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Abstract

White matter abnormalities are implicated in major depressive disorder (MDD). As omega-3 

polyunsaturated fatty acids (PUFAs) are low in MDD and affect myelination, we hypothesized that 

PUFA supplementation may alleviate depression through improving white matter integrity. 

Acutely depressed MDD patients (n=16) and healthy volunteers (HV, n=12) had 25-direction 

diffusion tensor imaging before and after 6 weeks of fish oil supplementation. Plasma 

phospholipid omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and 

omega-6 PUFA arachidonic acid (AA) levels were determined before and after supplementation 

using high-throughput extraction and gas chromatography and expressed as a percentage of total 

phospholipids (PUFA%). Fractional anisotropy (FA) was computed using a least-squares-fit 
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diffusion tensor with non-linear optimization. Regression analyses were performed with changes 

in PUFA levels or Hamilton Depression Rating Scale scores as predictors, voxel-wise difference 

maps of FA as outcome, covariates age and sex, with family-wise correction for multiple 

comparisons. Increases in plasma phospholipid DHA% (but not EPA% or AA%) after fish oil 

predicted increases in FA in MDD but not HV, in a cluster including genu and body of the corpus 

callosum, and anterior corona radiata and cingulum (cluster-level p<0.001, peak t-score=8.10, 

p=0.002). There was a trend for greater change in FA in MDD responders over nonresponders (t=
−1.874, df=13.56, p=0.08). Decreased depression severity predicted increased FA in left 

corticospinal tract and superior longitudinal fasciculus (cluster-level p<0.001, peak t-score=5.04, 

p=0.0001). Increased FA correlated with increased DHA% and decreased depression severity after 

fish oil supplementation suggests therapeutic effects of omega-3 PUFAs may be related to 

improvements in white matter integrity.
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 Introduction

Major Depressive Disorder (MDD) is one of the top five causes of disability worldwide (1), 

with a lifetime prevalence of approximately 10 – 18% (2, 3). The cause of MDD is not 

known, although aberrant neurocircuitry and factors affecting brain health are active areas of 

research. Linking a causal mechanism to a treatment may help improve prognosis.

Abnormalities in white matter observed in MDD include hyperintensities seen on structural 

magnetic resonance imaging (MRI) (4, 5) and reduced myelin integrity as measured using 

magnetization transfer imaging (6). Similarly, post-mortem histopathologic studies have 

found altered deep white matter staining in MDD (7–9). White matter abnormalities could 

lead to diminished functional connections between brain regions and thereby contribute to 

depression symptomatology.

Microstructural changes of white matter within neural networks can be detected using 

diffusion tensor imaging (DTI) to quantify fractional anisotropy (FA), a measure of the 

directionality of water diffusion (10, 11). Healthy white matter generally has high 

anisotropy, because water movement in myelinated nerve fibers is primarily in the direction 

of the axon fiber bundles (11).
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Abnormalities in FA of prefrontal (12–14), temporal (13, 15), and parietal (14) cortex and in 

anterior cingulate (16) are reported in MDD compared with healthy volunteers (HV). One 

large DTI study (n=132) that found differences between MDD and HV in regions including 

splenium, genu and body of the corpus callosum, superior longitudinal fasciculus, and 

anterior corona radiata, also found a negative correlation between depression severity and 

white matter integrity (17). In elderly depressed patients, FA impairment is associated with 

executive dysfunction (18). First-episode, medication-naïve (19–21) adults demonstrate 

similar deficits in frontal and parietal white matter, which negatively correlate with severity 

of the depressive symptoms (14). Adolescent MDD patients likewise exhibit white matter 

abnormalities and low FA in subgenual anterior cingulate cortex and amygdala (22).

