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Abstract

Background

Whether increased expression of the tumor suppressor protein p53 indicates a p53 gene

mutation in hepatocellular carcinoma (HCC) remains unclear. We conducted a meta-analy-

sis to determine whether p53 protein overexpression detected by immunohistochemistry

(IHC) offers a diagnostic prediction for p53 gene mutations in HCC patients.

Methods

Systematic literature searches were conducted with an end date of December 2015. A

meta-analysis was performed to estimate the diagnostic accuracy of IHC-determined p53

protein overexpression in the prediction of p53 gene mutations in HCC. Sensitivity, sub-

group, and publication bias analyses were also conducted.

Results

Thirty-six studies were included in the meta-analysis. The results showed that the overall

sensitivity and specificity for IHC-determined p53 overexpression in the diagnostic predic-

tion of p53 mutations in HCC were 0.83 (95% CI: 0.80–0.86) and 0.74 (95% CI: 0.71–0.76),

respectively. The summary positive likelihood ratio (PLR) and negative likelihood ratio

(NLR) were 2.65 (95% CI: 2.21–3.18) and 0.36 (95% CI: 0.26–0.50), respectively. The diag-

nostic odds ratio (DOR) of IHC-determined p53 overexpression in predicting p53 mutations

ranged from 0.56 to 105.00 (pooled, 9.77; 95% CI: 6.35–15.02), with significant heterogene-

ity between the included studies (I2 = 40.7%, P = 0.0067). Moreover, subgroup and sensitiv-

ity analyses did not alter the results of the meta-analysis. However, potential publication

bias was present in the current meta-analysis.
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Conclusion

The upregulation of the tumor suppressor protein p53 was indeed linked to p53 gene muta-

tions. IHC determination of p53 overexpression can predict p53 gene mutations in HCC

patients.

Introduction
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide, and the can-
cer-related deaths due to this condition are increasing [1,2]. Therefore, elucidating the malig-
nant biological features of HCC is critical for outcome prediction in patients with this disease.
Mutations in the tumor suppressor gene p53 are the most common genetic changes in human
malignancies. In HCC, the frequency of p53 gene mutations is as high as 50.0% (average
30.0%); therefore, analysis of this gene and its products is of practical importance [3,4]. Several
studies have reported that alterations of the p53 gene are correlated with tumor differentiation,
vascular invasion, and tumor stage in HCC [5–7]. Moreover, aberrations of the p53 gene have
been shown to be prognostic indicators associated with recurrence-free survival and overall
survival in HCC patients [3,8].

Wild-type p53 protein is responsible for cell cycle regulation and apoptosis following DNA
damage, while mutant p53 protein shows a loss of function [8,9]. Mutational analysis using a
variety of techniques, such as direct DNA sequencing, single-strand conformation polymor-
phism (SSCP) analysis followed by DNA sequencing, and other mutation assays, is the gold
standard for the identification of p53 genetic alterations [8–11]. Generally, the transition from
wild-type p53 to a mutant phenotype results in mutant p53 protein overexpression due to the
resistance to murine double minute gene 2 (MDM2)-mediated degradation and subsequent
abnormal stability of the mutant protein; therefore, immunohistochemistry (IHC) can be used
to determine the expression and location of mutant p53 protein that has accumulated in the
cell nuclei of cancer tissues [12,13]. IHC is an economic and convenient technology; thus,
more clinical studies have adopted IHC to identify genetic alterations in the p53 gene rather
than using mutational analysis [3]. However, it remains unclear whether a concordance exists
between p53 protein overexpression and p53 gene mutations in HCC patients. As reported in a
previously published meta-analysis, the association between p53 mutations and p53 overex-
pression in predicting shorter patient survival times in HCC suggested a correlation between
p53 expression and p53 mutations [3]. However, several studies have found that p53 expres-
sion determined by IHC assays did not predict p53 mutations [14–16]. Moreover, the accuracy
of IHC in measuring p53 protein overexpression for the prediction of p53 mutations in HCC is
not clear.

