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Abstract
The comb, as a secondary sexual character, is an important trait in chicken. Indicators of

comb length (CL), comb height (CH), and comb weight (CW) are often selected in produc-

tion. DNA-based marker-assisted selection could help chicken breeders to accelerate

genetic improvement for comb or related economic characters by early selection. Although

a number of quantitative trait loci (QTL) and candidate genes have been identified with

advances in molecular genetics, candidate genes underlying comb traits are limited. The

aim of the study was to use genome-wide association (GWA) studies by 600 K Affymetrix

chicken SNP arrays to detect genes that are related to comb, using an F2 resource popula-

tion. For all comb characters, comb exhibited high SNP-based heritability estimates (0.61–

0.69). Chromosome 1 explained 20.80% genetic variance, while chromosome 4 explained

6.89%. Independent univariate genome-wide screens for each character identified 127,

197, and 268 novel significant SNPs with CL, CH, and CW, respectively. Three candidate

genes, VPS36, AR, andWNT11B, were determined to have a plausible function in all comb

characters. These genes are important to the initiation of follicle development, gonadal

growth, and dermal development, respectively. The current study provides the first GWA

analysis for comb traits. Identification of the genetic basis as well as promising candidate

genes will help us understand the underlying genetic architecture of comb development and

has practical significance in breeding programs for the selection of comb as an index for

sexual maturity or reproduction.

Introduction
It is important to know when sexual maturation occurs in poultry management, the comb pro-
vides reliable clues on the selection of reproductive physiology. Most studies reported on the
comb are associated with sexual maturity [1]. Also, the comb has been reported to affect male
social rank, mate choice, heat regulation [2], and is related to female egg production, fecundity,
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bone mass [3, 4], and also tarsus length [5]. Comb traits in chicken can be measured as comb
length (CL), comb height (CH), and comb weight (CW).

The main comb function is related with sexual maturity. Studies show that the alleles that
increase CW also decrease onset of sexual maturity [6] and the comb in female broiler breeders
begins to grow larger as the pullets approach sexual maturity before laying [7]. Plasma estrogen
concentration seems to increase concurrently with comb growth and age as the first egg
advances [8]. Also, extra testosterone propionate that is related with sexual maturity hormones
stimulates comb development in male fowls [9]. Moreover, lots of studies have revealed a posi-
tive relationship between paternal attractiveness and offspring quality [10–13]. Females may
prefer more attractive males with larger combs to obtain better viability or attractiveness genes
for their offspring [14]. While male preference for female ornaments, revealed that males pref-
erentially allocated sperm to females with large sexual ornaments signaling superior maternal
investment [4, 11].

Theoretically, the comb reflects female reproductive investment [15]. Compared to a small-
combed, vasectomized mate, female birds produced more eggs when housed with a large-
combed male [14]. Females with larger combs receive significantly more sperm from dominant
males than subordinate males [4]. Calcium mobilizes into the eggshell more easily when hens
have larger combs because more calcium is deposited in the diaphysis, which shows that CW
was positively correlated with bone allocation [16]. For osteoporosis expressed later in life and
were characteristics are difficult to evaluate, the comb shows great potential as a reproductive
indicator [4].

The estimated heritability of the comb in chicken is high at hatching (0.76) whether with
hormone stimulation or not [9], so it is necessary to adopt the comb as an important trait in
chicken breeding. However, in comparison with other poultry science topics, such as egg pro-
duction and egg weight, the comb has received little attention in the past 40 years. Therefore,
there has been considerable research undertaken to develop genetic markers that can be used
for marker-assisted selection. Recent studies show increasing use of molecular biology tech-
niques to create both mechanistic and statistical descriptions of genotype-phenotype maps that
have allowed greater understanding of quantitative traits [16–18].