One determinant of white matter health is the balance of lipids in the brain. For example, 

polyunsaturated fatty acids (PUFAs), key components of phospholipids in cell membranes, 

comprise 35% of lipids in the brain (23) and are critical for nervous system development and 

functioning (24–28). Highly unsaturated long-chain PUFAs arachidonic acid (AA, 20:4n-6) 

and docosahexaenoic acid (DHA, 22:6n-3), are the major constituents of brain PUFAs, and 

have been implicated in psychiatric illness, including major depression (29), bipolar disorder 

(30, 31) and suicide risk (32–34). Eicosapentaenoic acid (EPA, 20:5n-3), although present in 

considerably lower quantities in brain as a result of its rapid β-oxidation and metabolism 

(35–37), also is reported to have specific effects related to neuropsychiatric conditions (38–

43).

Given that both reduced white matter integrity and lower omega-3 PUFAs are seen in MDD, 

we hypothesized that supplementation with omega-3 PUFAs would cause increased FA in 

MDD greater than HV, and that increased FA would correlate with improvement in 

depression symptoms. We used DTI in a prospective study to test effects of fish oil 

supplementation for 6 weeks on white matter integrity in MDD compared with HV, and to 

generate brain maps of correlations of FA with 1) plasma phospholipid PUFAs and 2) 

depression severity.

 Methods and Materials

 Sample

This study was approved by the Institutional Review Board of the New York State 

Psychiatric Institute in accordance with the latest version of the Declaration of Helsinki. 

After the procedures were fully explained, all subjects (n =28) gave written informed 

consent to participate in this research study, which included a positron emission tomography 

(PET) scan component (not discussed here). At study entry, 16 depressed adults, ages 22–50, 

met DSM-IV criteria (44) for a current major depressive episode in context of major 

depressive disorder (MDD) without any history of psychosis, and no drug or alcohol abuse 

within the past 2 months or drug or alcohol dependence (except nicotine) within the past 6 

months, based on the Structured Clinical Interview for DSM-IV (45). Patients were not 

actively suicidal, had not received electroconvulsive therapy within the past 6 months, and 

presented with scores between 16 and 25, inclusive, on the 17-item Hamilton Depression 

Rating Scale (HDRS) (46, 47) at study entry. MDD participants were permitted to be on a 

single antidepressant or were medication-free and had no history of antipsychotic 
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medications or mood stabilizers within 6 weeks; no washouts were performed. HV (n=12) 

had no history of Axis I or Axis II illness. Participants in both groups did not have active 

medical illness based on history, physical examination and laboratory tests, and did not 

report more than occasional use of non-steroidal anti-inflammatory drugs (NSAIDs) or other 

medications known to interfere with the arachidonic acid pathway, including no use of 

omega-3 supplements within 3 months. Females were premenopausal. All participants were 

assessed for self-reported handedness.

 PUFA supplementation

After the initial assessments and DTI scans, all participants received dietary supplementation 

daily with gelcaps containing a highly-purified, commercially available mixture of fatty 

acids from fish oil derived from anchovies, sardines and mackerel (OmegaLife-3, Unicity 

International, Inc., Orem, UT) for approximately six weeks. Participants took 4 gelcaps/day 

amounting to 4 g of total fish oil/d, including EPA, 1.6 g/d; DHA, 0.8 g; 0.8 mg saturated 

fat; inactive ingredients gelatin and glycerin; d-alpha tocopheryl 20 IU for stability; and 

orange oil to increase palatability. These doses and the EPA/(EPA+DHA) ratio of 67% EPA 

were consistent with those found effective in placebo-controlled, randomized clinical trials 

of fish oil supplementation as a treatment of depression (41). The six-week supplementation 

period was chosen in order to mitigate potential attrition over time, since it was important to 

obtain an additional scan at the end of the treatment; and taking into account several clinical 

trials that demonstrated separation from placebo as early as three (48) or four (49, 50) 

weeks.

 PUFA purification

Plasma from fasting blood samples was obtained within 3 weeks of the DTI scan and 

shipped on dry ice to the Nathan S. Kline Institute for Psychiatric Research (Orangeburg, 

NY) for biochemical analysis.

Plasma phospholipid PUFA levels were determined using a modified version of the rapid, 

high-throughput protocol of Glaser et al (51). Briefly, plasma proteins were precipitated in 

cold methanol, glycerophospholipid fatty acids were selectively esterified with sodium 

methoxide and acidified, and fatty acid methyl esters (FAMEs) were extracted in hexane. 

