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Abstract

Genes encode components of coevolved and interconnected networks. The effect of genotype on 

phenotype therefore depends on genotypic context through gene interactions known as epistasis. 

Epistasis is important in predicting phenotype from genotype for an individual. It is also examined 

in population studies to identify genetic risk factors in complex traits and predicting evolution 

under selection. Paradoxically, the effects of genotypic context in individuals and populations are 

distinct and sometimes contradictory. We argue that predicting genotype from phenotype for 

individuals based on population studies is difficult and, especially in human genetics, likely to 

result in underestimating the effects of genotypic context.

 Introduction

The importance of genotypic context has been recognized almost from the beginning of 

modern genetics, when William Bateson coined the term epistasis to describe the departures 

from expected Mendelian ratios he observed in experimental crosses (Bateson, 1907). In the 

hundred years since Bateson’s work, the idea of genotypic context has taken on a broader 

meaning, to include any situation where the phenotypic manifestation of the genotype at a 

locus depends on the genotypes present at one or more other loci in the genome. Genotypic 

context is an important consideration because it underlies, among other things, how genetic 

risk factors contribute to complex diseases (Wei et al., 2014), the elusive missing heritability 

not accounted for by known genetic risk factors (Zuk et al., 2012), genetic breeding values 

in agricultural contexts ( Meuwissen et al., 2001; Hayes et al., 2009; Desta and Ortiz, 2014), 

and the short-term and long-term evolutionary trajectories of traits under natural or artificial 

selection (Hill et al., 2008). Genotypic context, therefore, has wide ranging implications for 

understanding the relationship between genotype and phenotype across much of biology.
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But the concept of genotypic context is more complex than first appears because there are 

two distinct and in some sense contradictory ways to think about it. One perspective, which 

has been called physiological epistasis (Cheverud and Routman, 1995), focuses on the 

effects of genotypic context in determining phenotypes in an individual. This perspective is 

common in formal genetic analysis of mutants in Drosophila, nematodes, yeast, and other 

model organisms, where the term epistasis refers to a gene interaction in which the genotype 

of one gene results in a phenotype that masks the effects of another gene (Reiger et al., 

1968). In evolutionary genetics, the term has taken on a broader meaning to refer loosely to 

any kind of gene interaction other than additive (Weinreich et al., 2013; Hartl, 2014). As 

Weinreich et al. (2013) put the matter, “epistasis can be regarded as our surprise at the 

phenotype when mutations are combined, given the constituent mutations’ individual 

effects.” This loose definition of epistasis allows for all sorts of nonadditive interactions 

among two or more nonallelic genes. This definition has been used extensively in describing 

alleles in natural populations whose phenotypic effects are not necessarily clear, and it also 

encompasses one of many mechanisms that can lead to incomplete penetrance or variable 

expressivity. We use the term physiological epistasis to include both the narrow and loose 

definitions, as both focus on the effects of gene interactions in a particular individual.

Another, different, definition of epistasis applies in quantitative genetic analysis of complex 

traits. In this case the focus of attention is often on causes of genetic variation including 

variance from a predicted phenotype due to additive contributions of alleles, variance due to 

dominance effects, and variance due to epistasis. This definition of epistasis has a precise 

and unambiguous meaning; however, the quantitative genetic perspective on epistasis differs 

from physiological epistasis in that epistatic variance is a function of the allele frequencies 

in a population (Hill et al., 2008). The effect of epistasis on the genetic variance at the 

population level effects has been called statistical epistasis (Cheverud and Routman, 1995), 

and its definition is elaborated further below.

With two distinct definitions of epistasis (physiological and statistical) referring to effects of 

genotypic context on the level of an individual or a population, one might well expect some 

confusion especially among geneticists with different backgrounds. The distinct perspectives 

on epistasis reflect the fact that genotypic context is a grand concept with differing 

implications in different fields of genetics. Both ways of looking at the subject have their 

own set of strengths and liabilities. Consequently, genotypic context should be considered 

from each point of view because, taken together, they are synergistic and offer a vantage 

point for comprehensive understanding of the biology underlying complex traits, inferring 

phenotype from genotype, and predicting evolutionary response.