There has been a steady growth in the application of genomic tools, which have created
breakthrough strategies for the study of sexual ornaments [19]. Studies have found that quanti-
tative trait loci (QTL) for CW were on chromosomes 1 and 3 [15] and a QTL for medullary
bone was detected at the same locus that also affected comb weight on chromosome 3, the
hydroxyacid oxidase (HAO1) gene and bone morphogenetic protein 2 (BMP2) were adjacent
to it [16]. These works throw light on the genetic basis of comb but were not able to explain the
detailed genetic architecture involved in the comb growth. Nevertheless, larger population
studies on the quantitative traits are very scare, which encouraged us to conduct in-depth stud-
ies of the comb. Recently, the precision of gene-level mapping of Genome-wide association
(GWA) studies have been employed to reveal the associations between genomic loci and phe-
notypes with single nucleotide polymorphism (SNP) arrays in chicken [20]. With the develop-
ment and availability of the 600 K Affymetrix Chicken SNP array, the candidate genomic
segments and pinpointing several dominating causal variants could be narrowed down [21],
eg. heat tolerance [22], broiler chicken traits [23] and laying traits [18]. A large number of
SNPs in our resource population used 600 K Affymetrix Chicken SNP [24–27] have been
discovered.

In the present study, we utilized two chicken lines to generate an F2 population. One of the
lines was Single CombWhite Leghorn (WL) and the other was Dongxiang Blue-Shelled
Chicken (DX) with a single comb, both lines were selected for egg production. The WL has
undergone intense artificial selection since the 20th century and layers produce a higher
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number of eggs than female DX. The DX chicken is a Chinese indigenous breed, the onset of
laying is later than in the WL [28]. The selection of fecundity indirectly leads to changes of
comb characteristics [29], therefore, the WL and DX have a different comb weight. This cross
enables us to detect underlying genetic differences that arise between the commercial and
indigenous population. Here, we conducted a GWA analysis on the comb in a population of
birds at 72 weeks old to document the associated genomic loci and genes that contribute to the
comb. This research could be useful in understanding the physiological and genetic architec-
ture of the chicken comb.

Materials and Methods

Ethics statement
This study was performed in strict accordance with Guidelines for Experimental Animals
established by the Ministry of Science and Technology (Beijing, China). All protocols and pro-
cedures were approved by Institution Animal Care and Use Committee both in Poultry Insti-
tute, Chinese Academy of Agricultural Science, Yangzhou, China and College of Animal
Science & Technology, China Agricultural University, Beijing, China.

Study population and sample collection
An F2 resource population was generated by reciprocal crosses from a standard breed of White
Leghorn and a Chinese indigenous strain of Dongxiang Blue-Shelled chickens. Detailed infor-
mation on the source and management of the WL and DX strains and the basic characteristics
of their intercross, have been described in previous papers [24–27, 30, 31]. For the F0 popula-
tion, WL (6 ♂ 80 ♀) and DX (6 ♂ 133 ♀) were in the initial reciprocal cross, generating 1,029
and 552 chicks for the F1 population, respectively. Then, the F2 population in a single hatch,
originating from 49 half-sib and 590 full-sib families, were produced from aWL/DX (25 ♂:
407♀) and DX/WL (24 ♂: 235♀) cross in the F1 generation. The F2 birds were bred indoors at
the research base in Jiangsu Institute of Poultry Science, Yangzhou, China, under standardized
conditions. The hens were placed in single-hen cages for laying and in a 16L: 8D lighting
regime with feed and water ad libitum that met all NRC requirements. The F2 population were
analyzed for various phenotypic traits, including egg weight, egg shell, residual feed intake, and
yolk weight [18, 25, 26, 31]. After filtering the phenotypic information and verifying pedigree,
1482 hens from the F2 resource population were chosen for SNP genotyping. The SNP geno-
typing for each individual was performed by PLINK v1.90 program [32] after quality control
and GWA analysis.

Phenotypic data collection and analysis
All animals were humanely sacrificed by 60%–70% carbon dioxide at 72 weeks of age, the
comb were taken from autopsy parallel to the head with fine scissors. Comb characters, includ-
ing the length, height, and weight, were measured. The CL and CH were measured to the near-
est 0.01 mm with a Vernier caliper. CL and CH were measured in accordance with the study by
Eitan [33]. The CW was measured to the nearest 0.1 g on an electronic balance. After calculat-
ing all the bird combs at 72 weeks, a total F2 sample size of 1482 was employed.