To determine whether p53 protein overexpression is concordant with p53 gene mutations,
we performed a diagnostic meta-analysis of relevant observational studies. We evaluated the
ability of IHC assessment of p53 protein overexpression to predict p53 mutations identified by
mutational analysis as a reference standard in HCC.

Materials and Methods

Literature search
A comprehensive literature search was conducted using the National Center for Biotechnology
Information PubMed (MEDLINE) databases with an end date of December 2015 using the
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following search terms: (liver neoplasm or hepatocellular carcinoma or carcinoma, hepatocel-
lular or HCC) and (tumor suppressor protein p53 or p53) and (immunohistochemistry or IHC
or immunostaining or immunoassay or expression or overexpression or up-regulation) and
(mutation or mutational analysis or DNAmutational analysis). References in the selected stud-
ies and review articles were also manually assessed.

Study selection
Studies were required to meet the following inclusion criteria: (1) provided a confirmed diag-
nosis of HCC in humans; (2) explicitly reported the detection methods for p53 alterations,
including IHC, the specific antibodies used to determine p53 protein overexpression and muta-
tional assays, such as PCR-SSCP and/or DNA sequencing, or other specific approaches for
identifying p53 gene mutations; (3) provided data on p53 expression and p53 mutations, with
the prevalence of p53 mutations greater than 0%; and (4) written in English, German, or
Chinese.

Two investigators (Jiang-Bo Liu and Wei Li) independently read the title and abstract of
candidate studies, and irrelevant studies were excluded if they did not meet the inclusion crite-
ria. Then, the two investigators analyzed the full texts of the selected studies and determined
whether the studies should be included. If disagreements occurred, the two investigators con-
ducted a discussion or recruited the third investigator (Miao Deng) until a consensus was
reached. Additionally, if studies were found to employ overlapping populations after compre-
hensive evaluation, the one with the largest population or the newest study was usually
included.

Data extraction and quality assessment
Two investigators (Jiang-Bo Liu andWei Li) independently extracted the data, which included
the first author, publication year, recruitment period, geographic location, sample size, analyti-
cal method (protein/gene), and cut-off values/detected exons. Moreover, the diagnostic data,
including the true positive (TP), false positive (FP), false negative (FN), and true negative (TN)
values of IHC-determined p53 expression levels and p53 mutations identified by mutational
analysis (as a reference standard), were extracted from the relevant articles. The revised version
of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, comprising 4
domains (11 items), was used to assess the quality of all included studies [17].

Statistical analysis
The statistical software Meta-DiSc version 1.4 (XI Cochrane Colloquium, Barcelona, Spain)
and Stata version 12 (Stata Corporation, College Station, TX, USA) were used in the meta-anal-
ysis. Accordingly, TP, TN, FP, and FN were retrieved from each article. The summary sensitiv-
ity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR),
and diagnostic odds ratio (DOR) estimates with 95% confidence intervals (CIs) were analyzed
using a random-effects model, and a bivariate summary receiver operating characteristic
(SROC) curve was generated. The area under the SROC curve (AUC) represented an analytical
summary of the test performance and illustrated the trade-off between SEN and SPE. The
between-studies heterogeneity was evaluated with the I2 statistic (range 0% to 100%), and an I2

statistic index greater than 50% indicated substantial heterogeneity [18]. Sensitivity analyses
were performed to explore possible heterogeneity, and the influence of individual studies on
the meta-analytical results was assessed by applying the leave-one-out method. Deeks’ funnel
plots were generated to explore potential publication bias, with P-values less than 0.1 indicating
significance [19].
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Results

Search results
An initial search retrieved 273 published studies. After a careful selection process, thirty-six rel-
evant observational studies (34 in English [4,5,8–12,14–16,20–43] and 2 in Chinese [44,45])
were included in the meta-analysis. Fig 1 shows the literature screening process for the meta-
analysis. The included studies had QUADAS-2 scores of 9 to 11 (median = 10).

