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Abstract
Millions of mild traumatic brain injuries (TBIs) occur every year in the United States, with

many people subject to multiple head injuries that can lead to chronic behavioral dysfunc-

tion. We previously reported that mild TBI induced using closed head injuries (CHI)

repeated at 24h intervals produced more acute neuron death and glial reactivity than a sin-

gle CHI, and increasing the length of time between injuries to 48h reduced the cumulative

acute effects of repeated CHI. To determine whether repeated CHI is associated with

behavioral dysfunction or persistent cellular damage, mice receiving either five CHI at 24h

intervals, five CHI at 48h intervals, or five sham injuries at 24h intervals were evaluated

across a 10 week period after injury. Animals with repeated CHI exhibited motor coordina-

tion and memory deficits, but not gait abnormalities when compared to sham animals. At

10wks post-injury, no notable neuron loss or glial reactivity was observed in the cortex, hip-

pocampus, or corpus callosum. Argyrophilic axons were found in the pyramidal tract of

some injured animals, but neither silver stain accumulation nor inflammatory responses in

the injury groups were statistically different from the sham group in this region. However,

argyrophilic axons, microgliosis and astrogliosis were significantly increased within the

optic tract of injured animals. Repeated mild CHI also resulted in microgliosis and a loss of

neurofilament protein 200 in the optic nerve. Lengthening the inter-injury interval from 24h

to 48h did not effectively reduce these behavioral or cellular responses. These results sug-

gest that repeated mild CHI results in persistent behavioral dysfunction and chronic patho-

logical changes within the visual system, neither of which was significantly attenuated by

lengthening the inter-injury interval from 24h to 48h.
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Introduction
An estimated 3.8 million people in the United States sustain a traumatic brain injury (TBI)
every year, resulting in 60 billion dollars in annual healthcare costs [1,2]. Approximately 80%
of TBIs are classified as “mild” head injuries [3–5], and often result in one or more symptoms
such as nausea, dizziness, and/or headaches [4,6–8]. Memory loss, motor coordination deficits,
vision impairment, anxiety, and/or irritability have also been observed after mild TBI [4,9].
Most mild TBI patients are discharged within 48h after their head injury [10,11], encouraged
to rest and removed from activities that are a high risk for subsequent TBI until any and all
symptoms have ceased [12]. However, the time necessary for all symptoms of mild TBI to sub-
side can range from 1 week [6,8,13,14] to months [11] or even a year [15]. Varied responses to
mild TBI and insufficient evidence correlating symptom presentation to cellular injury make it
difficult to determine the brain’s period of vulnerability after a head injury. A repeated head
injury occurring before the brain fully recovers can induce a phenomenon known as second
impact syndrome causing hyperemia, intracranial hypertension and even death [16]. In less
severe cases, individuals who have suffered two mild head injuries have been reported to per-
form worse on information processing tasks compared to individuals who sustained a single
mild head injury [17]. Increasing evidence suggests that repeated mild TBI may be associated
with changes in mood, cognition, and motor coordination over months to years and may
develop into a condition now known as Chronic Traumatic Encephalopathy (CTE) [18,19].
However, the mechanism of injury and the role that repeated insults play in the development
of pathology and behavioral consequences that associate with CTE is limited by (a) the sample
size of confirmed human cases, (b) the accuracy of injury assessment and acquired behavioral
histories from the patients and/or their families, and (c) the snapshot of disease progression at
death.

Using animal models, insult severity can be modulated to create a single mild TBI as defined
by minimal gliosis, axonal injury, and cell death and transient or mild motor or cognitive dys-
function. Numerous studies have shown that multiple injuries in close succession result in
worsened behavioral function and/or histopathology compared to a single mild TBI [16,20–
35]. Lengthening the inter-injury interval, or period of rest between injuries, typically limits
brain damage or dysfunction following repeated mild TBI [21–24,33,35–38]. In our mouse
model of mild TBI which impacts directly onto the intact skull, closed head injuries (CHI)
repeated at 24h intervals produced increased acute neuronal death and axonal injury, enhanced
astrogliosis, and induced microgliosis in several brain regions including the hippocampus,
entorhinal cortex and cerebellum compared to single CHI or sham injury. These data are con-
sistent with other studies of repeated mild TBI at 24h inter-injury intervals which report axonal
injury [16,28], astrocytosis [32,38–41], and microgliosis [28,38,42] in the brain. Although simi-
lar pathological responses have been described with repeated mild TBI at 48h inter-injury
intervals [30,43–45], 24h and 48h inter-injury intervals have not been previously compared
within a single study, with the exception of our acute histopathology study. In our model,
extending the inter-injury interval between CHI from 24h to 48h significantly reduced the
amount of acute cell death and inflammation [23], supporting the hypothesis that a longer
period of rest between head injuries allows the brain to recover and reduces the potential for
exacerbation of the secondary injury cascade.

Both 24h and 48h inter-injury intervals have been separately reported to induce transient
motor impairment [16,41,43] and persistent cognitive deficits for as long as a year after injury
compared to sham injured mice [22,30], but have not been compared within the same study.
We hypothesized that five repeated mild TBI at 24h inter-injury intervals would induce behav-
ioral deficits and result in persistent inflammation and secondary injury out to 10wks. In
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addition, we anticipated that lengthening the inter-injury interval to 48h would lessen long-
term behavioral deficits and neuropathology.

Materials and Methods

Animals
Two- to 3-month old male C57BL/6 mice were purchased from Jackson Laboratories (Bar Har-
bor, ME). Upon arrival, mice were group housed under a controlled 14:10h light:dark cycle
and provided mouse chow and water ad libitum. Animal husbandry and all surgical procedures
were approved by the University of Kentucky Institutional Animal Care and Use Committee
and followed the federal guidelines set by the Institute of Laboratory Animal Resources (U.S.)
and Committee on the Care and Use of Laboratory Animals.