Descriptive phenotypic statistics were calculated with the MEANS procedure of the SAS
software package using all available records. To test normality and converse trait deviation to
normality, the RANK procedure in SAS was utilized for rank-based inverse normal transfor-
mations (INTs).
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Genotyping and quality control
Blood samples were obtained using standard venipuncture. The genomic DNA was extracted
from blood samples using the standard phenol/chloroform method and genotyped against a
600 K Affymetrix Axiom Chicken Genotyping Array (Affymetrix, Inc. Santa Clara, CA, USA).
In order to carry out genotype calling and quality control (QC), the Affymetrix Power Tools
v1.16.0 (APT) (http://affymetrix.com/) software with Axiom GT1 algorithm was then imple-
mented. All cases of samples with dish quality control (DQC)� 0.82 and call rate� 97% were
excluded in the downstream analyses. An R script adopted by Affymetrix was run to calculate
the SNP QC metrics and filter out individual SNPs falling below given thresholds. After the
application of APT for QC, 1512 individuals and 532,299 SNPs remained valid. To promote
the effectiveness of the detecting quality the PLINK v1.90 program [32] was utilized for further
QC. The SNPs with minor allele frequency (MAF)< 5% and Hardy-Weinberg equilibrium
(HWE) test P< 1 × 10−6 were removed from subsequent analysis. Then BEAGLE v4.0 package
was imputed for some sporadic missing genotypes [34], only SNPs with imputation quality
score R2 > 0.5 were retained. After these steps, 1512 individuals and 435,867 SNPs were used
in further GWA analysis.

Genome-wide association analysis
Prior to GWA analysis, principal component analysis (PCA) was conducted in the PLINK
package, because spurious associations could result from the presence of cryptic relatedness or
hidden population stratification, a method of simpleM [35] was used to corrected the number
of multiple tests for determining the thresholds for genome-wide significant/suggestive associ-
ations. Using this method, we obtained 59,308 suggested independent tests. Genome-wide sig-
nificant and suggestive P-values were 8.43 × 10−7 (0.05/59,308) and 1.69 × 10−5 (1.00/59,308),
respectively.

The GEMMA v0.94 package [36], referred to as a genome-wide efficient mixed-model
association with an efficient exact mixed model approach, was implemented with the valid
individuals and SNPs for univariate analysis. The method used, makes exact GWA analysis
computationally practical for large sample sizes. Independent SNPs were used to compute the
centered relatedness matrix, and the significance P-value level between SNPs and phenotypes
was calculated from a derived Wald test. The model for GWA analysis was as follows:

y ¼ Waþ xbþ uþ ε

Where y represents a vector of phenotypic values for n individuals;W is a matrix of covariates
(fixed effects with a column of 1s and top five PCs), α is a vector of the corresponding coeffi-
cients including the intercept; x is a vector of the genotypes of the SNP marker, β is the effect
size of the marker; u is a vector of random individual effects; ε is a vector of random errors.

We used the “gap” packages [37] in the R project to draw the Manhattan plots and quantile
—quantile (QQ) plots. Then the GenABEL package [38] in the R project was employed to cal-
culate the genomic inflation factor, which was the judgement for the extent of false positive
signals.

Conditional and linkage disequilibrium analysis
Some SNPs have strong linkage to causal mutants, which leads them to be passively and signifi-
cantly associated with target traits. Conditional analyses were performed by GEMMA, and
linkage disequilibrium (LD) analysis was implemented by Haploview v4.2 [39]. In conditional
analysis, the genotypes of one candidate gene are used as covariates until the p-value shows no
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GWA significance. In the analysis of Haploview v4.2, a block is produced using the solid spine
algorithm, and defined as the first and last SNPs in a region with strong LD (D0 � 0.8) with all
intermediate SNPs. After these steps, the independent association signals in a putative region
were distinguished.

Estimation of variance explained
The heritability explained by the eligible SNPs (h2snp) for GWAS were estimated by the GCTA
v1.24 program [40], which implements the method of univariate restricted maximum likeli-
hood (REML). We also quantified the pair-wise phenotypic and genetic correlations for each
character with the bivariate mixed model. A genetic relationship matrix (GRM) built from all
genotyped SNPs on autosomes and two linkage groups, partitioned the chicken genome into
28 autosomes and two linkage groups, and jointly estimated their contributions to phenotypic
variance (CPV) for traits [25].

The top five PCs produced by the GCTA program were chosen as covariates to estimate the
variance contributed by each chromosome. The regression analysis was calculated by R to
evaluate the relationship between the variance explained by each chromosome and its length.
Besides this, we also estimated the CPV made by these associated loci or each chromosome
after these associated loci were fitted as covariates.

