (Vector Laboratories, Burlingame, CA), following 

manufacturer’s protocol.

 Bioinformatic and statistical analysis

Differential gene expression analysis of the microarray dataset was performed using R 

software (http://www.r-project.org). ANOVA method was applied to calculate a t-statistic 

value for relative difference in gene expression based on permutation analysis. Ingenuity 
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Pathway Systems (Redwood City, CA; http://www.ingenuity.com) was used to conduct 

pathway exploration.

The significance of mean comparison was assessed by either Student’s t-test or Mann 

Whitney test and considering 95% confidence interval. P<0.05 was considered to be 

significant. Validation of the inverse correlation between the selected genes and MSGs in 

breast tumor cohort was performed analyzing the microarray expression data from two 

publicly available datasets downloaded from NCBI GEO: GSE2034 and GSE1456 [41, 42]. 

The two datasets include 286 and 159 breast cancer patients, respectively. Partek Genomics 

Suite (http://www.partek.com) was used to perform the statistical analysis. The expression 

data were median-centered and log2-transformed for each gene across all samples. For each 

gene of interest, the expression values were averaged and plotted on a bar chart. A third 

publicly available dataset was used for the Pearson correlation analysis: GSE26304 [43]. 

This dataset includes 31 pure DCIS, 36 IDC patients, 42 mixed and 6 normal samples.

 Results

 Inverse association approach to identify downstream targets to multiple MSGs

Based on the success of previous studies identifying functional, druggable inverse correlates 

of single tumor or metastasis suppressor genes [14, 15], we hypothesized that genes with 

expression patterns inverse to that of multiple MSGs exist and could provide functional and 

therapeutic insights into the metastatic process. For this analysis, each of 19 MSGs was 

silenced in vitro and gene expression profiled. The tumorigenic cell line MCF7 was chosen 

to study the effect of MSG downregulation on gene expression. The expression of each 

MSG in MCF7 cell line was first verified using qRT-PCR (Supplementary Fig. 1). Most of 

the MSGs showed a relatively high expression level with NME1 having the highest 

expression and AKAP12 the lowest expression level of the genes analyzed. Independent 

transfections of MCF7 cells were performed using two different siRNA sequences targeting 

each MSG (Supplementary Table S1) or a siNeg-siRNA. RNA was harvested 48 h and 96 h 

post siRNA transfection and the silencing of each MSG was assessed by qRT-PCR 

compared to either wild type (wt) or siNeg-siRNA transfected cells (Fig. 1). Because of 

variability in siRNA-Knockdown efficiencies, especially for poorly expressed genes (CDH2, 

AKAP12, KISS1), data obtained from the two siRNAs were pooled together. To identify 

genes differentially expressed following silencing of each MSG, we conducted microarray 

analysis of RNA samples from both the 48 and 96 h MSG siRNA transfected MCF7 cells 

and control cells (wt and siNeg-siRNA).

 Identification of candidate genes inversely associated to multiple MSGs

Affymetrix HG-U133_Plus_2.0 was chosen for gene expression profiling. This platform 

allows the analysis of over 47,000 transcripts. A total of 77 gene chips were used to analyze 

the samples. Differentially expressed genes were defined using a combined analysis of the 

expression profiles of siRNA transfectants of all nineteen MSGs versus the six control 

samples (three wt and three siNeg) at both time points. At 48 h, 257 genes and at 96 h, 419 

genes were upregulated as compared to control samples with a t-statistic (distance between 

two samples in units of standard deviation) > 2 and p<0.01 (Supplemental Table S4 and S5). 
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Ingenuity pathway analysis identified 6 major biological functions in common between the 

upregulated genes at 48 h and 96 h: cell morphology, cell signaling, metabolism, 

proliferation, development and immune signaling (Fig. 2). Eighteen upregulated genes were 

selected for further validation based on: a) t-statistic larger than 2 and b) p-value smaller 

than 0.01 in at least one of the two time points.