Repeated Closed Head Injury
Experimental CHI was induced following a previously described procedure [23]. Mice were
anesthetized with 2.5% isofluorane delivered via a nose cone, the head of each mouse was fixed
between two zygomatic bars stabilized in a stereotaxic frame. The incision site was first cleaned
with 70% ethanol and betadine and local analgesia was achieved by subcutaneous injection of
0.2ml 1:200,000 epinephrine and 0.5% bupivacaine (Henry Schein Animal Health, Dublin,
OH) in sterile, normal saline prior to scalp reflection. A pneumatically controlled cortical
impact device (TBI-0310 Impactor, Precision Systems and Instrumentation, Fairfax Station,
VA) with a 5mm diameter, cushioned tip of 55 Shore A hardness was programmed to deliver a
2.0mm impact at 3.5m/s with a 500ms dwell time. The posterior edge of the tip was aligned at
the Lambda suture (approximately Bregma level -5mm). The diameter of the tip (5mm) is such
that the anterior edge of the tip meets the Bregma suture (0mm Bregma level). Subsequent
injuries were induced at the same location. This impact was previously characterized such that
a single injury would result in minimal gliosis and cell death without resulting in skull fracture
[23]. Immediately after impact, mice were removed from the stereotaxic device and placed
onto their backs on a heating pad. Apnea duration and the time to spontaneously right to a
prone position (righting reflex) were assessed. Upon righting, mice were briefly re-anesthetized
to suture the scalp using vicryl sutures containing antibiotics (Ethicon, Cincinnati, OH). After
suturing, 1ml of sterile saline was delivered subcutaneously to increase hydration after the
injury. Sham-injured animals underwent identical anesthesia and surgical procedures without
receiving an impact.

All mice were monitored on a heating pad until they became ambulatory. Additionally,
mice were evaluated to 1-3h and 24h after each injury, followed by weekly inspections. Mice
were rated to have no (0), mild (1), moderate (2), or severe (3) pain as indicated by locomotion
in their home cage, pain on palpation of surgery site, abnormal behavior, and the appearance
of the incision. Examples of pain responses included hunched posture, tenderness at the site of
the incision, vocalizations, stumbling and/or hugging the cage. Humane endpoints were in
place for mice scoring moderate or severe in at least one category, or mild in more than one
category. In addition, all mice were required to maintain 85% of their starting weight in order
to receive each subsequent head injury. However, no mice in the current study met either crite-
rion for being removed from the study.

For all experiments, mice were randomized into three groups. The first injury group
received five CHI, one every 24h (rCHI-24h; n = 10), whereas the second injury group received
five CHI, one every 48h (rCHI-48h; n = 10). A third group consisted of sham CHI repeated
every 24h for five days (sham; n = 10). We showed previously that sham-injured animals with
anesthesia repeated at either 24h or 48h intervals were not significantly different from each
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other based on histology [23]; therefore, only one sham control group was utilized. One mouse
assigned to the rCHI-24h group and one mouse assigned to the rCHI-48h group did not
recover from their apneic episode after an injury, resulting in an n of 9 for each of these groups.

Behavioral Analysis
BeamWalking. The beam walking test has been modified from our previously described

protocol with the controlled cortical impact (CCI) model [46,47], which utilized four beams of
varying widths to examine motor coordination after injury. Only the narrowest beam and rod
were utilized in this study to enhance sensitivity as a milder deficit was anticipated. Prior to
injury, mice were acclimated to beam walking using a 3cm width plexiglass beam. Twenty-four
hours after the final injury or sham procedure, mice were scored on their ability to walk across
a 0.5cm width, plexiglass beam and a 0.5cm diameter, wooden dowel rod. Mice received 3pts
for walking across the beam without having a foot slip or inverting on the beam. One point was
deducted if one or more foot slips occurred, an additional point was deducted if the animal
inverted under the beam, and a score of zero was given if the mouse fell off the beam or could
not cross. On the rod, a maximum score of 2pts was given for walking across the rod; a point
was deducted if mice inverted more than two times while crossing, and a score of zero was
given if the mouse fell off the rod or could not cross. These tasks were repeated on the following
testing days: 3d, 10d, 17d, 24d, 6wk, 8wk, and 10wk. For correlations with histological quantifi-
cations, the average beam walking score across the 10wk period was used.

Novel Object Recognition. The novel object recognition (NOR) test has been previously
established in our lab and others to test cognition after TBI in rodents [46–48]. Prior to injury,
mice were acclimated to a 10.5” x 19” x 8” plastic box for one hour. Eight days after the final
injury or sham procedure, mice were placed back into their individual testing box and allowed
to explore two identical objects placed in opposite corners for five minutes. Four hours later,
mice were placed back into their testing cage for five minutes with one of the previously
explored objects and a novel object. The amount of time spent exploring each object was
recorded. Additional time in the testing box was allowed to ensure a total object exploration
time of at least ten seconds. Three mice (two rCHI-48h, one rSHAM) required an extra 1–3
minutes on the first testing day. Recognition Index was calculated as the time spent exploring
the novel object divided by the combined familiar and novel object exploration times, and was
expressed as a percentage. For each additional testing day at 2wk, 4wk, 8wk, and 10wk post-
injury, mice were returned to their testing cage for five minutes to explore a distinct novel
object and the same familiar object.

Gait Analysis. On the third day following the final injury, mice were placed in a Digigait
box with a clear treadmill belt (Mouse Specifics, Inc., Framingham, MA). A camera positioned
underneath the belt recorded the ventral aspect of the mouse. The belt was set to 15cm/s, a
speed which required the animals to continuously walk. Five consecutive seconds of video in
which the mouse moved within the same frame were utilized for analysis. This task was
repeated at 1mo after injury. The videos were then analyzed with the Mouse Specifics software
using established protocols to measure gait and paw placement [49,50].

Tissue Processing
Following the final behavioral test, mice were euthanized by intraperitoneal injection of Fatal
Plus (130mg/kg, Henry-Schein Animal Health, Dublin, OH) before transcardial perfusion with
cold, heparinized sterile saline followed by cold, 4% paraformaldehyde (PFA) for ten minutes.
After perfusion, mice were decapitated and the heads placed into vials of 4% PFA for 24h. The
brains and optic nerves were then removed from the skull and post-fixed in 4% PFA for an
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additional 24h. Following post-fixation, tissue was placed into 30% sucrose in 1X-Tris-buffered
saline (TBS) for 48h for cryoprotection. The brain tissue was frozen in -25 to -35°C isopentane
before being cut into 40μm thick coronal sections using a sliding microtome (Dolby-Jamison,
Pottstown, PA). For optic nerves, tissue was frozen in optimal cutting temperature compound
(OCT) on the sliding microtome and cut into 10μm thick longitudinal sections. Tissue sections
were stored at -20°C in 30% glycerol, 30% ethylene glycol in 1X TBS.

Histopathological Analysis
Histology. Silver staining was performed on a series of brain tissue which included 12 sec-

tions spaced at 400μm for the cerebrum and 200μm for the cerebellum/brainstem. The FD
NeuroSilver kit (FD NeuroTechnologies, Ellicott City, MD) was used with the following two
modifications from the manufacturer’s instructions: (1) for the step involving the mixture of
solution C and F, tissue was placed into the solution 2x 2.5 minutes; (2) tissue was dehydrated
sequentially in 70%, 80%, 95%, and 100% ETOH, and cleared in Xylenes prior to coverslipping.