 Why care about genotypic context?

A focus on the genotypic context is particularly timely given a number of recent 

developments driven by the current technological revolution in biology. As acquiring whole 

genome sequencing data from humans, model organisms, and agriculturally important 

animals and plants becomes increasingly easy, the need to understand how to predict 

phenotypes and disease risk from genetic data becomes ever-more important. However, our 

ability to do this depends on understanding genotypic context from a variety of perspectives.
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Increasingly inexpensive sequencing technology holds the promise that whole genome 

sequencing will be a routine part of medical care in the near future, with all the potential for 

personalized medicine that entails. Indeed, building upon the success of the 1000 Genomes 

Project (Altshuler et al., 2015), several projects to sequence tens or hundreds of thousands of 

individuals are now or will soon be underway. However, to realize the potential of 

personalized medicine requires an ability to predict an individual’s disease risk from genetic 

data, and this implies that understanding the role of genotypic context in shaping phenotypes 

will become increasingly important in medicine. To the extent to which the molecular details 

of how alleles interact in disease pathways are known, personalized medicine entails an 

understanding of physiological epistasis. However, especially in human genetics, statistical 

epistasis is equally crucial, because the accuracy of predictive models of disease risk derived 

from population-level studies depends on understanding the estimation and magnitude of 

statistical epistasis.

The genomics revolution has had a striking impact in other fields as well. In animal 

breeding, the ability to predict the short-term response to selection from whole genome data 

has had a profound impact of the efficiency of agricultural improvement programs, and 

genome prediction (using all markers to predict the response to selection on a trait) has 

rapidly become a key technique in both animal and plant breeding (Hayes et al., 2009; Desta 

and Ortiz, 2014). Genome prediction is also being used increasingly in human disease 

studies (de los Campos et al., 2010), albeit with important caveats (Wray et al., 2013). A 

remaining challenge is to incorporate information about non-additive effects, including 

statistical epistasis, into these modeling approaches. Understanding the relative importance 

of statistical epistasis in explaining the genetic variation in traits is thus of crucial to the 

continued improvement of genomic prediction models in both agricultural and medical 

contexts.

A final context where understanding genotypic context will be increasingly important is 

genome editing. Ultimately, if we are ever going to safely modify genes in humans or other 

animals, we will need a detailed understanding of how the modifications we would like to 

make will behave in more than one genetic background. This may not be as simple as it 

appears, even in the case of restoring a wild-type allele, as the phenotypic effects of a 

particular mutation may depend on the genotypic context, which could involve both the 

network-level interactions captured by physiological epistasis and the higher-order effects of 

non-additive interactions generally, as described by statistical epistasis.

Ultimately, in all these cases – personalized medicine, crop and livestock improvement, and 

genome editing – the goal is to predict some kind of phenotypic response at the individual or 

population level. Reliable prediction will require careful accounting of how and why genetic 

context impacts phenotype, and often will involved understanding the role of epistasis at 

multiple levels. In the rest of this perspective, we first define and give examples of 

physiological and statistical epistasis, and then return to the question of predicting 

phenotype from genotype to assess what an understanding of epistasis reveals.
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 Physiological epistasis: Genotypic context in individuals

Bateson’s (1907) classical definition of epistasis is by far the least ambiguous and most well 

suited to formal genetic analysis of simple Mendelian (mostly laboratory) mutants. In this 

classical definition, the phenotypic effect of a particular mutation is masked by a mutation at 

a different locus. In this way, the effect of the first mutation is dependent on the allelic state 

(genotypic context) elsewhere in the genome. This type of masking epistasis is far more 

common among laboratory mutants in model organisms than in natural populations, however 

it has great utility in the genetic analysis of biosynthetic pathways, developmental pathways, 

and other genetic networks (see, for example, Cairns et al., 1992; Van Driessche et al., 2005; 

Huang and Sternberg, 2006; Ririe et al., 2008; Gupta et al., 2012). More broadly, 

physiological epistasis refers to any situation in which the genotype at one locus modifies 

the phenotypic expression of the genotype at another locus. Such genotypic effects have 

been recognized since the origin of modern genetics.