 In vitro validation of the inverse association between selected genes and MSGs

The inverse correlation between the expression of multiple MSGs and the selected candidate 

genes was validated in an independent set of siRNA-MSGs MCF7 transfections using qRT-

PCR. Similar to the microarray analyses, target gene expression in siRNA-MSG and siNeg 

transfected cells were compared at 48 h and 96 h post siRNA transfection. Upregulation of 

at least 1.5-fold as compared to the control was observed for UGT1A, OAS1, DNM3, 

IL11RA, PDE5A, BCAR4, CA9, WNK3, TXNRD1, and MMP16 following silencing of 

five or more MSGs (Fig. 3, Supplementary Fig. 2). In contrast the upregulation of LPXN, 

TARP, APH1B, CXCR7, CYP4V2, SRMS, NRIP3, and CNTNAP4 was validated for less 

than five metastasis suppressor genes (Supplementary Fig. 2).

Five candidate genes (UGT1A, DNM3, OAS1, IL11RA, and PDE5A) were selected for 

further analysis based on their p-values, their occurrence in common pathways shown in Fig. 

2 and drug-target suitability (Table 2). In order to assess their association with cell migration 

ability, each of these five candidate genes was stably silenced in the aggressive human breast 

cancer cell line MDA-MB-231T using two specific shRNAs and subsequent cell motility 

was evaluated (Fig. 4). Validation of shRNA silencing was conducted using western blotting.

UGT1A (UDP-glucoronosyltransferase-1 family) was upregulated at 48 h (t-stat=2.77, 

p=0.01) from the siRNA-MSG transfection in the microarray analysis (Table 1). Using qRT-

PCR, UGT1A expression was at least 1.5-fold upregulated by the knockdown of eleven 

genes (AKAP12, BRMS1, CD44, CD82, CDH11, DRG1, GSN, MAP2K4, MAP2K6, 

MAP2K7, PEBP1) (Fig. 3a). The UGT1A locus encodes several isoforms of the UDP-

glucoronosyltransferase 1 family of proteins involved in the glucoronidation of xenobiotics 

and endogenous compounds [44]. The probe set used for the microarray was unable to 

distinguish between the specific isoforms. Our study focused on UGT1A1 and UGT1A9 
isoforms as they were expressed in MDA-MB-231T cells (Supplementary Fig. 3) and were 

previously evaluated in relation to breast cancer [45, 46]. MDA-MB-231T cells were stably 

transfected with shRNA specifically targeting either UGT1A1 or UGT1A9 (Fig. 4a). 

Western blot analysis showed UGT1A1 downregulation in two MDA-MB-231T cell clones, 

#30 and 31. UGT1A9 downregulation in the two stable clones (#55 and 56) was evaluated 

using qRT-PCR due to low expression in this cell line. Although the transfection of the 

shRNA scramble (NT) caused a minor reduction in UGT1A1/9 expression as compared to 

the empty vector expressing cells (pLKO), cell migration of these two controls was not 

affected. Motility assays showed a significant reduction in cell migration of clones 

expressing shUGT1A1 (64 %, p=0.003 and 71 %, p=0.0004) and shUGT1A9 (56 %, 

p=0.004 and 86 %, p=0.001) as compared to the control cells (Non-target, NT). No 

difference in cell proliferation was observed (Supplementary Fig. 4a).
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DNM3 encodes Dynamin-3, a member of a family of GTPases associated with microtubules 

and involved in vesicular transport and endocytosis [47]. DNM3 was also upregulated at 48 

h (t-stat=2.52, p=0.01) following the silencing of MSG genes (Table 1). Validation by qRT-

PCR showed at least a 1.5-fold upregulation of DNM3 following silencing of six MSGs 

(CASP8, CD44, CD82, CDH1, GSN, MAP2K4) (Fig. 3b). The stable silencing of DNM3 

(clones #05 and 07; Fig. 4b) showed a trend in reduced cell migration compared to control 

shRNA (NT) expressing cells (36.4 %, p=0.046 and 30.3 %, p=0.2, respectively). No 

difference in cell proliferation was observed (Supplementary Fig. 4b).