Immunohistochemistry. A series of free-floating tissue sections spaced at 400μm apart
were used for immunohistochemistry. For procedures utilizing 3,3’-diaminobenzidine, tissue
sections were treated with 3% H2O2 in 50/50 methanol/ddH2O for 30 minutes in order to
quench endogenous peroxides. For all immunohistochemical protocols, tissues were blocked
with 5% normal horse serum in 0.1%Trition X-100/1XTBS before incubation in primary anti-
body (Table 1) overnight at 4°C. On the following day tissue sections were rinsed and incu-
bated in the appropriate secondary antibody (Table 1) for 1 hour. For Iba-1 labeled tissue, the
tissue was washed after incubation in Alexa 488-conjugated secondary antibody, mounted
onto gelatin-coated slides, and coverslipped using Fluoromount mounting media (Southern
Biotech, Birmingham, AL). For all other protocols using biotinylated secondary antibodies, the
tissue was washed before incubating in Avidin-Biotin complex (Vector Laboratories, Burlin-
game, CA) for 1 hour and then treating with 3,3’-diaminobenzidine as directed by the manu-
facturer (Vector Laboratories).

Quantification of Histology. All analyses were performed by an examiner blinded to the
injury conditions of each animal.

In our previous study, inflammation was increased 24h following repeated mild TBI at 24h
inter-injury intervals in the entorhinal cortex and hippocampus [23]. Therefore, GFAP immu-
noreactivity was analyzed at 10wks post-injury in the entorhinal cortices and hippocampi (4
sections/animal) and Iba-1 immunoreactivity was analyzed in the entorhinal cortices (4 sec-
tions/animal) as previously described [23]. In brief, GFAP and Iba-1 images were taken using
an Olympus BX51 microscope with an ASI XY automated stage, and a montage of the images
were created using Image Pro Plus software. For GFAP immunolabeling, the mean integrated
optical density (IOD) of was measured and averaged across sections for statistical analyses. For
Iba-1 labeling, an examiner chose the display range (between 0 and 255) that selected immuno-
reactive microglia for each tiled image. The percent area of Iba-1 immunoreactivity was mea-
sured and averaged for statistical analyses.

Silver-stained sections were viewed at 10x magnification using an Olympus BX51 micro-
scope with an ASI XY automated stage. Images of the tissue were captured with the calibrated
Stage-Pro module of Image Pro Plus (Media Cybernetics, MD) and assembled into a montage.
Based on initial light microscopic evaluation of the cerebrum and brainstem, regions with nota-
ble positive staining were selected for quantitative analysis. In the cerebrum, the optic tract and
peduncle were analyzed bilaterally in 2–3 sections/animal. In the brainstem, the pyramidal
tract and adjacent grey matter were analyzed in two sections/animal. Each area of interest
(AOI) was outlined using the anatomical markers found in “The Mouse Brain in Stereotaxic
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Coordinates”, 4th Edition (Paxinos & Franklin). Utilizing the entire range of pixel densities (0–
255), the mean density of each AOI was recorded. For each animal, the mean density was aver-
aged across sections for each anatomical area for statistical analyses. Silver staining in the cere-
bellar lobes was evaluated qualitatively.

Following the observations in the optic and pyramidal tracts with silver stain, inflammation
was also evaluated in these regions using immunohistochemical labeling of CD68 and GFAP
for activated microglia or astrocytosis, respectively. For analysis, tissue sections were imaged
using the Olympus BX51 microscope (10x) with a Q Imaging camera. Each AOI was outlined
as described above. An examiner then chose the density range that selected immunoreactive
microglia or astrocytes for each image. The percent of the total area which contained CD68
labeled microglia or GFAP labeled astrocytes were measured and averaged bilaterally for the
optic tract across 2–3 sections/animal and for the pyramidal tract in 1 section/animal.

Neurodegeneration observed in the visual pathway prompted an evaluation of the optic
nerves for axon loss and ongoing microgliosis. NF200 immunolabeling was used to visualize
intact axons and CD68 immunolabeling was used to examine activated microglia. For quantita-
tive analysis, each nerve was imaged using an Olympus AX80 microscope (10x) and a DP-70
camera. Several overlapping images were obtained to encompass the length of the optic nerve
from the retina to the optic chiasm. These images were used to create a montage of the whole
nerve in Adobe Illustrator CS6. The intensity threshold that detected labeled neurofilament
protein or activated microglia was selected. The area of positive labeling was normalized to the
AOI for statistical analyses.

PHF-1 labeled tissue was evaluated qualitatively. Brain tissue from a 3.5mo old rTg4510 tau
mouse was used as a positive control for PHF-1 labeling [56].

Table 1. Antibody List.

Antibody Name Public
Identifier

Supplier Cat #; Log # Clone;
Host

Immunogen Concentration Validation
study

Anti-ionized calcium-
binding adaptor

molecule 1

Iba-1 Wako; Richmond,
VA

019–19741;
CTR-6026

Poly;
Rabbit

Synthetic peptide
corresponding to C-terminus

of Iba-1

1:1000 [51]

Anti-glial fibrillary
acidic protein

GFAP Sigma-Aldrich;
St. Louis, MO

G9269;
127K4807

Poly;
Rabbit

GFAP from human brain 1:1000 [52]

Anti-cluster of
differentiation-68,

CD68 Bio-Rad; Herclues,
CA

MCA1957;
0114

Mono
clone FA-
11; Rat

Purified concanavalin A
acceptor glycoprotein from

P815 cell line.