Some of the clearest demonstrations of the effect of genotypic context come from studies in 

model organisms where the same mutation has been expressed in a large number of genetic 

backgrounds. Two recent papers (He et al., 2014; Chow et al., 2015) used this approach to 

show that mutations which reduce eye size in a standard laboratory background express a 

highly heritable, quantitative distribution of eye phenotypes when expressed in the > 150 

natural genetic backgrounds represented by the Drosophila Genetic Reference Panel 

(Mackay et al., 2012). Other studies have measured the phenotypes of a large number of 

mutations in two different backgrounds (Vu et al., 2015) and similarly concluded that, for a 

large fraction of null mutations, the phenotypic expression of the mutation varies according 

to genetic background. A final example is the expression of the scalloped-wing mutation in 

D. melanogaster, in which genotypic context affecting the global transcriptome results in 

differences in phenotype that can be as large as the main effects of the mutation (Dworkin et 

al., 2009). In all these examples, the key point is that the phenotypic expression of a 

particular mutation varies tremendously and heritably, depending on the set of interacting 

alleles that happen to be present.

The role of physiological epistasis can also be understood in classical genetic terms by 

considering the phenotypic outcomes of a simple cross between two individuals 

heterozygous at two independent loci (a dihybrid cross). If each of the two loci have a 

dominant allele, and if epistatic interactions are absent, classical Mendelian segregation 

would predict 9 : 3 : 3 : 1 phenotypic ratio, describing the proportions of offspring that 

manifest both dominant phenotypes, one or the other dominant phenotype, or the recessive 

phenotype. With complete dominance there are four genotypic classes and, in principle, 

from 1–4 possible phenotypes. All possible mappings of phenotypes onto genotypes yields 

exactly 11 distinct phenotypic ratios in the F2 generation of a dihybrid cross (Hartl and 

Maruyama, 1968). Dropping the assumption of complete dominance results in 9 genotypic 

classes and, in principle, from 1–9 possible phenotypes. In this case, all possible mappings 

of phenotypes onto genotypes yields a total of 147 distinct F2 phenotypic ratios (Hartl and 

Maruyama, 1968). Our point is that, even at the level of two genes with only two alleles of 

each, the possible varieties of physiological epistasis are impressive. A perennial issue is 

how best to quantify these effects at the level of the individual organism, which we discuss 
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in more detail in Box 1. As we shall emphasize later, genotypic effects at the level of the 

population are measured very differently than those at the level of the individual.

BOX 1

Measuring physiological epistasis

The effects of physiological epistasis on the phenotype of an individual can be formalized 

with a quantitative model, which we expand on here. Table 1 gives an example of 

physiological epistasis for the nine genotypes with two alleles at each of two loci. In each 

box, wij indicates the phenotype of the corresponding genotype, with the subscripts 

indicating the number of A and B alleles in the genotype (i, j = 2, 1, or 0). These 

phenotypes can also be expressed completely equivalently in terms of the main effects of 

the A gene (m1) and B gene (m2), their dominance effects (d1 and d2), and also five 

epistatic effects, eij, that are assigned arbitrarily to the genotypes that are either 

homozygous for both genes or heterozygous for both genes. In this example, we consider 

a binary phenotype that can be either +1 or −1, and assign the +1 phenotype to 

individuals with A–B– genotypes and −1 to all others. (The dash “−” is a “wild card” that 

can represent either the uppercase or lowercase allele of either gene.) The type of 

physiological epistasis specified by the genotype-phenotype correspondences in Table 1 

is known as complementary epistasis (Crow and Kimura, 1970), which in the F2 

generation of a dihybrid cross would yield a 9 : 7 ratio of phenotypes. In this example, it 

is clear that m1 = m2 = +1, d1 = d2 = 0, e11 = e02 = e00 = +1, and e22 = e20 = −1. The 

epistatic effects in this example are very large, in fact equal to the main effects of the 

alleles, and the phenotypes of five of the genotypes deviate substantially from what they 

would be were there no gene interactions.