OAS1 (2′-5′-Oligoadenylate Synthetase-1) encodes a member of the 2–5 synthetase family 

involved in the innate immune response to viral infection [48]. This gene was upregulated at 

48 h (t-stat=2.82, p=0.01) and at 96 h (t-stat=2.88, p=0.01) from the siRNA-MSG 

transfection in the microarray analysis (Table 1). The qRT-PCR validation experiment 

showed at least a 1.5-fold OAS1 upregulation by six MSGs (ARHGDIB, CD44, CD82, 

CDH11, MAP2K4, MAP2K7) (Fig. 3c). After transfection of two shRNAs targeting OAS1, 

the two stable clones #07 and 09 showed a reduction in OAS1 expression by Western blot 

and a trend in reducing cell motility as compared to the NT cells (26.5 %, p=0.02 and 32 %, 

p=0.08 respectively) (Fig. 4c). No difference in cell proliferation was observed 

(Supplementary Fig. 4c).

IL11RA encodes the α – subunit that, together with gp130, forms IL11 receptor [49]. It was 

upregulated in the microarray analysis at 48 h (t-stat=2.18, p=0.04) and at 96 h (t-stat=5.69, 

p<0.001) from the siRNA-MSG transfections (Table 1). The qRT-PCR validation showed at 

least a 1.5-fold increase of IL11RA expression upon knockdown of eleven MSGs 

(ARHGDIB, BRMS1, CDH1, MAP2K4, MAP2K6, MAP2K7, MAPK14, PEBP1, RRM1) 

(Fig. 3d). As IL11RA expression in MDA-MB-231T was too low to be downregulated, 

overexpression of either IL11RA or the empty vector was performed in MCF7 cell line (Fig. 

4d). The two IL11RA overexpressing clones, #2 and 3, showed a 2.1-(p=0.0008) and 1.4-

(p=0.04) fold increase in cell migration as compared to the vector expressing cells. The 

overexpression of IL11RA in the MCF7 induced a reduction in cell proliferation at a 72 h 

time point (p=0.03 and 0.01) as compared the control sample (Vector 1) (Supplementary Fig. 

4d).

In the microarray analysis, PDE5A (phosphodiesterase-5A), the gene encoding for the 

enzyme involved in the regulation of cGMP [50], was upregulated at 48 h (t-stat=1.99, 

p=0.05) and at 96 h (t-stat=4.77, p<0.001) from siRNA-MSG transfection (Table 1). The 

qRT-PCR validation showed at least a 1.5-fold PDE5A upregulation by knockdown of eight 

MSGs (ARHGDIB, BRMS1, CASP8, CD44, CDH2, MAP2K4, MAPK14, PEBP1) (Fig. 

3e). Two shRNA sequences silenced PDE5A expression in MDA-MB-231T cells, creating 

stable clones #43 and #45 (Fig. 4e). Both shPDE5A_43 and shPDE5A_45 clones with 

silenced PDE5A expression showed a significant reduction in cell migration (47 %, p=0.01 

and 66 %, p=0.005, respectively) as compared to the shRNA negative control (NT). No 

difference in cell proliferation was observed between the stable clones as compared to either 

the empty vector (pLKO)- or scramble-shRNA transfectants (Supplementary Fig. 4e). To 

further investigate the inverse association of PDE5A expression with metastatic property, 

PDE5A protein levels were measured in BT474 cells and a metastatic sub-clone BT474-M1 

Marino et al. Page 8

Clin Exp Metastasis. Author manuscript; available in PMC 2016 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[40]. PDE5A expression was higher in the highly metastatic BT474-M1 cells than in the low 

metastatic BT474 cell line (Supplementary Fig. 5).

In summary, using microarray analysis and qRT-PCR, we identified and validated several 

candidate genes whose expression was inversely associated to multiple MSGs in the breast 

cancer cell line, MCF7. The in vitro data demonstrate that the selected candidates, DNM3, 

OAS1, UGT1A, IL11RA and PDE5A, were able to affect cell migration to various degrees 

when silenced (DNM3, OAS1, UGT1A, PDE5A) or overexpressed (IL11RA) in metastatic 

breast cancer cells. The data demonstrate that common downstream signaling pathways link 

multiple MSGs. Many of these common networks are either new, or not well studied in the 

metastasis field. The data also provide a first comprehensive gene expression analysis upon 

MSGs downregulation. PDE5A, being a known druggable target [51], was selected for 

further investigation.