Gene identification and annotation
The annotated genes that were nearest or harboring significant SNPs were identified as candi-
date genes in which significant loci were located [41]. Genes in a specific genomic region [42]
were detected by using BioMart tools and Variant Effect Predictor (VEP) based on the galGal4
assembly supported by Ensembl and NCBI annotation of the Gallus gallus genome version 4.0.

Results

Phenotypic description and genetic parameters
Means and standard deviations for comb characters, including CL, CH, and CW are presented
in Table 1. After rank-based inverse normal transformation, all phenotypic values conformed
to the normal distribution. The CW displayed largest coefficients of variation (44.48%), which
was probably because the comb had not been chosen as a selection index. The additive genetic
variation captured by all eligible GWAS markers associated with comb traits were quantified
by univariate GCTA, the analyses found that all comb characters had highly heritable patterns
(Table 2), and the highest SNP-based heritability estimate was found in CW (h2snp = 0.69). Fur-
ther, bivariate GCTA analyses revealed that comb traits are highly and positively interrelated.
Each comb trait showed high genetic correlations (rg = 0.76–0.94).

Table 1. Descriptive statistics for comb traits in the F2 population.

Traita Mean SD CV (%) Min Max

CL (mm) 35.82 3.26 9.11 19.84 47.42

CH (mm) 36.68 6.6 17.99 10.54 73.56

CW (g) 6.21 2.76 44.48 0.83 19.2

Abbreviations: Mean = arithmetic mean; SD = standard deviation; CV = coefficient of variance;

Min = minimum; Max = maximum.
aCL = comb length; CH = comb height; CW = comb weight.

doi:10.1371/journal.pone.0159081.t001
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Identification of candidate loci by GWAS
A total of 328 genome-wide significant associations were identified with CL, CH, and CW
(Table 1). Almost all the significant locus on chromosome 1 (GGA1) were in a genomic region
ranged from 167.7 to 179.8 Mb, and the significant loci on GGA4 showed differences among
comb characters but were distributed from 0 to 2.9 Mb (Table 3). The detailed information for
genome-wide significant SNPs are presented in S1 Table.

The global view of the putative P-values about Manhattan and QQ plots for all SNPs affect-
ing CW are given in Fig 1, and the remaining characters are shown in S1 and S2 Figs. The
genome-wide discovery analyses yielded a small genomic inflation factor (λ) for each comb
trait, ranging from 1.067 to 1.153. We then analyzed the significant locus by the Venn diagram,
60 SNPs out of these loci had a pervasive effect on CL, CH, and CW (Fig 2). Meanwhile, the
candidate genes that nearest or harboring the SNPs are shown in S2 Table.

Since the putative variants may be in high LD with a causal locus genuinely associated with
phenotype, the Haploview was implemented to infer the LD block. The results showed that the
uncovered SNPs in GGA1 were in extremely strong LD status. Then stepwise conditional
GWASs were performed to separately prioritize SNPs owing to the potentially strong LD
between neighboring variants. After conditional analysis, the mentioned significant loci,
rs315690458 on GGA1 and rs313817825 on GGA4, were found to be independent signals. Con-
sidering the above analysis, two significantly independent SNPs associated with all comb char-
acters were analyzed further. Since rs315690458 and rs313817825 affected all comb characters,
the regional association plots for CW were plotted to compare the difference of putative signifi-
cance levels before and after the two loci (Fig 3) and the other characters for the regional plot
are diagrammed in S3 and S4 Figs.

Table 2. Summary of genetic analysis for comb traits.

Traita CL CH CW

CL 0.61(0.041) 0.76(0.038) 0.81(0.029)

CH 0.60 0.61(0.040) 0.94(0.011)

CW 0.64 0.83 0.69(0.053)

Diagonal: heritability estimates. Lower triangle: phenotypic correlations. Upper triangle: genetic correlations.

Standard errors of the estimates are in parentheses.
aCL = comb length; CH = comb height; CW = comb weight.

doi:10.1371/journal.pone.0159081.t002

Table 3. Number and distribution of significant SNPs for comb traits.