Separation and quantitation of FAMEs were accomplished via gas chromatography with 

flame ionization detection as described previously (52), and individual PUFA species are 

reported as a percentage of total plasma phospholipid PUFAs.

 Image acquisition

MRI images were acquired on a 3.0T Signa Advantage system (GE Healthcare, Waukesha, 

WI, USA). Anatomical T1-3D images were acquired with the following parameters: echo 

time (TE) = 2.8 ms, repetition time (TR) = 7.1 ms, field of view (FOV) 256×256 mm2, 

matrix size=256×256, slice thickness=1 mm (voxel size 1×1×1 mm3), number of slices=178, 

with an acquisition time of 5 minutes. Diffusion images were acquired using a single-shot 

EPI (echo planar imaging) sequence. Scan parameters were as follows: TR = 14000 ms, TE 

= 82 ms, flip angle 90 degrees, slice thickness=3 mm, Number of Excitation for signal 

averaging (NEX) = 1, FOV (field of view) = 240×240 mm2, voxel dimensions = 
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0.95×0.95×3 mm, acquisition matrix=256×256, b value = 1000 s/mm2, and 25 collinear 

directions with 5 non-weighted images. DTI scan time was approximately 11 minutes.

 Image processing

Each DTI image underwent a series of quality assurance tests for common artifacts, 

including ghost, ring, slice-wise intensity, venetian blind, and gradient-wise motion artifacts 

(53). Diffusion images were corrected for distortion induced by gradient coils and simple 

head motion using the eddy current correction routine from the FMRIB’s Diffusion Toolbox 

(FSL, http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/fdt/) with default settings. Following this, Camino 

(http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/-pmwiki.php) (54) was used to 

estimate FA, computing the least-squares-fit diffusion tensor with non-linear optimization 

using a Levenburg-Marquardt algorithm, constrained to be positive by fitting its Cholesky 

decomposition. The individual FA maps were aligned into the up-sampled version 

(91×109×91 voxel, 2×2×2 mm3/voxel) of the common FMRIB58 FA template 

(www.fmrib.ox.ac.uk/fsl/data/FMRIB58_FA) using FSL’s FMRIB Nonlinear Image 

Registration Tool (FNIRT) (55, 56).

 Global Tractography

We performed global tractography using findings from the FA analysis as a seed, in order to 

visualize regions of gray matter subserved by the white matter region where the change in 

FA (ΔFA) correlated positively with change in DHA% (ΔDHA%) among MDD but not HV. 

DTI was obtained after performing Insight Segmentation and Registration Toolkit (ITK, 

National Library of Medicine, http://www.itk.org)-based tensor reconstruction (57) on the 

preprocessed diffusion weighted images. The eddy-corrected diffusion weighted images 

were processed through MITK-Diffusion (58), which implements the Gibbs Tracking 

Algorithm (59), a global tractography method that reconstructs all brain fibers 

simultaneously while searching for a global optimum (56), and has outranked other 

tractography algorithms (60). The subset of tracts that passed through the chosen seed were 

extracted, and brain regions connected via the extracted tracts were identified based on 

individual brain atlases derived from running Freesurfer’s surface-based reconstruction 

pipeline (http://surfer.nmr.mgh.harvard.edu) on the T1-weighted anatomical image.

 Statistical Analyses

 Sample—For demographic and clinical characterizations, MDD and HV groups were 

compared with respect to sex, age, race, body mass index (BMI), and income, and also with 

regard to plasma phospholipid PUFA concentrations before and after fish oil 

supplementation, and percentage change over the course of supplementation. Improvement 

in depression severity after supplementation was assessed with a paired t-test in HDRS 

scores within the MDD group. Within the depressed group, clinical responders were defined 

as having achieved at least a 50% improvement in HDRS scores over the course of 

supplementation. Analyses were performed using IBM SPSS Statistics (version 23, Armonk, 

NY).