 PDE5A downregulation reduced metastasis formation in a mouse experimental 
metastasis model

To investigate the role of PDE5A in metastasis formation in vivo, MDA-MB-231T breast 

cancer cells expressing shRNA-PDE5A (clone#43 and #45), empty vector or negative 

control shRNA were injected into tail veins of athymic nude mice. Nine weeks post-

injection, the lungs were collected and fixed in Bouin’s solution. Metastases visible on the 

surface of the lungs were counted (Fig. 5a). Both PDE5A silenced clones reduced metastasis 

(clone#43 median= 15, p=0.0006 and clone#45 median= 42, p=0.043) as compared to the 

control sample (median= 64.5), which included both the empty vector and shRNA-negative 

cells. The lungs were then paraffin-embedded and sectioned for further analysis. H&E 

staining confirmed that the number of lung metastases in both shPDE5A_43 (median=14.5, 

p=0.009) and shPDE5A_45 (median=20.2, p=0.045) samples was significantly reduced 

when compared to the control sample (median=38) (Fig. 5b, c). To assure that the observed 

phenotype was a result of a direct influence on the metastatic process rather than an effect on 

the growth rate of the cells, cell proliferation was measured in the lung metastatic lesions 

using Ki67 staining (Fig. 5d, e). No difference in the number of Ki67-positive cells was 

observed in the metastatic lesions between the experimental groups. The data show that 

PDE5A, inversely associated to eight MSGs at 96 h of siRNA-MSG transfection, 

functionally participated in cell motility in vitro and metastasis in vivo.

 Validation of inverse correlation between PDE5A and 8 MSGs in human breast cancer 
cohorts

The inverse association between PDE5A and the identified MSGs was further validated in 

two human breast cancer gene expression cohorts: GSE2034 and GSE1456 [41, 42]. The 

datasets included 286 and 159 breast carcinoma samples, respectively. Partek Genomics 

Suite was used to evaluate the correlation in terms of expression of PDE5A with the set of 8 

MSGs (ARHGDIB, BRMS1, CASP8, CD44, CDH2, MAP2K4, MAPK14, PEBP1). The 

mean expression value for the probe set of each gene was plotted in a bar graph for each 

dataset (Fig. 6). When PDE5A expression was compared to the MSGs, PDE5A was 

significantly inversely correlated to the 8 identified MSGs in both human breast cancer 

cohorts (p=0.003 in GSE2034 and p=0.03 in GSE1456; Table 3).
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The association between DNM3, IL11RA, OAS1, UGT1A and their respective inversely 

expressed MSGs was also investigated in the same human breast cancer cohorts. DNM3 

expression showed a significant inverse correlation to its MSGs set (CASP8, CD44, CD82, 

CDH1, DRG1, GSN, MAP2K4) with p=0.02 in both breast cancer cohorts. UGT1A and 

OAS1 showed a trend toward an inverse correlation to their respective MSGs sets, while no 

significant correlation was found for IL11RA and its MSGs set (Table 3).

A third human breast cancer gene expression cohort (GSE26304) was used to perform 

Pearson correlation coefficient analysis for PDE5A. This dataset includes 115 samples with 

different stages of breast cancer (31 pure DCIS patients, 36 IDC patients, 42 mixed and 6 

normal) and is thus suited for this analysis. PDE5A showed an inverse correlation to all of 8 

MSGs included in the analysis (Table 4).

 Discussion

It has been argued that the metastatic process, in contrast to conventional wisdom, is a ripe 

target for therapeutic development, as it widely contributes to cancer patients’ deaths [52], 

although new clinical trial designs will be needed for validation [53, 54]. Multiple MSGs 

have been discovered in model systems. Through apparently different pathways, based on 

the gene-by-gene literature, they lead to the same biological event: suppression of metastasis 

formation. Since suppressor genes are virtually impossible to directly and uniformly deliver, 

we and others have focused on downstream pathways, herein transcripts with opposite, 

presumed pro-metastatic expression patterns. We present the first comprehensive analysis of 

the downstream transcriptional effects of MSG expression, and identify several common 

gene expression pathways of functional and potential therapeutic significance.