Characteristics of the included studies
The characteristics of each study are shown in Table 1. Of 36 studies, 23 were conducted in
high-incidence areas (Asia and Africa) [4,5,8,10–12,23–29,31,34,35,38–40,42–45], and 13 were
conducted in low-incidence areas (Europe and USA) [9,14–16,20–22,30,32,33,36,37,41]. The
studies included 1,659 HCC patients with a mean sample size of 46 (range 8 to 397). Among

Fig 1. Flow chart of the selection process for the included studies.

doi:10.1371/journal.pone.0159636.g001
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Table 1. The analytical results of correlations between p53mutations and p53 overexpression.

Reference Country Potential
mutagen

Sample
size

TP FP FN TN IHC cut-off/
Exon

Analytical method (antibody/gene) QUADAS-2

An et al. 2001 [35] Japan HCV 11 of 41 1 7 0 3 NA/exons
5–8

IHC (DO-7)/PCR-DNA sequencing 11

Andersson et al.
1995 [33]

Denmark alpha-particles 18 of 36 0 2 1 15 1%/exons
5,7,8

IHC (DO-7)/PCR-DGGE, DNA
sequencing

9

Anzola et al. 2004
[15]

Spain HCV, alcohol 117 from
78

4 23 8 82 10%/exons
4–8

IHC (DO-7)/PCR-SSCP, DNA
sequencing

11

Boix-Ferrero et al.
1999 [20]

Spain HCV, alcohol 70 of 129 1 13 1 55 10%/exons
5–8

IHC (Bp 53–11)/PCR-DNA sequencing 11

Bourdon et al. 1995
[14]

France HBV 20 5 5 1 9 NA/exons
2–11

IHC (PAb1801)/PCR-DNA sequencing 10

Challen et al. 1992
[22]

UK –* 19 1 0 1 17 10%/exons
5–8

IHC (–)/PCR-DNA sequencing 9

Chen et al. 2003 [43] China HBV 33 16 5 0 12 NA/exons
2–8

IHC (Santa)/PCR-DNA sequencing 10

Cheung et al. 2006
[4]

China HBV 55 17 11 9 18 NA/exons
4–9

IHC (DO-7)/PCR-DNA sequencing 11

De Benedetti et al.
1996 [41]

USA Contraceptive 10 of 11 1 2 0 7 1%/exons
4–9

IHC (–)/PCR-DNA sequencing 9

Greenblatt et al.
1997 [29]

China HBV 16 1 5 2 8 1%/exons
4–8

IHC (CM-1)/PCR-DNA sequencing 9

Gross-Goupil et al.
2003 [16]

France HBV, HCV 18 0 4 2 12 10%/exons
2–11

IHC (DO-7)/PCR-DNA sequencing 10

Hsia et al. 2000 [24] China –* 28 16 3 1 8 10%/exons
5–8

IHC (–)/PCR-DNA sequencing 9

Hsu et al. 1993 [26] China HBV, HCV 78 of 184 30 9 10 29 10%/exons
2–11

IHC (DO-7)/PCR-SSCP, DNA
sequencing

9

Jablkowski et al.
2005 [9]

Poland HBV 9 of 20 4 1 1 3 50%/exons
5–8

IHC (DO-7)/PCR-DNA sequencing 10

Kang et al. 1998 [39] Korea HBV 8 of 13 2 2 0 4 20%/exons
5–8

IHC (DO-7)/PCR-SSCP, DNA
sequencing

9

Kubicka et al. 1995
[32]

Germany HBV 20 1 0 1 18 30%/exons
5–8

IHC (PAb1801/PAb240) /PCR-DNA
sequencing

9

Lee et al. 2002 [25] Korea HBV 36 from 34 6 9 1 20 5%/exons
4–10

IHC (BP53-12)/PCR-SSCP, DNA
sequencing

10

Lunn et al. 1997 [42] China HBV, AFB1 105 22 13 7 63 5%/exons
5–9

IHC (DO-1/Ab-6)/PCR-SSCP, DNA
sequencing

9

Luo et al. 2001 [45] China – 21 6 5 3 7 10%/exons
5–8

IHC (DO-7)/PCR-SSCP 10

Mitsumoto et al. 2004
[31]

Japan HCV 50 13 1 8 28 10%/– IHC (DO-7)/Yeast p53 Functional
Assay, DNA sequencing