 Fractional Anisotropy—For voxel-based analysis, an inclusion mask for white matter 

was created using the FA standard template by thresholding, which excluded all voxels with 
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FA values > 0.2. Analysis was performed using Statistical Parametric Mapping (SPM8, 

v4290) software (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) with Matlab (version 

7.14, Mathworks, Natick, Massachusetts) on a 64 bit iMac with OS X 10.7.5. For these 

analyses, all images were smoothed with an isotropic Gaussian kernel with full width half 

maxima (FWHM) = 2 mm. This relatively small FWHM was chosen as it adequately 

removed conspicuous noise without introducing any apparent partial volume effect. The 

Gaussian kernel was utilized as the FA images had a signal-to-noise ratio (SNR) greater than 

2.0, a level at which the noise distribution is more nearly approximated by Gaussian than 

Rician distribution (61).

A 2-way repeated measures ANCOVA was performed with the independent factors of 

diagnosis (2 levels, MDD vs. HV), and time point (2 levels: pre and post supplementation), 

dependent factor of FA, and age as a covariate.

For pre-post correlation analysis, pre-supplementation FA maps were subtracted from post-

supplementation FA maps, and these voxel-wise difference maps were submitted to separate 

multiple regression analyses with post-supplementation minus pre-supplementation DHA%, 

AA%, or EPA% levels as predictor variables, covarying for age and sex. The PUFA change 

scores (ΔPUFAs) were tested and found to be normally distributed, so log-transformation 

was not required. For voxel-wise analyses, uncorrected p<0.01 at voxel level and cluster-

level p<0.05 corrected for multiple comparisons with family-wise error (FWE), were used to 

determine statistical significance. Results were not further corrected for the multiple 

comparisons due to testing for three different PUFAs.

Additionally, separate regression analyses were performed in the MDD group with either 

pre-treatment HDRS as predictor, and pre-treatment FA as the outcome measure; or pre- 

post-supplementation change in HDRS (ΔHDRS) scores as predictor, and pre- to post-

treatment ΔFA as the outcome measure. Age and sex were covariates of no interest using the 

same statistical thresholds as in the analyses with PUFAs as predictors. Post-hoc analyses 

compared responders to nonresponders with respect to ΔFA in the region of maximal 

correlation between ΔPUFAs and ΔFA.

Another post-hoc analysis quantified the observed brain regions that were common to ΔFA 

correlating with ΔHDRS, and ΔFA correlating with ΔDHA%. This was achieved by taking 

the intersection between the ΔFA by ΔHDRS and the ΔFA by ΔDHA% regression analyses. 

For this exploratory analysis, a less conservative a priori statistical threshold was set as 

uncorrected p<0.05 at voxel level and FWE-corrected p<0.05 at cluster level.

Additional exploratory analyses are found in the Supplemental Material, namely an 

assessment of radial and axial diffusivity, and a mediation analysis testing whether ΔFA 

mediated the association between ΔDHA% and ΔHamilton Depression scores after 

treatment.
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 Results

 Sample

As detailed in Table 1, MDD and HV groups did not differ with respect to sex, age, or other 

demographic characteristics examined, although the MDD group trended toward a higher 

percentage of white participants. Participants were adults ages 22–50. Depressed participants 

had not taken psychotropic medications for at least 14 days prior to PET studies with the 

exception of three participants (one on sertraline, one on duloxetine, and one on mirtazapine 

plus clonazepam). MDD participants were mildly-moderately depressed at the time of the 

first PET scan (mean HDRS score = 17.8 ± 3.85 SD). Three MDD participants had a history 

of suicide attempt. Following fish oil supplementation, five participants were determined to 

be clinical responders, defined as ≥ 50% reduction in HDRS scores after PUFA 

supplementation. None of the responders were taking any antidepressant medications.