Nineteen MSGs were transiently downregulated, each by two siRNAs at two tissue culture 

time points in MCF7 breast carcinoma cells. MCF7 cells were chosen as a line expressing 

relatively high levels of 10 of the 19 genes and, consistent with high MSG expression, 

exhibit ing a relatively low tumor cell motility phenotype. While a good system for this 

analysis, not all of the MSGs have been validated as functional in this line, and the 

transcriptional analysis was conducted on tissue culture plastic, which may vary from in vivo 
patterns. The two siRNAs sometimes failed to knock down gene expression to identical 

levels. Despite these caveats, and using a simple bioinformatics process, several upregulated 

genes were identified comparing the gene expression profile of siRNA-MSGs and the 

control samples. Inversely related genes were chosen on the basis of their upregulation in 

five or more siRNA-MSGs, t-statistic and p-value (p<0.01). Many of the remaining genes 

had interesting but less statistically significant gene expression trends, suggesting that their 

transcriptional effects may still be of interest. The raw gene expression data can be used for 

additional, potentially more sophisticated analyses of MSGs function.

Our analysis identified 257 genes at 48 h and 419 genes at 96 h inversely associated with 

multiple MSGs expression. Ingenuity Pathway analysis showed that six major pathways 

were affected by multiple MSGs silencing: cell morphology, proliferation, metabolism, 

development, cell signaling and immune signaling. Eighteen genes were chosen for 

validation by qRT-PCR using independent cultures. Functional experiments were conducted 

Marino et al. Page 10

Clin Exp Metastasis. Author manuscript; available in PMC 2016 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in an independent cell line, MDA-MB-231T, to test the generality of the observations. 

Several of the identified genes, or their gene families, have been recognized in the metastasis 

literature. The current analysis suggests the widespread relevance of these genes to 

metastasis via their transcriptional regulation by multiple MSGs. Other genes were new to 

the metastasis literature.

The dynamin family is involved in membrane trafficking processes such as vesicle scission 

at the plasma membrane or trans-Golgi network, phagocytosis, cytokinesis, podosome 

formation, and endocytosis [47, 55–59]. DNM2 upregulation has been linked to increased 

motility and metastasis in a pancreatic model system [58], and inhibitors have been 

identified [60]. DNM3 is normally expressed in neurons, testis and megakaryocytes. Little is 

known about a role of DNM3 in cancer. Herein we demonstrate a trend of reduced tumor 

cell motility in vitro when DNM3 was inhibited by shRNAs in metastatic MDA-MB-231T 

cells.

Similarly, 2α-5α-Oligoadenylate Synthetase-1 (OAS1) encodes a well characterized enzyme 

involved in the innate immune response to viral infection [48]. After its induction by 

interferons, OAS1 activates RNase L, which degrades viral and cellular RNA and inhibits 

replication and protein synthesis suppressing viral growth and promoting apoptosis [61]. The 

only link of OAS1 to cancer is found in polymorphisms associated with prostate cancer [62, 

63]. Herein, downregulation of OAS1 by two shRNAs in MDA-MB-231T cells resulted in a 

trend of decreased cell motility in vitro. The partial effects of gene knockdown on tumor cell 

motility may deserve additional experimentation as they were interrogated in only one cell 

line and may have significant combinatorial effects.

The IL11RA gene encodes the α-subunit that, together with gp130, forms the receptor for 

the cytokine IL11, a member of the IL-6 family. Its activation induces JAK-STAT and 

MAPK signaling cascades [49]. IL11Rα expression was associated with tumor progression 

in prostate, ovarian, gastric, hepatocellular and breast cancers, and with tumor invasion and 

lymphatic infiltration in colorectal carcinomas [64–67]. Herein, overexpression of IL11RA 

significantly increased tumor cell motility in vitro and exerted limited effects on 

proliferation of MCF7 cells. It should be pointed out that these last two candidates are both 

involved in the immune response. Immune signaling was a major pathway affected by MSGs 

silencing.