1:1000 (cerebrum);
1:500 (optic nerve)

[53]

Anti-neurofilament
protein-200

NF200 Sigma-Aldrich;
St. Louis, MO

N0142;
017K4802

Mono;
Mouse

C-terminal segment of
enzymatically

dephosphorylated pig
neurofilament 200

1:100 [54]

Anit-paired helical
filament-1

PHF-1 The Feinstein
Institute Great
Neck, NY

n/a Mono;
Mouse

Soluble PHF 1:500 [55]

Donkey anti-rabbit
IgG, Biotin-SP
conjugate

Dk anti Rb
IgG Biotin

Jackson Immuno;
West Grove, PA

711-065-152;
11372

Mono;
Mouse

Whole IgG 1:1000 —

Donkey anti-rat IgG,
Biotin-SP conjugate

Dk anti Rt
IgG Biotin

Jackson Immuno;
West Grove, PA

712-065-153;
106342

Poly;
Donkey

Whole IgG 1:1000 —

Donkey anti-mouse
IgG, Biotin-SP
conjugate

Dk anti Ms
IgG biotin

Jackson Immuno;
West Grove, PA

715-065-151;
107570

Poly;
Donkey

Whole IgG 1:1000 (cerebrum);
1:500 (optic nerve)

—

Donkey anti-rabbit
IgG, Alexa Fluor 488,

conjugate

Dk anti Rb
Alexa 488

Life Technologies;
Carlsbad, CA

A21206;
1275888

Poly;
Donkey

Gamma immunoglobins heavy
and light chains

1:2000 —

doi:10.1371/journal.pone.0159442.t001
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Statistics
Analyses were completed using Graph Pad Prism 5 or Statistica 5.0 software. For apnea, right-
ing reflex, and behavioral tests, a repeated measures 1-way ANOVA (time x injury group) was
performed followed by post-hoc Newman-Keuls tests where appropriate. For each histological
marker within each region, a 1-way ANOVA followed by post-hoc Newman-Keuls tests where
appropriate was performed. For correlations between histological and behavioral outcomes,
Spearman’s correlation was performed, and Spearman’s rho and corresponding p values are
reported. All data are presented as means with standard error.

Results

Apnea and Righting Reflex
As in our previous report using this model of mild TBI [23], both apnea duration and time to
right increased in length after CHI and were maximal after the first injury, decreasing in
duration with subsequent impacts (Table 2). For apnea duration there was a significant main
effect of injury group (p<0.05) and CHI number (p<0.05) but the interaction between the
two was not statistically significant (p = 0.07). Post-hoc comparisons among groups indicated
that rCHI at either 24h or 48h increased apnea compared to sham injury ($ indicates p<0.05
compared to sham). In addition, post-hoc analysis for the main effect of CHI number dem-
onstrated that apnea duration was highest after CHI 1 and CHI 2 (# indicates p<0.05 com-
pared to CHI 3, 4, and 5). Time to right after injury was significantly dependent on the injury
group (p<0.05) and the CHI number (p<0.05; interaction p<0.05). Post-hoc analyses
revealed a significant increase in the time to right after the first CHI (p<0.05 when compared
to sham injury) and a trend toward an increase after the second impact in the rCHI-24h
group (p = 0.08). Apnea duration and righting reflex were not significantly different between
animals in the rCHI-24h and rCHI-48h groups. At this impact depth, CHI did not produce
skull fractures in any mice.

rCHI Induces Persistent Memory Dysfunction
The novel object recognition (NOR) task was used to compare memory function among the
rSHAM, rCHI-24h, and rCHI-48h groups at several time points across 10wks (Fig 1A). In our
hands, naïve and sham-injured mice spend about 70–75% of total exploration time on the
novel object [47]. Mice receiving repeated sham injury exhibited this same behavior with a rec-
ognition index of approximately 70%. Memory ability was dependent upon injury status
(p<0.05) but not time after injury (p>0.05; Interaction, p>0.05). CHI repeated at either 24h
intervals or 48h intervals induced a persistent deficit in cognition across the testing period
(p<0.05 compared to rSHAM). Lengthening the inter-injury interval from 24h to 48h
appeared to result in a milder initial cognitive deficit, but this difference was not sustained
across the 10wk period (p = 0.1).

rCHI Induces Deficits in Motor Coordination with BeamWalking but not
Gait Analysis
Following the final day of injury, mice were assessed on a beam walking task at several time
points to examine deficits in motor coordination after rCHI (Fig 1B). Beam walking scores
were dependent upon the injury group (p<0.05) but not the amount of time after injury
(p>0.05; Interaction p>0.05). Post-hoc testing among injury groups revealed that CHI
repeated at either 24h intervals (p<0.05) or 48h intervals (p<0.05) produced significant motor
deficits compared to sham injury. Although rCHI-24h appeared to result in a larger beam
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walking deficit than rCHI-48h across 10wks, this did not reach statistical significance (p = 0.1).
To determine whether combining the beam and rod portions of the test masked subtle deficits
better detected by one task, scores were analyzed separately (Fig 1C and 1D). Individual analy-
ses of the beam and rod corroborated the combined beam test, with rCHI at 24h and 48h inter-
vals inducing significant motor deficits compared with sham injury. However, performance on
the rod varied as a function of time, with significant recovery at 10wks compared with 24h
post-injury (Fig 1D). To determine whether the motor deficit observed in rCHI animals might
have been a result of the first impact and not a cumulative effect, we analyzed beam walking
data from our previous acute CHI study [23] in which mice were evaluated 2h and 24h after
each impact. Two hours after a single CHI, mice (n = 15) scored an average of 1.8 ± 0.2 on the
0.5cm beam (maximum score of 3) and 1.8 ± 0.1 on the rod (maximum score of 2). By 24h
after a single CHI, beam walking scores (2.8 ± 0.1 on the beam and 2.0 ± 0.0 on the rod) were
comparable to those of sham mice, suggesting a single CHI resulted in only mild transient
motor dysfunction which resolved by 24h.

Gait coordination was assessed using a treadmill test (Digigait). Mice were tested three days
after the final injury, as well as at 1 month after injury. A large number of parameters can be
examined using the Digigait software. Results from analyses of gait symmetry, hindlimb shared
stance, and paw area at peak stance are provided in Table 3. No significant differences were
observed among groups in any parameter at either of the time points after injury.

Chronic Neurodegeneration after Mild TBI Irrespective of Inter-injury
Interval
Conventional Hematoxylin and Eosin stain did not reveal contusion, hemorrhage or overt neu-
ron death or atrophy (S1 Fig). Silver stain was used to label neurons undergoing degeneration
[57] and has been used previously to demonstrate axonal injury after closed head injury
[28,29,58]. In our hands, the staining yielded a copper-toned background with black particu-
lates in the degenerating regions. No evidence of neurodegeneration in the neocortex, hippo-
campus, or corpus callosum was observed after repeated CHI or sham injury. However,
repeated CHI induced bilateral degeneration in the pyramidal tract of the brainstem (Fig 2B,
2C, 2E and 2F) and in the white matter regions of the cerebellar crusiforms (Fig 2J, 2K, 2M and
2N). The mean density of silver stain in the pyramidal tract (Fig 2A, solid outline) was

Table 2. Apnea and Righting Reflex.