9

Mohamed et al. 2008
[5]

Egypt HBV, HCV 30 7 9 4 10 10%/exons
5–8

IHC (DO-7)/PCR-SSCP, DNA
sequencing

11

Okada et al. 2003
[27]

Japan HCV 10 of 22 5 1 0 4 10%/exons
5–9

IHC (DO-7)/PCR-DNA sequencing 10

Peng et al. 1998 [23] China – 70 21 9 2 38 5%/exon 7 IHC (DO-7)/RFLP 9

Qi et al. 2015 [8] China HBV, AFB1 397 208 58 15 116 25%/exons
1–11

IHC (Abcam)/PCR-DNA sequencing 11

Qin et al. 1998 [38] China HBV 26 of 31 5 1 1 19 NA/exons
5–9

IHC (PAb1801/PAb240) /PCR-DNA
sequencing

9

Rashid et al. 1999
[10]

China HBV 24 10 3 2 9 NA/exons
2–9

IHC (DO-7)/PCR-DNA sequencing 11

Ryder et al. 1996 [37] Germany HBV, HCV 37 of 38 15 3 2 17 80%/exons
5–8

IHC (DO-1)/PCR-SSCP, DNA
sequencing

10

(Continued)
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the included studies, 584 cases of p53 gene mutations and 765 cases of p53 protein overexpres-
sion were found in HCC tissues, with an average mutation and overexpression prevalence of
35.2% (range 2.9% to 60.7%) and 46.1% (range 5.0% to 72.7%), respectively. Thirty-two studies
described mutable sites of the p53 gene, reporting 822 mutations in 584 cases of HCC, while
another four studies did not report specific sites. Of the 822 reported p53 mutations, the most
frequently mutated sites were exons 5 and 7, accounting for 14.2% and 68.9% of the reported
mutations, respectively, and codon 249 located in exon 7 had the highest mutation rate of
30.1% (248/822).

Diagnostic accuracy analysis
As shown in Fig 2, the summary SEN and SPE for IHC-determined p53 overexpression in the
diagnostic prediction of p53 mutations in HCC were 0.83 (95% CI: 0.80–0.86) and 0.74 (95%
CI: 0.71–0.76), respectively. Moreover, the summary PLR and NLR were 2.65 (95% CI: 2.21–
3.18) and 0.36 (95% CI: 0.26–0.50), respectively (Fig 3). The DOR of IHC-determined p53
overexpression in predicting p53 mutations ranged from 0.56 to 105.00 (pooled, 9.77; 95% CI:
6.35–15.02), with significant heterogeneity among the included studies (I2 = 40.7%,
P = 0.0067). Additionally, the estimated accuracy and positive and negative predictive values
were 77.0%, 63.3% and 88.8%, respectively. The graph of the symmetric SROC curve showed
that the AUC of IHC-determined p53 overexpression was 0.8230 (standard error = 0.0218)
with a Q-value of 0.7562 (standard error = 0.0197), indicating that IHC-determined p53 over-
expression had an overall moderate level of accuracy in the prediction of p53 mutations in
HCC (Fig 4A). The likelihood ratio scattergram shows that IHC-determined p53 overexpres-
sion has a limited diagnostic ability to identify p53 mutations in HCC (Fig 4B).

Subgroup analysis
By grouping studies according to the publication year, geographic location, sample size, differ-
ent IHC antibodies, mutational analysis methods, or prevalence of p53 alterations, subgroup

Table 1. (Continued)

Reference Country Potential
mutagen

Sample
size

TP FP FN TN IHC cut-off/
Exon

Analytical method (antibody/gene) QUADAS-2

Sanefuji et al. 2010
[34]

Japan HCV 79 of 82 13 34 0 32 10%/exons
5–8

IHC (DO-7)/PCR-DNA sequencing 11

Shieh et al. 1993 [36] USA HBV, HCV 18 1 0 0 17 NA/exon 7 IHC (PAb1801)/PCR-DNA sequencing 9

Soini et al. 1996 [21] Mexico AFB1 14 of 21 2 4 1 7 1%/exon 7 IHC (CM-1)/PCR-DNA sequencing 9