Supplementation caused significant increases in DHA% and EPA%, and decreases in AA%, 

that were comparable in magnitude in both MDD and HV groups (see Table 1). No group 

differences were observed in plasma phospholipid concentrations of PUFA before or after 

supplementation, nor did the magnitude of ΔPUFA differ between groups. MDD group 

depression levels were of moderate severity before PUFA supplementation. Depressed 

participants improved significantly with supplementation (pre-supplementation HDRS mean 

score 17.8 ± 3.9; post-supplementation mean score 11.5 ± 5.9; t-score=3.981, df=15, 

p=0.001); and the 31% who were responders had higher final DHA% levels than 

nonresponders (t=2.414, df=14, p=0.03).

 Fractional Anisotropy

Group differences were seen in regional FA at the applied statistical thresholds after 

correction for age and sex, at both pre-supplementation (peak voxel, MNI −18, 38, −18, 

peak-level t-score = 5.97, observed cluster size = 1041 voxels, p<0.001) and post-

supplementation (peak voxel, MNI 24, 26,12, peak-level t-score =3.90, observed cluster size 

= 263 voxels, p=0.026) timepoints (Figure 1). FA in MDD was lower than in HV in genu 

and splenium of corpus callosum, anterior corona radiata bilaterally, and right superior 

longitudinal fasciculus before supplementation (Figure 1A). After supplementation, 

however, the regions of group difference were reduced in extent, such that only anterior 

corona radiata still showed lower FA in MDD than HV (Figure 1B), suggesting a possible 

mitigation of abnormal FA by omega-3 PUFA treatment. There were no within-group 

differences between pre- and post-supplementation total FA in either MDD or HV (Table 1).

In regression models, for the depressed group, plasma phospholipid DHA% positively 

correlated with FA in the body of the corpus callosum prior to supplementation (peak voxel, 

MNI −10, −42, 24, peak-level t-score=5.27, observed cluster size = 679 voxels, cluster-level 

p<0.001; Figure 2A). After supplementation, the increase in plasma phospholipid DHA% 

correlated with increase in FA in MDD more anteriorly in a region encompassing genu and 

body of corpus callosum, and anterior corona radiata and cingulum bilaterally (peak voxel, 

MNI 4,20,12, peak-level t-score = 5.97, observed cluster size = 525 voxels, cluster-level 

p<0.001; Figure 2B).
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In the depressed group, there were no correlations between baseline or post-supplementation 

HDRS scores and FA at those timepoints. However, ΔHDRS scores correlated positively 

with ΔFA in left corticospinal tract and longitudinal fasciculus (peak voxel, MNI −34, −26, 

62, peak-level t-score=5.04, observed cluster size = 517 voxels, p<0.001). This region 

overlapped with 17 percent of voxels from the cluster in which ΔDHA% correlated with 

ΔFA (Figure 4).

Post-hoc analyses comparing MDD responders to nonresponders in the identified ΔDHA% − 

ΔFA correlation region found that 80% of responders (4/5) showed an increase in FA after 

supplementation, compared with only 45% (5/11) of non-responders (Figure 5). The group 

difference between MDD responders and nonresponders was at a trend level in this small 

sample (t=−1.874, df=13.56, p=0.08).

No correlations were seen between increased DHA% and ΔFA in the HV group. Neither AA

% nor EPA% levels predicted changes in FA in either group.

 Whole Brain Tractography

In the voxel cluster where increased DHA% correlated positively with increased FA in MDD 

(including portions of corpus callosum, anterior corona radiata, and cingulum) as a seed 

region, white matter tracts passing through the seed mapped bilaterally to cortical regions 

comprising rostral middle frontal and superior frontal gyri (Figure 3).

 Discussion

This is the first reported DTI study of PUFA supplementation effects on white matter in 

MDD. We found that white matter deficits in MDD, relative to HV, improved after six weeks 

of fish oil supplementation, as defined by increased FA in a single voxel cluster. Moreover, 

although changes were seen in plasma phospholipid levels of all three PUFAs, only the DHA

% increases correlated with brain FA increases, and only in the MDD group, with a trend 

toward greatest FA increases in clinical responders. We also observed that the brain region in 

which improved depression correlated with increased FA overlapped with the region in 

which increased DHA% correlated with increased FA.