CHI 1 CHI 2 CHI 3 CHI 4 CHI 5

# #

Apnea (sec)

rSHAM 0 0 0 0 0

rCHI-24h 26 ± 7 21 ± 7 15 ± 6 8 ± 4 10 ± 2

rCHI-48h 22 ± 4 21 ± 5 8 ± 3 11 ± 3 5 ± 2

Righting

rSHAM 1:15 ± 0:04 1:11 ± 0:06 1:13 ± 0:05 1:21 ± 0:06 1:26 ±0:05

Reflex (min)

rCHI-24h 9:13 ± 2:46 $ 6:03 ± 2:04 p = 0.08 2:33 ± 0:29 1:49 ± 0:15 2:15 ± 0:15

rCHI-48h 10:40 ± 2:28 $ 5:35 ± 1:50 2:08 ± 0:28 2:05 ± 0:15 1:46 ± 0:11

Apnea and the time to flip to prone position (righting reflex) were recorded after each of five closed head injuries.
$ indicates p<0.05 compared to sham.
# indicates p<0.05 compared to CHI 3, 4, and 5.

doi:10.1371/journal.pone.0159442.t002
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Fig 1. Repeated closed head injury (CHI) inducedmotor andmemory deficits over 10wks post-injury.
Behavioral testing was conducted following repeated sham (rSHAM), repeated CHI at a 24h interval (rCHI-
24h), and repeated CHI at a 48h interval (rCHI-48h). (A) Memory scores in the novel object recognition task
were calculated by dividing the time spent exploring the novel object by the total exploration time (recognition
index). (B) The beam walking task was used to identify deficits in motor coordination. A score of 5 indicated
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normalized to the adjacent inferior olive (Fig 2A, dotted outline). While some animals (7 of 9
in rCHI-24h and 4 of 9 in rCHI-48h) exhibited pyramidal tract degeneration after repeated
CHI, this effect did not reach statistical significance (ANOVA p = 0.052; Fig 2G). As the pyra-
midal tract contains corticospinal axons involved in motor control, we postulated that persis-
tent motor deficits might be related to the degree of pyramidal tract degeneration. However,
the density of pyramidal tract silver staining in injured animals did not significantly correlate
with their average beam walking score (p>0.05; r = 0.12; Fig 2H).

In the cerebrum, axons within the optic tract were positively labeled with silver stain in
repeated CHI (Fig 3B, 3C, 3E and 3F) but not sham-injured (Fig 3A and 3D) mice. The mean
density of silver stain within the optic tract (Fig 3A, solid outline) was normalized to the tha-
lamic peduncle adjacent to the optic tract (Fig 3A, dotted outline) to control for variation in
background intensity across animals. Silver stain mean density in the optic tract of the rCHI-
24h group (p<0.05) and rCHI-48h group (p<0.05) was significantly increased compared to
rSHAM (Fig 3G). Optic tract silver staining was greater in the rCHI-48h group than the rCHI-
24h group (p<0.05). Neurodegeneration within the optic tracts as well as a recent study pub-
lished by Tzekov and colleagues [45] prompted us to evaluate the optic nerves of brain-injured
animals for additional damage. In an uninjured or sham animal, axons stained positively for
NF200, the heavy chain component of neurofilaments (Fig 3H). Damaged optic nerves, in con-
trast, exhibited loss of NF200 labeling (Fig 3I and 3J), which was statistically significant for
CHI repeated at either 24h or 48h intervals (p<0.05 compared to sham; Fig 3K). The interval
for induction of CHI did not significantly influence the loss of NF200 immunolabeling
(p>0.05).

Persistent Inflammation after Mild TBI in Optic Tract and Pyramidal Tract
but not Entorhinal Cortex and Hippocampus
Microglia and astrocyte reactivity were measured in several brain regions by Iba-1/CD68
immunoreactivity and GFAP immunoreactivity, respectively. Iba-1 labels all microglia. How-
ever, morphological features were used to delineate ‘activated’microglia from ‘unactivated’ or
resting microglia. In contrast, CD68 selectively labels activated microglia which appeared with
swollen cell bodies and thick processes.

Due to acute microgliosis and astrocyte activation previously noted in the entorhinal cortex
and hippocampus 24h following repeated CHI [23], these regions were analyzed at 10wks post-
injury. In the entorhinal cortex, only a few hypertrophic microglia were observed at 10wks
post-injury. The vast majority of Iba-1 labeled microglia had a resting morphology with small

perfect performance on the task, with lower scores indicating poorer motor skills. Component analysis for the
beam walking task of (C) the 0.5cm plexiglass beam and (D) the 0.5cm wooden dowel rod. $ indicates
significant difference from rSHAM (p<0.05 post-hoc testing for main effect of injury). # indicates that
performance across all groups was better at 10wks compared to 24h (p<0.05).

doi:10.1371/journal.pone.0159442.g001

Table 3. Digigait Analysis.

rSHAM rCHI-24h rCHI-48h

Timepoint: 3d 1mo 3d 1mo 3d 1mo

Gait Symmetry 0.90 ± 0.05 0.95 ± 0.07 0.97 ± 0.06 0.94 ± 0.05 0.97 ± 0.06 0.92 ± 0.05

Hindlimb Shared Stance (sec) 0.13 ± 0.02 0.14 ± 0.02 0.13 ± 0.02 0.15 ±0.03 0.12 ± 0.02 0.13 ± 0.03

Paw Area at Peak Fore: 0.31 ± 0.02 0.28 ± 0.03 0.28 ± 0.03 0.26 ± 0.02 0.29 ± 0.03 0.26 ± 0.04

Stance (cm2) Hind: 0.56 ± 0.07 0.52 ± 0.08 0.55 ± 0.07 0.47 ± 0.08 0.56 ± 0.08 0.52 ± 0.12

doi:10.1371/journal.pone.0159442.t003
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Fig 2. Repeated closed head injury (CHI) induced chronic axonal degeneration in the pyramidal tract
and cerebellar crusiforms. Argyrophilic axons in the pyramidal tract (A-F) and cerebellar crusiforms (I-N)
were labeled using silver stain. Scale bars: 500μmA-C, I-K; 250μmD-F, L-N). The mean density of silver
staining in the pyramidal tract (G) was normalized to background using adjacent stained areas. Correlation
between pyramidal tract silver stain after repeated CHI and average beamwalking score across 10wks (H).

doi:10.1371/journal.pone.0159442.g002
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cell bodies and thin processes (Fig 4A–4C). The area of Iba-1 labeled microglia relative to a
defined area of interest was comparable across all groups (p>0.05; Fig 4J). Iba-1 labeled micro-
glia in the hippocampi were observed qualitatively and no differences were observed among
groups. GFAP-positive astrocyte cell bodies and processes in the entorhinal cortex and hippo-
campus of rCHI animals did not appear swollen or increased in number compared to those in
rSHAM animals (Fig 4D–4I). When quantified, the mean GFAP IOD/astrocyte in the entorhi-
nal cortex was comparable across all groups (p>0.05; Fig 4K). In the hippocampus, one animal
in the rCHI-24h group had the highest mean IOD/astrocyte of 5.9. However, on average the
groups were comparable to each other (p>0.05; Fig 4L).