Stern et al. 2001 [28] China HBV, AFB1 48 of 64 15 15 3 15 NA/exon 7 IHC (CM-1)/PCR-DNA sequencing 10

Szymańska et al.
2004 [11]

Gambia HBV 28 of 29 9 4 5 10 10%/exons
5–8

IHC (CM-1)/PCR-RFLP, DNA
sequencing/SOMA

9

Volkmann et al. 2001
[30]

Germany HBV, HCV 39 8 3 3 25 10%/exons
5–9

IHC (DO-1)/PCR-SSCP, DNA
sequencing

10

Zekri et al. 2006 [40] Egypt HCV 25 7 6 3 9 10%/exons
5–8

IHC (DO-7)/PCR-SSCP, DNA
sequencing

9

Zhang et al. 2006
[12]

China HBV, AFB1 40 9 5 2 24 5%/exons
5–8

IHC (DO-7)/PCR-DNA sequencing 10

Zhou et al. 1997 [44] China HBV 32 2 6 0 24 NA/exon 7 IHC (DO-1/Ab-6)/PCR-RFLP 9

HBV/HCV: hepatitis B/C virus; AFB1: aflatoxin B1; IHC: immunohistochemistry; PCR: polymerase chain reaction; SSCP: single-strand conformation

polymorphism; RFLP: restriction fragment length polymorphism; SOMA: short oligonucleotide mass spectrometry analysis; DGGE: denaturing gradient gel

electrophoresis; QUADAS, Quality Assessment of Diagnostic accuracy studies.

doi:10.1371/journal.pone.0159636.t001
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analysis revealed that the diagnostic accuracy of IHC-determined p53 overexpression in identi-
fying p53 mutations in HCC remained consistent (Table 2). Interestingly, the pooled sensitivi-
ties were higher in the studies published after the year 2000, as well as in the studies conducted

Fig 2. Forest plot of the sensitivity and specificity of IHC-determined p53 overexpression in detecting
p53mutations. (A) Forest plot showing the sensitivity of IHC-determined p53 overexpression in detecting
p53 mutations. (B) Forest plot showing the specificity of IHC-determined p53 overexpression in detecting p53
mutations. Abbreviations: CI, confidence interval.

doi:10.1371/journal.pone.0159636.g002

Fig 3. Forest plot of the positive likelihood ratio (PLR) and the negative likelihood ratio (NLR) of IHC-
determined p53 overexpression in detecting p53mutations. (A) Forest plot showing the positive LR of
IHC-determined p53 overexpression in detecting p53 mutations. (B) Forest plot showing the negative LR of
IHC-determined p53 overexpression in detecting p53 mutations.

doi:10.1371/journal.pone.0159636.g003
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in Asia and Africa or those with a sample size� 46, but the pooled specificities were much
lower compared with those of the corresponding subgroups. In the IHC antibodies subgroup
analysis, the highest pooled SEN and SPE were from the studies employing the PAb1801 anti-
body, while the lowest values were from the studies employing the CM-1 antibody. Moreover,
for p53 mutational assays, the studies with all cases detected by direct DNA sequencing yielded
much higher sensitivities but much lower SPEs, while the group of partial cases that were
abnormal in other mutational assays followed by DNA sequencing presented the reverse of
these statistics. Furthermore, the pooled SEN was higher in the studies with a high prevalence
of p53 alterations (mutation� 35% or overexpression� 46%), but the pooled SPE was lower
compared to the subgroup with a low prevalence of p53 alterations.

Sensitivity analysis
The leave-one-out method sensitivity analysis showed that the results of the meta-analysis
were not impacted by individual studies. Overall, the analytical results showed that the pooled
SEN ranged from 0.77 (95% CI: 0.72–0.81, I2 = 45.7%), by removing Qi et al. [8], to 0.84 (95%
CI: 0.81–0.87, I2 = 56.6%), by removing Anzola et al. [15], and the pooled SPE ranged from
0.73 (95% CI: 0.70–0.76, I2 = 70.1%), by omitting Lunn et al. [42], to 0.76 (95% CI: 0.73–0.78,
I2 = 64.9%), by omitting Sanefuji et al. [34].