Traita Chrb Region

GGAc1 GGA4 GGA1 GGA4

CL 78 49 168.1–170.0M 0.0–1.6M

CH 12 185 169.2–169.8M 0.0–2.2M

CW 37 231 168.1–170.0M 0.0–2.9M

total 93 235 167.7–170.0M 0–2.9M

Venn diagram 11 49 169.2–169.8M 0–1.6M

Abbreviations:
aCL = comb length; CH = comb height; CW = comb weight.
bChr = chromosome;
cGallus gallus chromosome.

doi:10.1371/journal.pone.0159081.t003
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Promising genes related to comb character
Gene annotation of significant SNPs will help us to find candidate genes related to comb char-
acters. We scanned the significant region on the BioMart system of the two leading SNPs,
rs315690458 on GGA1 and rs313817825 on GGA4, which both lie within introns of VPS36 and
AR, respectively (Table 4). Consequently, we first considered VPS36 and AR as the primary
candidate genes associated with the comb.

For SNP-trait association analysis, further utilizing gene annotation of the causal locus
allowed us to screen the putative genes relating to comb character, and the missense muta-
tions on exons were more meaningful [43]. We then totally identified one missense locus
rs314164847 at GGA4 on geneWNT11B (wingless-type MMTV integration site family, mem-
ber 11b), and consideredWNT11B as a third candidate gene.

Fig 1. Manhattan plot (left) and quantile-quantile (QQ) plot (right) of the observed P values for the combweight (CW). The Manhattan plot shows
the -log10 (observed P values) for association of SNPs (y-axis) plotted against their chromosomal positions on each chromosome (x-axis), and the
horizontal black and green lines depict the genome-wide significant (8.43 × 10−7) and suggestive significant (1.69 × 10−5) thresholds, respectively. For the
QQ plot, the x-axis indicates the expected -log10-transformed P values, and the y-axis shows the observed -log10-transformed P values. The genomic
inflation factors (λ) are shown on the top left in the QQ plots. Green points represent the genome-wide significant associations.

doi:10.1371/journal.pone.0159081.g001

Fig 2. Venn diagram of significant SNPs on GGA1 (left) and GGA4 (right) associated with three comb characters
by univariate association test. Comb length, comb height and comb weight are abbreviated as CL, CH, and CW,
respectively.

doi:10.1371/journal.pone.0159081.g002
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Allelic contribution to phenotypic variation
Real phenotype frequencies between three genotypes at each locus were compared. These
showed that the three phenotypes revealed significant segregation (Fig 4). The allelic substitu-
tion effects and phenotypic variance explained by them were estimated for all comb characters
(Table 4). The MAF at each locus is treated as the effect allele according to the GEMMA defini-
tion. The results suggested that the heterozygote of the effect allele possessed medium charac-
teristics between the two homozygotes, revealing that individual phenotype was more severely

Fig 3. Regional plot for single nucleotide polymorphisms (SNPs) at GGA1 spanning from 167.5–170.5 Mb. Plot A: In the region 167.5 to 170.5 Mb
the -log10 (observed P values) of the SNPs (y-axis) are presented according to their chromosomal positions (x-axis). Thirty-seven SNPs reached a
genome-wide significance level (orange dot, 8.43 × 10−7). Plot B: The genotype of rs315690458 was placed into the univariate test as covariance for
conditional analysis. After conditioning on rs315690458, the significant SNPs in plotA (orange dot) were all substantially attenuated below genome-wide
significant level in plot B. Plot C: Two hundred and seventeen small-scale blocks were observed in this region.

doi:10.1371/journal.pone.0159081.g003
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affected by homozygotes. Mutations from C to T at locus rs315690458 caused all the comb
characters to increase. The major allele of rs315690458 was favorable for a larger comb, with a
phenotypic difference of 5.15%–30.10% between opposite homozygous genotypes (S3 Table),
which explained over 4% of the phenotypic variance for comb characters. A mutation from C
to T at locus rs313817825 also causes all comb characters to decrease, and a phenotypic differ-
ence of 3.91%–35.09% between the two homozygous genotypes, the contribution phenotypic

Table 4. Contributions of three mutations and genomic regions to comb characters.