In contrast to these genes, the identification of UGT1A transcripts as being both inversely 

expressed with multiple MSGs and functionally contributory to motility is, to our 

knowledge, completely unexpected. UDP-glucoronosyltransferases are membrane-bound 

enzymes, localized in the endoplasmatic reticulum, that catalyze the glucoronidation of 

various endogenous and exogenous compounds such as bilirubin, bile acids, steroid 

hormones, chemotherapeutics, non-steroidal anti-inflammatory drugs, anticonvulsants. 

Eighteen UGT transcripts have been identified and divided in three families UGT1A, 

UGT2A and UGT2B based upon sequence homology [68]. The UGT1 family includes nine 

functional proteins (A1, A3-10) and four pseudogenes derived from alternative splicing of a 

single gene locus [69]. The several UGT1A isoforms show different tissue expression 

patterns, with only UGT1A9 localized in breast [46]. Several members of the UGT1A 
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family, such as UGT1A1 and UGT1A9, are involved in the conjugation of estradiol and its 

hydroxylated and/or methylated metabolites [70]. Polymorphic variants of UGT1A1 and 

UGT1A9, highly expressed in liver, have been widely studied for their influence on 

irinotecan metabolism and toxicity [71, 72]. Although UGT1A polymorphisms and their 

functional consequences appear to play important role in cancer risk and response to therapy, 

their direct influence in cancer progression remains to be characterized. Herein we 

demonstrate that the downregulation of both UGT1A isoforms, UGT1A1 and UGT1A9, in 

the ER-negative, metastatic cell line MDA-MB-231T resulted in reduced cell motility, 

suggesting a potential role in this process.

A functional role for PDE5A (Phosphodiesterase type-5A), which was inversely associated 

with 8 MSGs, was tested both in motility assays and in an in vivo metastasis assay. In 

addition, the inverse correlation of PDE5A and the 8 MSGs (ARHGDIB, BRMS1, CASP8, 

CD44, CDH2, MAP2K4, MAPK14, PEBP1) was validated in three human breast cancer 

cohorts. The datasets included microarray data from primary tumor samples, and the 

expression of PDE5A was very low. It would be interesting to analyze potential inverse 

correlation in metastatic biopsies in the future, where we expect a reduction in expression of 

the MSG and a consequent increase in PDE5A expression.

Phosphodiesterases are intracellular enzymes that hydrolyze cyclic adenosine and guanosine 

monophosphates (cAMP and cGMP) to their respective 5′-nucleoside monophosphate. 

There are 11 PDE families with different substrate specificities, regulatory properties, tissue 

localizations, and inhibitor sensitivities (reviewed in [73, 74]). Through alternative splicing, 

the PDE5A gene generates three PDE5 isoforms, PDE5A1-3 [73]. PDE5 is a cyclic 

guanosine monophosphate (cGMP)-specific phosphodiesterase [50], involved in regulation 

of apoptosis [75–77], synaptic plasticity [78], platelet aggregation [79], and fluid secretion 

in intestinal cells [80]. PDE5 inhibitors, sildenafil (Viagra®) and vardenafil (Levitra®) are 

FDA-approved drugs used for erectile dysfunction [51, 81]. In preclinical experiments they 

increase chemotherapeutic sensitivity to many, but not all drugs tested [82–87]. A role for 

PDE5 or its pharmacologic inhibitors in metastasis has been reported in lung colonization by 

melanoma cells [88]. Herein, PDE5A was described for the first time as a downstream target 

of multiple MSGs. PDE5A downregulation in metastatic breast cancer cells resulted in 

reduced cell motility and lung metastasis formation in experimental metastatic models. 

Although cGMP is an important second messenger in cell signaling, how PDE5A modulates 

signaling pathways in the context of metastasis in still unclear and should be a topic of 

further investigation.