Publication bias
Fig 5 displays the symmetric shape of the funnel plot. However, the P value was less than 0.05
in Deeks’ test, indicating that publication bias may exist in the meta-analysis.

Fig 4. The summary receiver operating characteristic (SROC) curve and the likelihood ratio scattergram for IHC-determined p53
overexpression in the identification of p53 mutations in HCC for all studies. (A) The SROC curve summarizes the overall diagnostic accuracy of IHC-
determined p53 overexpression for the identification of p53 mutations. The size of the dots for 1-specificity and sensitivity of the single studies in the ROC
space reflects the sample size (number of patients) in the study. (B) The likelihood ratio scattergram shows the diagnostic performance of IHC-determined
p53 overexpression in the identification of p53 mutations. Q* = point at which sensitivity and specificity were equal.

doi:10.1371/journal.pone.0159636.g004
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Discussion
The tumor suppressor gene p53 plays a crucial role in cell cycle control and apoptosis in
response to DNA damage, and mutation of the p53 gene has been shown to contribute to carci-
nogenesis and drug resistance [39,46]. Many studies have reported that p53 mutations are cor-
related with malignant tumor behaviors in HCC [40,43]. Our previous meta-analysis showed
that HCC patients with a mutant p53 gene or p53 protein overexpression had a higher risk of
mortality and tumor recurrence than those with wild-type p53 status or low/no p53 expression,
which can inform clinical decision-making in HCC [3]. However, it remained unclear whether
p53 protein overexpression indicates mutant p53 gene status in HCC. Therefore, the goal of
this meta-analysis was to explore the correlation between protein expression and gene

Table 2. The results of subgroup analyses.

Variables N SEN (95% CI), I2 (%) SPE (95% CI), I2 (%) PLR (95% CI), I2 (%) NLR (95% CI), I2 (%) DOR (95% CI), I2 (%)

Publication year

Before 1999 17 0.79 (0.72−0.85), 0 0.82 (0.78−0.86),
53.1

3.66 (2.88−4.64), 0 0.37 (0.26−0.53), 28.8 13.79 (8.37−22.72), 0

After 2000 19 0.84 (0.81−0.88),
76.1

0.68 (0.65−0.72),
68.0

2.23 (1.80−2.76), 46.8 0.35 (0.22−0.58), 80.1 7.91 (4.18−14.98), 58.6

Geographic location

Asia and Africa 23 0.85 (0.82−0.88),
63.9

0.70 (0.66−0.73),
67.6

2.57 (2.09−3.15), 54.0 0.31 (0.22−0.44), 60.3 10.47 (6.32−17.34),
46.8

Europe and America 13 0.66 (0.53−0.77),
40.5

0.83 (0.78−0.86),
58.2

3.07 (2.02−4.66), 14.8 0.54 (0.349−0.82),
48.8

8.01 (3.50−18.35), 24.5

Sample size (n, mean)

� 46 10 0.85 (0.81−0.88),
83.5

0.72 (0.68−0.75),
82.3

2.60 (1.94−3.48), 69.8 0.31 (0.17−0.57), 85.4 10.41 (4.97−21.81),
67.9

< 46 26 0.79 (0.72−0.85),
31.2

0.77 (0.73−0.81),
60.5

2.70 (2.12−3.44), 24.1 0.41 (0.29−0.58), 43.8 9.10 (5.39−15.34), 15.9

IHC antibodies

DO-7 antibody 17 0.73 (0.66−0.79),
58.1

0.71 (0.67−0.75),
69.0

2.27 (1.73−2.99), 47.2 0.46 (0.32−0.67), 61.2 6.48 (3.53−11.88), 39.0

DO-1 antibody 4 0.80 (0.73−0.89), 0 0.84 (0.77−0.89), 0 4.74 (3.21−7.01), 0 0.26 (0.16−0.43), 0 19.75 (8.98−43.42), 0