In the pyramidal tract (Fig 5A) and cerebellar crusiforms (Fig 5G) of rSHAM animals very
few, if any, CD68-postive microglia were observed. Repeated CHI resulted in an appreciable
increase in activated microglia in the pyramidal tract (Fig 5B and 5C) and cerebellum (Fig 5H
and 5I), in a subset of animals injured at 24h (5 of 9) or 48h (3 of 9) intervals. However, across
the entire group, the percent area of CD68 was not significantly increased within the pyramidal
tract of rCHI animals compared to rSHAM animals (ANOVA p>0.05, Fig 5M). A mild

Fig 3. Repeated closed head injury (CHI) induced chronic axonal degeneration in the optic tract and optic nerve.
Argyrophilic axons in the optic tract (A-F) were labeled using silver stain. Scale bars: 500μmA-C: 250μmD-F. The mean
density of silver staining in the optic nerve was normalized to background using adjacent stained areas (G). * indicates
p<0.05 compared to all other groups. Optic nerves (H-J) were labeled for neurofilament heavy chain (NF200) and the percent
area of staining was quantified (K). Scale bars: 250μmH-J. $ indicates p<0.05 compared to sham.

doi:10.1371/journal.pone.0159442.g003
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Fig 4. Inflammation did not persist in the entorhinal cortex or hippocampus 10wks after repeated
closed head injury (CHI). Immunohistochemical labeling of ionized calcium-binding adaptor protein-1 (Iba-1;
A-C) and glial fibrillary acidic protein (GFAP; D-I) in the entorhinal cortex and hippocampus after repeated
sham (rSHAM), repeated CHI at 24h intervals (rCHI-24h), and repeated CHI at 48h intervals (rCHI-48h).
Scale bars: 500μmA-F; 250μmG-I. The percent area of Iba-1 labeling was quantified for analysis in the
entorhinal cortex (J). The mean integrated optical density (IOD) of GFAP/astrocyte was analyzed for the
entorhinal cortex (K) and the hippocampus (L).

doi:10.1371/journal.pone.0159442.g004
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astrocytic response was observed within the pyramidal tract (Fig 5E and 5F) and cerebellar cru-
siforms (Fig 5K and 5L) of injured animals. While a few animals from each injury group had a
higher percent area of GFAP labeling in the pyramidal tract compared to sham animals, groups
were not significantly different from each other (p>0.05; Fig 5N). Because neuroinflammation
is often concomitant with neurodegeneration [23,40] we asked whether pyramidal tract degen-
eration predicted the extent of gliosis. Neither microgliosis nor astrocytosis correlated with
increases in silver stain (p>0.05; r = 0.33 for silver stain v. CD68; r = -0.37 for silver stain v.
GFAP; Fig 5O). Surprisingly, GFAP immunoreactivity in the pyramidal tract correlated with
better average beam walking scores in injured animals (p<0.05; r = 0.67; Fig 5O) while, CD68
immunolabeling appeared to be inversely correlated with beam walking scores, although the
correlation did not reach statistical significance (p = 0.056; r = -0.47; Fig 5O).

Fig 5. Repeated closed head injury (CHI) causes chronic activation of microglia and reactive astrocytes in the cerebellum and
brainstem. Immunohistochemical labeling of cluster of differentiation 68 (CD68) and of glial fibrillary acidic protein (GFAP) in the pyramidal tract
(A-C and D-F, respectively) and white matter tracts of cerebellar crusiforms (G-I and J-L, respectively) after repeated sham (rSHAM), repeated
CHI at 24h intervals (rCHI-24h), and repeated CHI at 48h intervals (rCHI-48h). Scale bars: 500μmA-F; 250μmG-L. The percent area of CD68
and GFAP labeling was quantified for analysis in the pyramidal tract (M and N, respectively). The percent area of CD68 (orange squares) and
GFAP (green triangles) labeling in the pyramidal tract did not correlate with the mean density of silver stain in the pyramidal tract (O top panel).
The percent area of CD68 or GFAP labeling after repeated CHI compared to the average beamwalking score across 10wks (O bottom panel).
Lines represent linear regression for visualization purposes.

doi:10.1371/journal.pone.0159442.g005
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In the optic tract of injured animals, CD68-positive microglia were diffusely distributed (Fig
6B and 6C). In addition, GFAP-labeled astrocytes appeared to increase in number and were
enlarged throughout the region (Fig 6E and 6F). The percent area of CD68 labeling (Fig 6J)
and of GFAP-labeled astrocytes (Fig 6K) were significantly increased 10wks after repeated CHI

Fig 6. Repeated closed head injury (CHI) causes chronic microgliosis in the optic tract and optic
nerve. Immunohistochemical labeling of cluster of differentiation 68 (CD68; A-C, G-I) and glial fibrillary acidic
protein (GFAP; D-F) after repeated sham (rSHAM), repeated CHI at 24h intervals (rCHI-24h), and repeated
CHI at 48h intervals (rCHI-48h). Scale bars: 250μm. The percent area of CD68 labeling was quantified for
analysis in the optic tract (J), and optic nerves (L). The percent area of GFAP labeling was quantified for
analysis in the optic tract (K). $ indicates p<0.05 compared to sham.

doi:10.1371/journal.pone.0159442.g006
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at either 24h or 48h inter-injury intervals (p<0.05 compared to sham). CD68-positive micro-
glia were also observed throughout the optic nerves of injured animals (Fig 6H and 6I), congre-
gated most heavily in the areas where NF200 labeling was diminished. The percent area of
CD68 labeling was significantly increased 10wks after repeated CHI at either 24h or 48h inter-
injury intervals compared to sham injury (p<0.05; Fig 6L). Increasing the inter-injury interval
from 24h to 48h did not significantly reduce gliosis in the optic tract or optic nerve 10wks after
injury (p>0.05).