The pre-supplementation MDD deficits in FA relative to the HV group were not simply a 

function of lower baseline omega-3 PUFA levels in MDD, since although previous studies 

comparing MDD to HV found that depressed patients have lower omega-3 PUFA 

concentrations (29), in this sample MDD and HV had comparable levels prior to 

supplementation. This may have been due to the modest level of depression severity in this 

particular sample, as some studies have reported an inverse association between depression 

severity and plasma (62) or erythrocyte phospholipid (63) levels of EPA. Additionally, our 

sample had a low percentage of suicide attempters (2%), and suicide attempt history has 

been linked to lower EPA and DHA levels (32).

Although age-related decreases in FA have been reported [Salami et al., 2012], this potential 

confound was addressed by including age as a covariate in the analyses. Moreover, concern 
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about age-related effects was mitigated by the fact that there were no participants over 50 yrs 

old.

Supplementation with fish oil was associated with a moderate antidepressant effect, as about 

one third of the patients were responders. Given the correlation observed between changes in 

FA and improvement in depression severity in the responder group, we could speculate that 

in a subset of depressed patients, clinical response to omega-3 PUFAs might depend on the 

degree of increase in FA. However, the lack of complete congruity between parametric maps 

of ΔFA correlating with ΔDHA% and ΔFA correlating with ΔHDRS suggests that other 

factors contribute. It is also possible that improved white matter integrity may relate to 

cognitive subdomains of depression symptoms not captured by the HDRS.

Neuroanatomically, our findings of abnormal FA in corpus callosum, anterior radiata and 

superior longitudinal fasciculus in major depression comport closely with previous results of 

Cole et al. (17). These structures mediate three different dimensions of communication 

within the brain: interhemispheric (corpus callosum), cortical-cortical (superior longitudinal 

fasciculus) and cortical-brainstem (anterior radiata). Structural changes in corpus callosum 

have been repeatedly implicated in depressive illness (64–68), and lower FA has been 

reported in MDD in the superior longitudinal fasciculus (14, 21), a long association pathway 

running from parietal lobe to premotor and prefrontal cortices, including the dorsolateral 

prefrontal cortex. The relatively greater size of these three white matter tracts may confer a 

higher statistical power to detect FA changes there even in small samples. Future, larger 

studies might have the power to quantify more nuanced associations with respect to FA in 

finer white matter tracts.

The gray matter regions subserved by these tracts, as mapped out by whole brain 

tractography, also are consistent with our previous positron emission tomography (PET) 

findings in a separate sample of MDD, in which plasma phospholipid levels of DHA%, but 

not EPA%, correlated negatively with relative regional uptake of glucose (rCMRglu) in 

cingulate, middle frontal, inferior frontal, and superior frontal gyri (69).

Among PUFAs tested, only increases in DHA% correlated with increases in FA in the MDD 

group, consistent with DHA’s role as the predominant omega-3 species in brain. Rat studies 

indicate that although EPA and DHA enter the brain at similar rates, most of the EPA is 

rapidly β-oxidized, and is recycled into brain phospholipids to a much lower extent than 

DHA, resulting in a much higher DHA concentration in brain (37).

Counterintuitively, however, in clinical trials EPA appears to have greater therapeutic value 

than DHA, for acute treatment of major depression (39, 41, 42). Suggested explanations for 

EPA effects in depression have included its peripheral anti-inflammatory effects (70, 71), 

actions of EPA metabolites (72), or direct effects on cerebral capillaries (73). However, in 

order to be consistent with both hypotheses that EPA is the active antidepressant agent and 
that brain DHA has effects on depression through increasing FA, we would need to postulate 

that increased peripheral EPA facilitates plasma DHA entry into brain in a manner superior 

to directly providing DHA supplements. This has not been proven, although it is true that 

most dietary EPA is taken up by the liver, where one fate is conversion to bioactive DHA 
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(73). Alternatively, the explanation may lie in the relative proportions of unesterified DHA 

and EPA, not measured here, as unesterified PUFAs cross the blood-brain barrier most 

readily (74, 75).