SNP rs315690458 rs313817825 rs314164847

Chr 1 4 4

Position (bp) 169,724,568 447,807 1,181,821

Gene symbol VPS36 AR WNT11B

Location intron intron missense

EA/AA C/T C/T G/A

MAF 0.483 0.495 0.477

Amino acid change - - Glu/Lys

CL

beta (SE) -0.340(0.058) -0.245(0.044) -0.227(0.044)

CPV (%) 5.22 2.81 2.81

P-value 7.69E-09 2.38E-08 2.99E-07

CH

beta (SE) -0.308(0.059) -0.346(0.043) -0.288(0.044)

CPV (%) 4.30 5.36 5.51

P-value 2.12E-07 2.44E-15 6.20E-11

CW

beta (SE) -0.336(0.059) -0.376(0.043) -0.326(0.043)

CPV (%) 5.28 6.49 6.29

P-value 1.67E-08 4.31E-18 7.12E-14

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; EA, effect allele (minor allele); AA, alternative allele (major allele); MAF, minor

allele frequency; CL, comb length; CH, comb height; CW, comb weight. Estimated allelic substitution effect per copy of the effect allele (EA); SE, standard

error of the beta, which means the effect size of minor alleles; CPV, contribution to phenotypic variance (%).

doi:10.1371/journal.pone.0159081.t004

Fig 4. Genotype effect plot of three leading SNPs for comb characters. SNP1 = rs315690458, SNP2 = rs313817825, and SNP3 = rs314164847.
Phenotypic differences contributed by the three loci of SNP1, SNP2, and SNP3 on genes of VPS36, AR, andWNT11B. Plots A, B, and C describe the
phenotypes of CL, CH, and CW among three genotypes at SNP1, SNP2, and SNP3, respectively. The yellow, blue and purple bars represent major-
allele homozygotes, heterozygotes, and minor-allele homozygotes, respectively. The number of samples for each genotype is indicated at the top.

doi:10.1371/journal.pone.0159081.g004
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variance ranged from 2.81% to 6.49%. Specially, rs313817825 revealed the largest phenotypic
variation explained for CW.

Genome partitioning of genetic variation
We implemented an exploratory analysis through partitioning the genetic variation onto chro-
mosome segments to further illustrate the genetic architecture of comb characters. Only the
partitioning spectrum of CL could be estimated, for the relatively small sample size in the F2
population parameter estimates for CH and CW in the joint model could not converge. The
estimates of variance contributed by each chromosome exhibited a strong linear relationship
with the length of the chromosome for CL (R2 = 0.620, Fig 5A), for GGA1 explained 20.80%,
and GGA4 explained 6.89% of phenotypic variance. To quantify the effects of the two resulting
variants on CL, we fitted the two leading SNPs as covariates and repeated the genome parti-
tioning analysis. When compared with the results before adjustment, we found that the vari-
ance explained by GGA1 dropped to 16.53% (Fig 5B). The same estimate for GGA4 showed
the largest decrease from 6.89% to 3.08%, and the estimates for the other 28 chromosomes
almost remained the same.

Discussion
The detection of QTLs associated with comb by utilizing the resource population at a genome-
wide level has been limited in previous studies [16, 44]. Our F2 resource population, consisting
of 1512 hens, is the largest and the first population used for comb GWA analysis so far, and
was the first GWA analysis by higher density (600 K) SNP array covering chromosomes 1–28.
Therefore, the results imply that the novel genomic region and locus identified by the current
study may further contribute to studies of the comb. The heritability of the comb trait in our
results was revealed to be higher than in other studies [9, 45], which suggested that the poten-
tial for selection of this trait will create greater genetic progress.

To further decipher the heritable architecture in CL, we partitioned the genetic variance
onto different chromosomes based on the estimated chromosomal GRMs. A strong linear cor-
relation between the variance explained by each chromosome and its length were observed in
our study, which is consistent with previous findings [25, 46]. We found population stratifica-
tion in all GWAS analyses of comb. In practice, it is usually considered that a genomic control
inflation factor (λ) less than 1.05 indicates no population stratification [47]. The genomic infla-
tion was caused by a large number of associated SNPs [18] and the results in our study showed
that we have an abundance of significantly associated SNPs. Above all, comb may be expected
to be under polygenic architecture [21]. Specially, GGA1 accounted for the largest genetic vari-
ance (20.80%), may due to GGA1 accounting for 14.9% of the entire genome [48]. GGA4
accounted for 6.86% of the genetic variance, while the genetic variance dropped to 3.08% after
the leading SNP rs313817825 was fitted as a covariate. Genome partitioning analysis revealed
that the contribution of phenotype variance by rs313817825 (2.81%) accounted for nearly
half of the whole GGA4 genetic variance. The largest phenotypic variation explained by
rs313817825 was for CW. The beta effects of SNPs for all comb traits were negative, which indi-
cated the allele resulting in the lower CL, CH, and CW, and hens with the opposite homozygote
alleles showed the highest CL, CH, and CW.