To determine whether microgliosis in the optic tract was initiated early after rCHI or repre-
sented a delayed response to ongoing neurodegeneration, we evaluated archival tissue from our
previous study with this model [23]. Groups included repeated CHI (rCHI-24h (n = 7) and
rCHI-48h (n = 8)) euthanized 24h after the final injury, single CHI (euthanized at 24h (n = 8),
5d (n = 5), or 9d (n = 5) post-injury) and repeated sham (n = 8). CD68 immunolabeling in the
optic tract 24h after a single CHI was similar to labeling in rSHAM animals (p>0.05; S2 Fig).
However, by five days after a single CHI, CD68 immunolabeling in the optic tract was signifi-
cantly increased (p<0.05 compared to rSHAM). Microglial reactivity decreased significantly
by nine days after a single CHI compared to five days after a single CHI (p<0.05) but remained
elevated compared to rSHAM (p<0.05). When CHI were repeated at a 24h or 48h inter-injury
interval, the percent area of CD68 labeling was significantly increased compared to that in
rSHAM animals (p<0.05), but the response was similar to the peak microglial response seen
five days after a single CHI.

Absence of Pathological Tau
Neuronal inclusions of hyper-phosphorylated tau are a hallmark of CTE in humans, a condi-
tion associated with repeated TBI. In the current study mice with repeated CHI did not exhibit
hyper-phosphorylated tau when immunolabeled with PHF-1 antibody 10wks after injury (S3
Fig). Transgenic mice modified to express human tau (rTg4510) exhibit age-related tau hyer-
phosphorylation [56]. PHF-1 accumulation was detected in brain sections from a 3.5 month
old rTg4510 mouse, serving as a positive control for the protocol.

Discussion
We previously established a model of mild TBI in which the extent of acute histopathology was
dependent on injury severity and was amplified by repeated impacts if the inter-injury interval
was 24h but not 48h [23]. Using this same model, five CHI resulted in persistent cognitive and
motor dysfunction over a 10wk period as well as neurodegeneration and neuroinflammation in
the visual pathway, the corticospinal tract and the cerebellum. These injury-induced changes
were not effectively mitigated by extending the inter-injury interval from 24h to 48h.

Motor Pathway Damage
Motor dysfunction is not a prominent feature of mild TBI, but difficulties in motor coordina-
tion are a common symptom associated with CTE. A number of repeated mild TBI models
result in tissue damage in the motor cortex without concomitant motor impairment as assessed
by beam crossing [42], rotarod [21,30,32,40,43,59–61], or gait analysis [40]. Others have
described transient motor impairment that resolves within a week after injury [16,41,61] or
between 1wk and 6mo [30,43]. Our study is unique in documenting early motor deficits in
beam walking, which persisted out to 10wks after injury. Increasing the interval between inju-
ries from 24h to 48h did not significantly reduce impairment in beam walking despite decreas-
ing acute pathology [23], suggesting motor dysfunction after repeated CHI is not directly
dependent on acute regional neuron loss or inflammation. Without a parallel group of mice
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with a single CHI it is not possible to completely rule out that the motor deficit was a conse-
quence of repeated versus singlemild TBI. However, assessments of beam walking 2h and 24h
after the initial CHI from our previous study (not previously reported) show that one impact
produces only a very slight and transient impairment which resolves by 24h, suggesting the
long-lasting motor dysfunction observed in the current study is primarily due to repeated mild
TBIs. Detection of longer lasting motor deficits in our model of repeated mild TBI as compared
to others may be due, in part, to differences in the location, number or severity of our impacts,
or to greater sensitivity of our motor task.

In addition to mild deficits in beam walking ability, mice with repeated mild TBI exhibited
chronic neurodegeneration within the pyramidal tract and cerebellum. Although the pyramidal
tract contains the upper motor neurons of the corticospinal tract that control voluntary move-
ments, the amount of persistent neurodegeneration in the pyramidal tract did not correlate
with beam walking deficits. It is possible that the peak of neurodegeneration in this region
occurred much earlier, given that other studies of TBI have noted maximal silver staining at
48h after a severe, focal TBI [62] or 72h after a milder impact acceleration injury [63]. There-
fore, further temporal studies are necessary to elucidate whether acute neurodegeneration in
the pyramidal tract better predicts beam walking deficits.

Neurodegeneration in the pyramidal tract and cerebellum was coupled with astrocytosis
and microgliosis at 10wks post-injury. The relationship between ongoing neurodegeneration
and chronic inflammation is still debated [64,65]. However, in the current study, quantification
of reactive astrocytes and activated microglia in the pyramidal tract failed to reveal a correla-
tion with silver stain accumulation. Interestingly, increased astrocytosis correlated with
improved beam walking ability, suggesting that the long-term astrocyte response may be
involved in promoting recovery after injury as has been reported in experiments of spinal cord
injury [66,67]. Reactive microgliosis, in contrast, appeared to be higher in mice with greater
motor dysfunction. Such an inverse relationship between the activation of astrocytes and of
microglia has been reported in mouse models of Alzheimer’s disease [68] and Batten disease
[69]. When reactive astrocytosis was inhibited in either of these models, microgliosis was upre-
gulated. Future studies are needed to better understand the factors that modulate the relative
astrocyte and microglial responses to brain trauma.

Memory Circuit Damage
Difficulties with memory, such as amnesia to the traumatic event or trouble with memory
retention, can occur following mild TBI. Based on our previous observation of damage in the
entorhinal cortex and hippocampus, regions involved in the memory circuit, we postulated
that repeated CHI may result in cognitive deficits. Indeed, mice with repeated CHI had signifi-
cantly lower memory scores in an NOR task across a 10wk period compared sham mice, add-
ing to the growing literature documenting memory impairment after repeated mild TBI
[21,22,34,35,38,42,48]. Future studies could evaluate the magnitude or duration of cognitive
dysfunction as a function of the number of injuries to expand upon findings in previous studies
[22,34,42,48]. The length of the window of vulnerability for repeated TBI may also be affected
by the number of injuries. For example, an inter-injury interval of 1wk between two head inju-
ries was sufficient to eliminate acute cognitive deficits [21], while five injuries given at 1wk
intervals resulted in cognitive dysfunction that persisted between six months and a year
[22,38]. Therefore, in our study of five impacts, a longer post-injury evaluation period may
have helped to discern differences in the persistence of cognitive dysfunction between rCHI
repeated at 24h versus 48h inter-injury intervals.
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The entorhinal cortex and hippocampus exhibited little evidence of ongoing neurodegen-
eration, astrogliosis or microgliosis. While it is possible that an acute transient wave of neuron
death and/or inflammation in these regions contributed to persistent memory dysfunction, it
seems unlikely to be the major determinant since the rCHI-48h group, which had less neuron
loss and microglial activation than the rCHI-24h group early after injury [23], had comparable
cognitive deficits. An alternative explanation for persistent neurobehavioral impairment may
be ongoing dysfunction of surviving neurons due to, for example, impairments in axonal con-
duction velocity or long-term potentiation. Such changes have been measured in hippocampal
neurons after a blast injury which resulted in deficits in hippocampal-dependent learning and
memory without macroscopic tissue damage [70]. Alternatively, metabolic measures gleaned
through imaging approaches or autoradiography could reveal areas of sublethal neuron injury
[28,33].