How the MSGs regulate PDE5A expression is another question of interest. Ingenuity 

pathway analysis of PDE5A and the 8 inversely correlated MSGs suggested a functional 

connection between PDE5A and MSGs mediated by PP1-C (protein phosphatase 1) and 

IL1β (interleukin 1beta) ([89, 90] and data not shown). Although lacking significant p-

values, both PP1-C and IL1β were also present in our MCF7 microarray dataset, with PP1-C 

being downregulated (48 h: t-stat=−0.72, p=0.47; 96 h: t-stat=−1.47, p=0.14) and IL1β 

upregulated (48 h: t-stat=1.91, p=0.06; 96 h: t-stat=1.51, p=0.14). The data suggest an 

indirect regulatory effect on PDE5A by MSGs, mediated by PP1-C and IL1β.
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The data demonstrated only a partial (47–62%) reduction in metastasis formation by 

downregulation of PDE5A, suggesting that the anti-metastatic effects of multiple MSGs may 

be mediated by multiple factors/pathways. It would be interesting to evaluate the metastatic 

properties of tumor cells upon knocking down the expression of a combination of the 

inversely correlated genes identified in this study. In summary, the data suggest that genes 

inversely correlated to multiple MSGs may contribute to tumor cell migration and may 

represent the new focus in the investigation of metastasis-related pathways.
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 Abbreviations

MSGs metastasis suppressor genes

PDE5A phosphodiesterase 5A

UGT1A UPD-glucoronosyltransferase 1 A family

H&E hematoxylin and eosin

IL11RA interleukin-11 receptor alpha

DNM3 dynamin-3

OAS1 2′-5′-oligoadenylate synthetase-1

FBS Fetal bovine serum

siRNA Small interfering RNA

shRNA Small hairpin RNA
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Fig. 1. Validation of the knockdown of nineteen metastasis suppressor genes (MSGs) in MCF7 
breast cancer cells
Each box presents qRT-PCR data for the knockdown of one MSG, by two siRNA sequences 

(siRNA-1 and -2) and at two time points in culture (48 and 96 h). Y axis includes the 

expression of each MSG normalized to GAPDH level. Data represent the mean of triplicate 

experiments with SD. * p< 0.05.
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Fig. 2. Ingenuity pathway analysis of genes upregulated upon MSGs silencing in MCF7 cells
The top 6 common functions of the upregulated genes between 48 h or 96 h were identified 

using Ingenuity pathway analysis. The bars represent the – log p-value of statistical 

significance for each process at two time points (light grey for 48 h and dark grey for 96 h).
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Fig. 3. Validation of inverse expression profiles of UGT1A, DNM3, OAS1, IL11RA and PDE5A in 
MCF7 breast cancer cells
Using an independent set of MCF7 cultures transfected with a scrambled siRNA (negative 

control) or siRNAs to each of 19 MSGs, qRT-PCR was performed to evaluate the expression 

of UGT1A (a), DNM3 (b), OAS1 (c), IL11RA (d) and PDE5A (e). The data are expressed 

as fold change in gene expression compared to negative control (siNeg), arbitrarily set as 

1.0. The dotted line indicates 1.5-fold threshold. GAPDH was used to normalize the 

expression data.
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Fig. 4. UGT1A, DNM3, OAS1, IL11RA and PDE5A functionally contribute to tumor cell motility
a. Western blot or qRT-PCR was used to evaluate UGT1A1 or UGT1A9 expression, 

respectively, in MDA-MB-231T human triple negative breast carcinoma cells transfected 

with shRNAs to UGT1A1 and UGT1A9. Controls include MDA-MB-231T cells transfected 

with an empty vector (pLKO) or a scrambled shRNA (NT). Below, cell motility to 1% FBS 

was performed, shown as the average of three independent experiments. b–c. Western blot 

analysis, followed by motility analysis was performed on MDA-MB-231T transfected with 

two shRNAs to DNM3 (#05 and #07, b) or to OAS1 (#07 and #09, c). Controls were 

described in a. d. MCF7 cells were transfected with an empty vector (clone#1 and #2) or an 

IL11RA construct (clone#2 and #3), and protein expression determined by western blot. 
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Below, motility analysis as described in a. e. Western blots of MDA-MB-231T cells 

transfected with shRNAs to PDE5A (#43 and #45) and in vitro motility of the transfected 

cells in Boyden chamber assays. * p< 0.05.
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Fig. 5. PDE5A knockdown reduced in vivo experimental metastasis of human MDA-MB-231T 
breast carcinoma cells
1×106 MDA-MB-231T cells, transfected as described in Fig. 4 (PDE5A shRNAs 43 and 45 

versus CTR, combined empty vector and scrambled shRNA clones), were injected into the 

tail veins of 6 week old athymic nude mice. a. Surface lung metastasis counts at necropsy, 9 

weeks post-injection. Data are combined results of two experiments performed. Each dot 

represents a mouse, line is the median. P-values using Mann-Whitney test. b. Lungs were 

paraffin embedded for histological counts of metastases. Representative H&E stained 

sections are shown. Scale bar: 500 μm. c. Median (line) histological counts from each group. 