Increasing the number of genes results in an exponential increase in the number of 

possible epistatic interactions. Even with only two alleles per gene, for n genes the 

genotype-phenotype correspondences, parameterized as in Table 1, have n main effects, n 
dominance effects, and 3n - 2n possible epistatic interactions (even more if parent-of-

origin effects are included). Some of these will be two-gene interactions, others three-

gene, four-gene, and so forth on up to n-gene interactions. Given the exponentially large 

number of possible effects, systematically characterizing multigene interactions remains 

a significant challenge, although possible in some limited cases (i.e., haploid organisms 

or homoyzgous diploids) (Heckendorn and Whitley, 1997; Iglesias et al., 2008; Weinreich 

et al., 2013).

Physiological epistasis has often been presumed to be ubiquitous given that many genes 

interact in complex ways with other genes. However, the daunting number of possible 

interactions (Box 1) has made explicit measurements of the prevalence of higher-order 

epistatic effects rare. One exception is the work of Weinreich and collaborators (2013), who 

estimated higher-order epistasis in 14 experimental data sets as well as simulated data from 

two theoretical fitness landscapes. They find that, in most cases, the magnitude of the effects 

of second-order and each higher-order level of epistasis can be as great or greater than those 

of the main effects themselves (see Fig. 1 in Weinreich et al., 2013). In most of the examples 
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the mutant sites are amino acid replacements in the same protein molecule, where significant 

higher-order interaction effects might be expected, but the data also include fitness of visible 

mutant genes in D. melanogaster and Aspergillus niger as well as beneficial mutations that 

arise in populations of Methalobacterium extorquens and E. coli. Likewise, Young and 

Durbin (2014) have estimated that pairwise and higher-order interactions account for an 

average of nearly 25% of the phenotypic variance across 46 traits in laboratory crosses of S. 
cerevisiae. Also in yeast, the effects of higher-order epistasis on fitness appear as 

diminishing-returns epistasis among beneficial mutations (Kryazhimskiy et al., 2014).

 Statistical epistasis: Genotypic context in populations

In model organisms, or those used in agriculture, physiological epistasis can be studied 

directly in genetic crosses, with transgenes or DNA editing, or by other experimental 

approaches. In human genetics, direct studies are rarely possible, and inferences about 

physiological epistasis instead rely on estimates of statistical epistasis in populations. This is 

problematical because as we discuss in more detail below, the failure to detect statistical 

epistasis does not imply that physiological epistasis is absent or unimportant.

Physiological epistasis arises from the network structure of cellular metabolic and signaling 

pathways and the interactions within and among the proteins and other components that 

make up and regulate these pathways. The complexity of biological systems and the need of 

organisms to interact with their environment and to adjust, acclimatize, or maintain 

homeostasis implies that physiological epistasis is likely to be pervasive. This inference is 

often misleading when extrapolated to statistical epistasis because there is an asymmetry in 

their implications. On the one hand, high levels of statistical epistasis always imply 

substantial physiological epistasis, but on the other hand physiological epistasis can be 

pervasive and still result in negligible levels of statistical epistasis.