Our ability to discern PUFA-related structural brain changes over a 6-week period is 

temporally consistent with another study (76), in bipolar disorder, in which omega-3 PUFA 

treatment of 4 weeks’ duration resulted in MRI changes in brain water proton transverse 

relaxation times (T2), that, like DTI (77), reflect myelin content and changes in water 

environments (78).

Studies in other psychiatric populations have found links between PUFA levels and white 

matter integrity. For example, total PUFA concentration correlated with FA in the bilateral 

uncinate fasciculus of young adult males with a recent-onset psychotic disorder (79). In a 

later study by the same group (80), lower total PUFA concentrations in men with early-

phase psychosis correlated with lower FA in the corpus callosum, and bilateral parietal, 

occipital, temporal, and frontal white matter tracts. In contrast to our findings in MDD, in 

the group of psychotic males lower concentrations of arachidonic acid (AA), nervonic acid 

(24:1n-9), and docosapentaenoic acid (22:5n-3), but not DHA, directly correlated with lower 

FA (80).

The importance of PUFA status to brain function may be due in part to the effects of PUFA 

composition on myelin. Studies in rats find that lower omega-3 PUFA intake causes 

abnormalities of myelin (81), and that omega-3 PUFA administration stimulates expression 

of myelin proteins (82). Experimental traumatic brain injury studies in rodents support this 

link between PUFAs and myelination. Following spinal cord injury, white matter damage is 

prevented by injection of DHA; progressive protective effects are induced over a 6-week 

period, including increased synaptic formation and repair and reduced myelin damage (83). 

In addition, dietary supplementation with EPA and DHA prior to impact acceleration brain 

injury reduces the number of axons positive for beta amyloid precursor protein (APP), a 

marker of brain injury, at 30 days post-injury, to amounts comparable to those in uninjured 

rodents (84). Furthermore, a PUFA-enriched diet prevents post-injury loss of myelin, 

preserving the integrity of the myelin sheath, and maintaining the nerve fiber conductivity 

(85). In a different paradigm, maternal omega-3 fatty acid supplementation protects the 

neonatal rat brain from white matter injury due to lipopolysaccharide exposure (86).

Evidence from human populations also indicates a relationship between PUFA and 

myelination. In elderly people, dietary intake of fish with higher EPA and DHA 

concentrations was prospectively linked over a five-year interval to fewer sub-clinical 

infarcts and fewer white matter abnormalities on MRI (87), and plasma DHA levels were 

inversely associated with white matter hyperintensity volumes (a marker of white matter 

damage) and cognitive impairments, although inexplicably, depression weakened the 

association (88). In a small (n=16) prospective open intervention study of multiple sclerosis 

patients, dietary advice and omega-3 PUFA supplementation plus vitamins resulted in higher 

plasma omega-3 PUFA levels and a lower rate of exacerbations and decreased disability over 

a two-year period (89). EPA administration also has been found to reduce brain atrophy over 
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6–9 months in one case of a treatment-resistant depressed patient (90) and in a small 

placebo-controlled study in patients with advanced Huntington’s disease (91).

 Limitations

Our findings should be interpreted cautiously in view of the small sample size of this study, 

although this is mitigated to some extent by its within-subject, prospective study design. The 

prospective nature of the study suggests that white matter changes are due to fish oil 

supplementation; however, we note that due to the lack of placebo group, we cannot rule out 

some other factor at work. Some group differences in PUFA and FA may have been 

undetected due to low statistical power. We were not able to parse out possible effects of 

medications taken by 3 patients in this small sample. The range of participants’ ages is 

relatively narrow, so these results may not apply to older or younger populations. PUFA 

determinations were not made on the day of the DTI, which may add noise to the data. 