Our results found that causal genomic regions or genes controlling comb characters were dis-
covered on GGA1 and GGA4. A previous study of QTL affecting CWwas detected on GGA1
and GGA3 by Johnsson et al. [16] and another study by Podisi [49] showed QTL on GGA4,
GGA5, and GGA9. The difference between the present study and previous reports might be
explained by the different populations used and different ages when comb measurements were
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Fig 5. Genome partitioning for comb length by joint analysis. A. The estimated proportion of variance captured by each
chromosome against its size. The characters in the circles are the chromosome numbers.B. Contributions of genome-wide
association study (GWAS) SNPs partitioned by chromosome. The whole bars indicate the estimates of variance explained by
each chromosome, in which the two wheat bars represent the same values by three resulting loci.

doi:10.1371/journal.pone.0159081.g005
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taken. However, these studies utilized QTL analysis and a limited population. For our study,
since both phenotypic correlation and genetic correlation were high, and the chromosome
regions for comb were close, it is reasonable to speculate that the same SNPs affected these
traits.

After step-wise GWA analysis, Venn diagram analysis, LD and conditional analysis, three
loci on GGA1 and GGA4 showing significant GWA with comb characters were detected, these
were considered the most important putative variants. The associated region on the GGA1,
from 168.1–170.0 Mb, significantly influenced the growth trait [50]. Among potential candi-
date genes areWDFY2 (WD Repeat And FYVE Domain Containing 2), CKAP2 (cytoskeleton
associated protein 2), RNASEH2B (ribonuclease H2, subunit B), ATP7B (ATPase, Cu++ trans-
porting, beta polypeptide), LOC428073 (fibrinogen-like protein 1-like) and VPS36 (vacuolar
protein sorting 36), which have important effects on growth. CKAP2modulates cell survival
[51]. RNASEH2B was known to specifically downgrade RNA [52]. So far, no association has
been found for the genes above with comb traits in chickens.

VPS36 plays an important role in the ESCRT (endosomal sorting complex required for
transport) pathway [53] and is one of the important endocytosis components that activates
growth factors, hormones and cytokine receptors inside the cell and delivers them to lysosomes
[54]. After step-wise analysis, the locus rs315690458 located on VPS36 was considered the most
significant SNP on GGA1.

Previous studies showed that VPS36mRNA was detected in both granulosa and theca lay-
ers, especially in the prehierarchical follicles, which is likely to be involved in the process of
ovarian follicular development [55], and is regulated by FSH and estradiol in chicken follicles
[56]. VPS36mRNA displayed a gradual decrease with the increasing concentration of estrogen.
Sun et al [26] revealed that the region from 169.01 to 169.7 Mb was also related to follicle
weight. Considering the function of VPS36mentioned above and the comb involvement in
heat regulation [2] in the chicken, while puberty turns to sexual maturity the comb reddens.
Studies have shown that larger comb could be used as an indicator of fecundity [15] with
higher reproductive capacity [4]. Gene VPS36may participate in comb growth, however its
involvement is not clear.

On GGA4, in the range 0–2.9 Mb, genes include AR (androgen receptor),WNT11B (wing-
less-type MMTV integration site family, member 11B), EFNB1 (ephrin-B1), FAM155B (family
with sequence similarity 155, member B), IGBP1 (immunoglobulin binding protein 1),
PDZD11 (PDZ domain containing 11), TAF9 (TAF9 RNA polymerase II), and so on. EFNB1
may play a role in cell adhesion and function in the development or maintenance of the ner-
vous system [57]. IGBP1 is related to proliferation and differentiation of B cells [58].