Visual System Damage
Humans with mild TBIs often complain of disruptions in normal vision which can manifest in
the form of saccades and difficulties with pursuit, convergence, accommodation and the vestib-
ular-ocular reflex [71]. These changes can result in difficulties with reading, light sensitivity,
and headaches leading to poor quality of life. Despite the high occurrence, visual dysfunction
after TBI is an underrepresented area of study. Models of midline, diffuse head injury are a
valuable tool for exploring visual pathway damage after mild TBI. Repeated mild CHI resulted
in axonal degeneration in the optic tract and optic nerve axon loss at 10wks after injury, which
was comparable for 24h and 48h inter-injury intervals. Our findings expand upon reports of
neurodegeneration in the optic tract, superior colliculus and optic nerve within the first week
after repeated mild head injury in mice [72] and corroborate the work of Xu et al. [72] who
showed a decrease in optic nerve axon number at 10wks after repeated impact acceleration
brain injuries. Both early optic tract degeneration and chronic optic nerve axon loss were
greater after repeated TBI than single injury [72]. While these data suggest repeated injury
causes additive damage within the visual system, our study is the first to examine visual path-
way pathology with respect to inter-injury interval.

Astrocytosis and microglial activation accompanied optic tract and optic nerve neurodegen-
eration one week after four impact acceleration injuries over a one-week period [72]. Retinal
microglial activation was also observed at 1wk after multiple injuries but did not persist to
10wks. Chronic inflammation coincided with demyelination within the optic nerve at 10 and
13 weeks after five CHI repeated at 48h intervals [45], consistent with our findings of long-
term microgliosis and astrocytosis within the optic tract and optic nerve after five CHI. Analy-
sis of CD68 in the optic tract of our archival tissue taken at 24h post-injury [23] demonstrated
that a single CHI initiates a delayed transient microglial activation in the optic tract while
repeated CHI led to optic tract microgliosis sustained up to 10wks post-injury. Inflammation
in the optic tract was not diminished acutely or chronically by extending the inter-injury inter-
val from 24h to 48h suggesting that the visual pathway is more susceptible to CHI than the
entorhinal cortex and hippocampus. Increased susceptibility for damage in the visual system
may be due to the optic nerve’s location beneath and its separation from the cerebrum. Visual
system damage raises the possibility that repeated mild TBI induces visual dysfunction.
Although retinal ganglion cell loss was not observed after a single mild fluid percussion injury
[73], it has been reported after repeated closed head impact [45] and repeated impact accelera-
tion [72]. Electroretinography traces in mice after repeated CHI showed a decreased photopic
negative response compared to that in sham animals [45], suggestive of retinal ganglion cell
dysfunction [74] which could influence performance in vision-based tasks such as the NOR
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task. However, mice with visual pathway neurodegeneration following repeated impact acceler-
ation did not perform poorly in a visible platform trial suggesting the damage may not induce
substantial vision impairment [75]. The NOR task used in this study incorporates large objects
with marked differences in their shapes and sizes. Rodents rely heavily on their whisker sensa-
tion and olfaction more so than their vision when exploring their surroundings, lessening the
possible confound of diminished vision. However, further vision function tests are warranted
to better understand potential consequences of visual pathway damage after mTBI.

Conclusion
Several reports have concluded that post-concussive symptoms in humans do not correlate
with the presence or absence of positive neuroimaging findings acutely after injury [76–78]. In
conjunction with our previous work we provide evidence for a similar phenomenon in mice.
Despite significant differences in acute histopathology following five mild TBIs repeated at 24h
or 48h intervals, repeated CHI resulted in persistent deficits in beam walking and novel object
recognition in mice up to 10wks after injury that were not significantly reduced by extending
the inter-injury interval. Neuronal degeneration and gliosis observed acutely in the entorhinal
cortex and hippocampus did not persist out to 10wks after injury. Tau pathology was not
observed after repeated mild TBI, adding to a growing number of mild TBI studies in wildtype
mice that report limited or no tau-positive immunopathology (see review by Ojo et al. [79]).
However, axonal degeneration and inflammation in the optic tract, optic nerve, pyramidal
tract and cerebellum were notable even 10wks after the final injury. Additional work with lon-
ger post-injury evaluations, longer periods of rest between injuries, as well as with single head
injuries would help determine if further increasing the interval between injuries can reduce the
chronic consequences of mild TBI.

Supporting Information
S1 Fig. Hemotoxylin and Eosin stain following repeated closed head injury (rCHI) or
repeated sham injury (rSHAM). No overt cell loss was observed in the cerebrum (top panel)
or cerebellum (bottom panel) of mice after rCHI at 24h or 48h inter-injury intervals compared
to mice that received rSHAM injury.
(TIF)

S2 Fig. Acute microgliosis in the optic tract after single and repeated closed head injuries
(CHI). The percent area of immunohistochemical labeling of cluster of differentiation 68
(CD68) was quantified in the optic tract of mice receiving repeated sham injury (rSHAM), sin-
gle CHI (euthanized at 24h, 5d, and 9d after injury) and five repeated CHI at 24h or48h inter-
injury intervals (euthanized 24h after the final injury) for comparative analysis. $ indicates
p<0.05 compared to sham.! indicates p<0.05 compared to (single) CHI 24h. # indicates
p<0.05 compared to CHI 5d.
(TIF)

S3 Fig. PHF-1 after repeated closed head injury (CHI) compared to positive control tissue.
Hippocampal image from 3.5mo old rTg4510 tau mouse immunohistochemically labeled with
Paired Helical Filament 1 (PHF-1; A). Black arrowheads indicate positive tau inclusions.
Repeated CHI did not induce PHF-1 positive tau inclusions by 10wks after injury (B). Scale
bar: 125μm.
(TIF)
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