CM-1 antibody 4 0.71 (0.54−0.85),
17.1

0.59 (0.46−0.71), 0 1.71 (1.21−2.43), 0 0.58 (0.34−0.99), 10.0 3.69 (1.46−9.34), 0

PAb1801 antibody 4 0.80 (0.52−0.96), 0 0.91 (0.82−0.97),
79.4

8.54 (1.82−40.14),
60.3

0.34 (0.15−0.75), 0 30.79 (6.58−144.13), 0

Mutational assays

All DNA sequencing 21 0.89 (0.85−0.92),
57.3

0.70 (0.66−0.74),
75.2

2.43 (1.93−3.06), 39.9 0.32 (0.19−0.55), 73.6 11.10 (5.96−20.68),
36.8

Partial DNA
sequencing

15 0.72 (0.65−0.77),
39.4

0.78 (0.74−0.81),
53.4

2.80 (2.09−3.77), 51.5 0.43 (0.31−0.59), 54.5 7.81 (4.32−14.10), 49.3

Prevalence of p53 alterations

Mutation� 35% 15 0.85 (0.82−0.88),
71.2

0.67 (0.64−0.73),
50.0

2.41 (1.92−3.03), 37.0 0.30 (0.20−0.47), 66.7 9.74 (5.18−18.33), 56.4

Mutation < 35% 21 0.76 (0.68−0.83),
48.0

0.77 (0.74−0.80),
75.0

2.94 (2.15−4.04), 54.2 0.43 (0.28−0.66), 61.3 9.91 (5.40−18.18), 25.5

Overexpression� 46% 18 0.87 (0.83−0.90),
63.1

0.64 (0.59−0.68),
32.8

2.21 (1.84−2.65), 33.0 0.29 (0.19−0.45), 60.1 8.82 (4.97−15.67), 47.3

Overexpression < 46% 18 0.71 (0.62−0.78),
42.1

0.83 (0.79−0.86),
58.3

3.71 (2.70−5.11), 27.9 0.46 (0.31−0.68), 62.3 11.21 (5.63−22.29),
36.8

SEN, sensitivity; SPE, specificity; PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; CI, confidence interval.

doi:10.1371/journal.pone.0159636.t002
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mutations of p53 in primary cancer tissues of HCC patients. The results of our meta-analysis,
which included 1,659 HCC patients from 36 studies, demonstrated that p53 protein overex-
pression has a moderate diagnostic concordance to mutational assays in the identification of
p53 gene mutations in HCC, with a pooled SEN of 0.83 (95% CI: 0.80–0.86) and SPE of 0.74
(95% CI: 0.71–0.76). Furthermore, the AUC of 0.8230 and the DOR of 9.77 (95% CI: 6.35–
15.02) also indicated a moderate overall accuracy.

Usually, wild-type p53 protein is rapidly degraded in a MDM2-dependent manner and is
undetectable, while mutant p53 protein can escape from degradation and accumulate to excess
levels in the cell nuclei. This p53 protein accumulation has been associated with tumor progres-
sion [13,40]; however, studies on p53 protein accumulation have shown inconsistent results.
There are several explanations for the differences between the incidence of p53 protein overex-
pression and p53 genetic alteration: i) other factors, such as the hepatitis virus, may contribute
to the transcriptional activation of p53 rather than mutations [5,47]; ii) the presence of a

Fig 5. The Deeks’ funnel plot and asymmetry test of the meta-analysis of the 36 included studies.

doi:10.1371/journal.pone.0159636.g005
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missense mutation [25]; or iii) the threshold values of p53 proteins are different [5,25,30].
Immunoblotting assays revealed that in many tumors, increased p53 was the result of a p53
mutation, but wild-type p53 protein expression was also frequently elevated in HCC. More-
over, elevated wild-type p53 protein expression can upregulate Notch1 (an inhibitor of p53
degradation) in HCC cell lines, resulting in overexpression of wild-type p53 protein [48]. In
this meta-analysis, 26.1% (281/1075) of HCC tumor tissues with a wild-type p53 gene exhibited
positive staining for p53 protein, while 82.9% (484/584) of specimens with p53 mutations
exhibited positive staining. Thus, although the wild-type p53 gene also produced p53 protein
upregulation, the association between a p53 mutation and p53 overexpression was easily
observable in HCC tissues.