Dietary absorption might be affected by different formulations of omega-3 PUFAs, e.g. the 

bioavailability of triglyceride-associated PUFAs predominant in fish oil is reportedly lower 

than phosphoglyceride-associated PUFAs in as in krill oil (92). However, krill meal, which 

also contains DHA and EPA bound to phospholipids, has similar bioavailability to fish oil, 

suggesting the triglyceride-phospholipid difference may not be the main arbiter of 

absorption (92). Free (unesterified) fatty acids also have been suggested to have superior 

bioavailability (93) but are a target for oxidation that may result in breakdown and in 

gastrointestinal side-effects (94). Other factors influencing bioavailability include food 

consumed with the supplements, matrix effects (e.g. capsule composition) and galenic 

formulation (oils vs. emulsion) (94). The relative importance of these factors for delivery of 

PUFAs into brain is unknown, as the primary circulatory carriers, lipoproteins and albumin, 

transport omega-3 PUFAs derived from both triglycerides and phospholipids [reviewed in 

(95)]. There is an inexact correspondence between plasma and brain concentrations, due to 

unmeasured effects of the blood-brain barrier. Different results might be obtained if PUFA 

status were assessed with different measures, such as plasma or erythrocyte levels, 

unesterified state, or percentage of total omega-3 PUFAs.

 Conclusions

Our observations replicate previous findings that corpus callosum and anterior corona 

radiata are regions of vulnerability in MDD (17), and suggest that omega-3 PUFA 

supplements have restorative effects on white matter integrity that may relate to 

antidepressant efficacy in some patients. Additional, larger placebo-controlled studies are 

needed to replicate these findings and test whether omega-3 PUFA-induced enhancement of 

white matter integrity can cause improvements in specific depression symptoms such as 

cognitive deficits.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• First DTI study examining the effects of fatty acids on white matter in 

major depression

• White matter deficits in depression improved after 6 wks of fish oil 

supplementation

• Docosahexaenoate and fractional anisotropy changes positively 

correlate in depression
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Figure 1. 
Lower fractional anisotropy (FA) in patients with major depressive disorder compared to 

healthy volunteers (A) before and (B) after fish oil supplementation for six weeks. Affected 

regions are displayed on an MNI T1 template with corresponding t-score color bar.
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Figure 2. 
Correlations between fractional anisotropy (FA) and plasma phospholipid docosahexaenoic 

acid as a percentage of total plasma phospholipid PUFAs (DHA%) in patients with major 

depressive disorder. A. FA positively correlates with DHA% before fish oil supplementation. 

B. Change in FA positively correlates with change in DHA after fish oil supplementation. 

Affected regions are displayed on MNI T1 template with corresponding t-score color bar.

Chhetry et al. Page 20

J Psychiatr Res. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Global tractography using seed regions in which change in fractional anisotropy correlated 

positively with change in plasma phospholipid docosahexaenoic acid as a percentage of total 

plasma phospholipid PUFAs (DHA%) for major depressive disorder. Tractography results 

from one representative healthy volunteer are shown here, superimposed on the same 

individual’s structural MRI. Red - left to right; blue – inferior to superior; green – anterior to 

posterior.
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Figure 4. 
Intersection between parametric brain maps of change in fractional anisotropy (ΔFA) 

correlated with change in plasma phospholipid docosahexaenoic acid as a percentage of total 

plasma phospholipid PUFAs (ΔDHA%) (yellow) and with change in depression severity 

scores (ΔHDRS) (red), in the MDD group. Depression severity is measured with the 17-item 

Hamilton Depression Rating Scale Using xjView toolbox (http://www.alivelearn.net/xjview), 

SPM-derived t-score maps are superimposed on a series of transaxial slices [4 mm apart] of 

a coregistered anatomical MRI template. For this exploratory analysis, a less conservative 

statistical threshold was set a priori as uncorrected p<0.05 at voxel level and FWE-corrected 

p<0.05 at cluster level.
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Figure 5. 
Comparison of change in fractional anisotropy (ΔFA) between MDD clinical responders and 

nonresponders, in the region in which change in fractional anisotropy (ΔFA) correlated 

positively with change in plasma phospholipid docosahexaenoic acid as a percentage of total 

plasma phospholipid PUFAs (ΔDHA%). (t=−1.874, df=13.56, p=0.08)
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