In our study, the two loci, rs313817825 and rs314164847, located on AR and WNT11B
showed a significant association with the comb. AR is a nuclear hormone receptor of the NR3C
class [59, 60], which is involved in the development of primary and secondary male sexual
characteristics, maintenance of sexual function and possibly has a causative role in aggressive
behavior [61]. It also has been suggested that the AR gene has numerous effects on reproduc-
tive and second sexual ornaments in chickens. Previous reports reveal that AR has been local-
ized immunocytochemically in the chicken comb [62]. In large bodied males, the small
amounts of androgen present in the plasma prior to 11 days after hatching would appear to be
below the threshold for stimulation of comb and testis size [63]. Androgen’s actions are medi-
ated by AR controlling the growth of the comb [64] and involved in the male reproductive sys-
tem, stimulating testis and comb growth [65]. While stimulated with exogenous testosterone
and dihydrotestosterone, the comb grows larger [66].

For female chickens, as the pullets advance into sexual maturity, the comb begins to get
larger, and plasma estrogen level increases [8]. After sexual maturation, the comb will be fully
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developed by sex hormones, such as androgen, estrogen and testosterone [33]. While hens are
laying, the comb begins to redden and with loss of comb redness ovarian regression occurs
[67]. All the above evidences demonstrate that AR could be a crucial and promising candidate
gene relating to comb growth and reproduction.

Another SNP, rs314164847, displayed significant association with the comb. It is located on
geneWNT11B, a starting protein of the Wnt pathway, regulating organ morphogenesis [68].
WNT11B plays an important role in dermal development [69]. Wnt signaling is involved in
embryonic muscle development and maintenance of skeletal muscle homeostasis in the adult
[70], and the Wnt pathway plays an important role in human follicle morphogenesis [71] by
repairing the epidermis during wound healing. The comb is composed of the epidermis, dermis
and central layers [1], and contains a lot of blood vessels. In the current study, theWNT11B
gene was identified with the comb, and is suspected to have a role in the process of comb
growth, further investigations are needed.

Our study demonstrates the features and the genetic architecture present in animals. First, it
highlights the importance of pleiotropic effects and linkage disequilibrium with QTL [16].
Although, we obtained candidate genes involving comb growth by rigorous statistical analysis,
the actual significant region is located discreetly on GGA1 and GGA4. The results in this study
and present research using the same population, reveal that the significant region on GGA1 is
also associated with egg weight, ovary weight, and feed intake [18, 25, 26]. In other populations,
it has been found that this region is also related to body weight [50, 52]. Most poultry breeders
focus on body weight and fecundity, resulting indirectly in selection for comb character since
the body mass significantly affected comb weight [29] and the comb is an indicator of sexual
maturity [1]. The significant regions were detected in GWA studies through no or limited
selection for comb traits, pleiotropic effects of the locus on other traits that are under selection,
or close linkage and linkage disequilibrium with QTL that are under selection [72]. Second,
this has important ramifications for understanding the genetic architecture underlying quanti-
tative and qualitative traits. Different comb type are affected by copy number expansion or
inversion that result in ectopic expression [73,74] in the mesenchyme of the developing comb
region of the chicken embryo, while the significant regions in our study may determine the
weight of the comb given the comb type formed. The qualitative trait was controlled by a major
gene whilst the quantitative trait was controlled by polygenes.

Conclusions
Our current study, is the first GWA analysis on comb characters in chickens. Our study pro-
vides evidence that the comb appears to be highly heritable and there is a high genetic correla-
tion with each comb character. A total of 127, 197, and 268 genome wide significant SNPs for
CL, CH, and CW, respectively, were found by GWA analysis with a 600 K high-density SNP
array. The significant regions were 167.7–169.9 Mb on GGA1 and 0–2.9 Mb on GGA4. LD and
conditional analysis suggested these regions were in extremely strong linkage disequilibrium
status. A list of candidate genes VPS36, AR, andWNT11B were detected for their plausible
function in comb characters. Considering the reliability of GWA analysis for the significant
SNPs and its contribution to phenotypic variance, our findings establish a better understanding
of the molecular controls involved in the development of the comb.
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(TIF)
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S3 Fig. Regional plot for single nucleotide polymorphisms (SNPs) at GGA1 spanning from
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(TIF)

S4 Fig. Regional plot for single nucleotide polymorphisms (SNPs) at GGA4 spanning from
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(TIF)

S1 Table. Genome-wide significant SNPs for comb length (CL), comb height (CH), and
comb weight (CW) by univariate model.
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S2 Table. The genes harboring or being near SNPs that are significantly associated with all
comb characters studied.
(XLS)

S3 Table. Genotype effects of three leading SNPs for comb length, height, and weight,
respectively.
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