By performing subgroup analysis, we found that the relationship between p53 overexpres-
sion and p53 mutations remained unchanged, even when the pooled SENs or SPEs varied due
to different stratifications. Notably, the pooled SEN was much higher in high-incidence areas
than in low-incidence areas, but the SPE was lower, indicating that in high-incidence areas of
HCC, IHC assays for p53 expression accurately predicted p53 alterations with authentic
genetic mutations but only showed modest accuracy in identifying wild-type p53 phenotypes
with no p53 protein overexpression. However, the pooled SEN and SPE of IHC-determined
p53 overexpression in the low-incidence areas showed the opposite results. Specific antibodies
for IHC-determined p53 overexpression were critically important in diagnosing p53 muta-
tions. In subgroup analysis, four studies employing IHC PAb1801 antibodies exhibited the best
diagnostic performance in identifying p53 mutations compared to the studies using other anti-
bodies, with an SEN of 0.80 (95% CI: 0.52−0.96), SPE of 0.91 (95% CI: 0.82−0.97), and DOR of
30.79 (95% CI: 6.58−144.13), suggesting that the PAb1801 antibody effectively identifies
mutant p53 proteins.

In this meta-analysis, significant heterogeneity was observed among the included studies.
By excluding each study individually, sensitivity analysis revealed that the diagnostic accu-
racy of IHC-determined p53 overexpression in identifying p53 mutations in HCC remained
consistent. Analytical results showed the lowest pooled SEN (0.77, 95% CI: 0.72–0.81) and
the lowest heterogeneity (I2 = 45.7%) by removing the study by Qi et al. [8], and the greatest
pooled SEN (0.84, 95% CI: 0.81–0.87) with significant between-studies heterogeneity (I2 =
56.6%) by removing the study by Anzola et al. [15]. However, when the two studies were
both removed, the between-studies heterogeneity statistic I2 was reduced to 36.7%, although
the effect size remained constant (0.78, 95% CI: 0.73–0.82). In regards to the SPE, by omitting
Sanefuji et al. [34], sensitivity analyses yielded the maximal pooled statistics (0.76, 95% CI:
0.73–0.78) and substantial heterogeneity (I2 = 64.9%, the lowest in the sensitivity analyses of
SPE).

Although we quantitatively evaluated the association between IHC-determined p53 over-
expression and p53 gene mutations, there were some limitations in our meta-analysis. First,
due to the wide time span for the included studies, from 1992 to 2015 (17 studies before
1999), the study design and the process of collecting the data on p53 alterations in HCC
patients may vary among these studies, resulting in difficulties in controlling relevant clinical
and pathological parameters of the patients and a relatively low study quality. Second, our
analysis could not clarify the association between the specific characteristics of p53 muta-
tions and p53 overexpression because individual patient data, such as the mutable sites of
p53 in each patient and the exposure to hepatitis B/C virus, AFB1, or other potential muta-
gens, were lacking. Additionally, there could be a potential language bias in this analysis
because only studies written in English, German and Chinese were included. Thus, we sug-
gest that the results of the meta-analysis should be interpreted with caution for the above
reasons.
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Conclusion
In summary, our meta-analysis showed that p53 protein overexpression is indeed correlated
with p53 gene mutations, suggesting that IHC-determined p53 overexpression has diagnostic
concordance to mutational analysis and the identification of p53 gene mutations. This meta-
analysis provides quantitative support for the association of IHC-determined p53 overexpres-
sion with p53 genetic alterations in HCC patients, especially in high-incidence areas (Asia and
Africa). Furthermore, alterations of the tumor suppressor p53 gene were associated with
aggressive malignant behaviors and poor patient survival in HCC. Therefore, to obtain a com-
prehensive account of p53 alterations, simultaneous evaluation of multiple p53 parameters,
including p53 protein expression levels and p53 genetic phenotypes, should be performed in
future clinical and pathological or prognostic studies and should present compelling evidence
of the clinical and prognostic importance of p53 alterations in HCC patients.
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