P values using Mann-Whitney test. d. Lung sections were stained with Ki67 (green), 

counterstained with DAPI (blue) to determine proliferative status. Representative images are 

shown. e. Tabulation of percentage of Ki67+ tumor cells from three sections of each mouse 

lung in the groups.
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Fig. 6. PDE5A expression is inversely correlated with MSGs expression in microarray databases 
of human breast cancer
Expression of PDE5A and 8 MSGs in breast cancer cohorts was evaluated using two 

publicly available breast cancer datasets (GSE2034 and GSE1456). For each gene of 

interest, the log2-transformed expression values were averaged and plotted on a bar chart as 

mean ± SD. P-values of the correlation between PDE5A (dark-grey bar) and the 8 MSGs set 

(light-grey bars) were calculated for both datasets using the T-test statistical module on 

Partek Genomics Suite.
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Table 2

Pathway analysis of the five selected genes in terms of biological function and pharmacological inhibition *

Gene name Biological function Drug

OAS1 Interferon signaling; recognition of bacteria and viruses Unknown

IL11RA Cytokine receptor; developmental process; natural killer 
differentiation; positive regulator of cell proliferation

Oprelvekin

DNM3 Clathrin-mediated endocitosis; remodelling of epithelian adherens 
junctions; megakaryocytopoiesis

Dynasore

UGT1A Melatonin degradation; xenobiotic metabolism signaling Rifampin, phenobarbital, beta-naphthoflavone, 
dexamethasone, tetrachlorodibenzodioxin, roscovitine, 
ritonavir, tert-butyl-hydroquinone, clotrimazol

PDE5A cGMP-mediated signaling; proliferation; apoptosis; 
transdifferentiation; expression in resting tone

Aminophylline, aspirin/dipyridamole, avanafil, 
dipyridamole, dyphylline, nitroglycerin, pentoxifylline, 
sildenafil, tadalafil, theophylline, tolbutamide, udenafil, 
vardenafil

*
as reported by Ingenuity Pathway Analysis
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Table 4

Pearson correlation coefficients between PDE5A and metastasis suppressor genes in the human breast cancer 

cohort GSE26304.

Correlation coefficient to PDE5A (r)a p-valueb

ARHGDIB −0.483 2.32E–08

CD44 −0.460 1.18E–07

BRMS1 −0.440 4.31E–07

CASP8 −0.439 4.50E–07

PEBP1 −0.385 1.06E–05

MAPK14 −0.352 5.64E–05

MAP2K4 −0.317 0.0002

CDH2 −0.206 0.0136

a
:r= Pearson ‘s correlation coefficient.

b
:The P-value shown is based on a t-test focusing on negative association (alternative hypothesis: less than 0). The analysis was performed in R-

package using the function cor. test.

Clin Exp Metastasis. Author manuscript; available in PMC 2016 July 18.


	Abstract
	Introduction
	Materials and Methods
	Cell culture conditions
	Gene silencing
	Microarray analysis
	Quantitative Reverse-Transcription-Polymerase Chain Reaction (qRT-PCR)
	Cloning and gene overexpression
	Western blot analysis
	Cell migration assay
	Cell proliferation assay
	Experimental Pulmonary Metastasis Mouse Model
	Bioinformatic and statistical analysis

	Results
	Inverse association approach to identify downstream targets to multiple MSGs
	Identification of candidate genes inversely associated to multiple MSGs
	In vitro validation of the inverse association between selected genes and MSGs
	PDE5A downregulation reduced metastasis formation in a mouse experimental metastasis model
	Validation of inverse correlation between PDE5A and 8 MSGs in human breast cancer cohorts

	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Table 1
	Table 2
	Table 3
	Table 4