To illustrate why this is so, we first need to briefly discuss how statistical epistasis is 

estimated. This concept originates with R. A. Fisher’s analysis of sources of genetic 

variation that drive evolutionary change (Fisher, 1918, 1930; Moran and Smith, 1966), in 

which he partitioned the genetic variance of a trait into several different components by 

fitting an additive model of the genotypic values. In this framework phenotypic values are 

predicted by an additive a model of gene action in which each allele of each gene has a 

phenotypic effect on the trait, and the phenotypic effects are additive (that is, heterozygote 

genotypes have a phenotype exactly intermediate between the alternate homozygotes) 

(Falconer and Mackay, 1996; Lynch and Walsh, 1998). The variance among the predicted 

phenotypic values in an additive model is called the additive genetic variance (VA). In cases 

in which the heterozygous genotypes have a phenotype that is not exactly intermediate 

between the corresponding homozygous genotypes, the variance due to deviations of the 

heterozygous genotypes from the additive model is the dominance variance (VD). Finally, 

the variance due to the deviations of each multilocus genotype from the additive model 

allowing for dominance is the epistatic or interaction variance (VI). This is what we have 

been calling the statistical epistasis. These variance components can be estimated from 

covariances among relatives. For example, in the absence of epistasis, the additive genetic 
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variance can be estimated as twice the covariance in phenotype between parent and 

offspring.

Because there are many possible combinations of multi-locus epistasis among genes, it is 

tempting to infer that statistical epistasis must be important, but there are three reasons for 

challenging this inference. The first is the hierarchical manner in which the variance 

components are estimated from the genotypic values. Since an additive model is fit by least 

squares, some of the effects of dominance become incorporated into the additive variance, 

and likewise some of the effects of epistasis are tallied with the additive variance and some 

with dominance variance (See Figure 1 and related text below). This means that, in their 

contribution to the genetic variance, many of the effects of physiological epistasis are 

allocated to the additive and dominance components of variation and do not contribute to 

statistical epistasis. Second, the contribution of physiological epistasis to statistical epistasis 

depends on the population frequencies of the multilocus genotypes, and the greater the 

number of interacting genes, the smaller the population frequency of the multilocus 

genotypes. Finally, as emphasized by Hill et al. (2008), the distribution of allele frequencies 

in natural populations is typically J-shaped or U-shaped, so that multilocus genotypes are 

even more rare than one might naively expect from uniform allele frequencies. In other 

words, given the allele distributions in the human population, the chance of a sample 

including enough individuals of each genotype to give significant effects may be very small.

The typical J- or U-shaped distribution of allele frequencies is a serious limitation in human 

population studies because statistical epistasis is usually maximized for allele frequencies 

that are nearly equal. In model and agricultural organisms, experimental populations can be 

contrived that have nearly equal allele frequencies, and this is one reason why high levels of 

statistical epistasis are much more often reported in these organisms than in humans. This is 

true even with statistical methods designed specifically for increased power to detect 

statistical epistasis in human populations (Deng et al., 2014). Furthermore, J-shaped or U-

shaped distributions of allele frequencies imply that many combinations of alleles that might 

potentially be strongly epistatic in the physiological sense will be rare or nonexistent in 

samples typical of those studied in human populations.

As a simple example of how the hierarchical apportionment of genetic variance can allocate 

nonadditive interactions to the additive genetic variance, consider the effect of dominance. 

When a dominant allele is rare, almost all of the genetic variance contributed by dominance 

is additive variance, which may seem paradoxical. However there is an intuitive explanation: 

when a dominant allele is rare, the genotypic value of the heterozygous genotype is 

transmitted from parent to offspring, and a high parent-to-offspring correlation implies a 

high additive variance. At the other end of the spectrum, when a dominant allele is nearly 

fixed, it reduces the parent-to-offspring correlation and hence the additive variance to nearly 

zero, basically because most offspring of any parent have the same phenotype. The same sort 

of reasoning applies to statistical epistasis, as the hierarchical nature of estimating the 

variance components and the typically J- or U-shaped distribution of allele frequencies 

means that much of the genetic variance due to statistical epistasis is allocated to the additive 

and dominance components of variance.
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The principles of statistical epistasis are illustrated in Fig. 1 for two genes each with two 

alleles exhibiting physiological epistasis, where the y axis depicts the phenotypic values of 

the 9 possible genotypes. In this example, genotypes A– B– have phenotypic values of +1 

whereas genotypes aa–– and –– bb have phenotypic values of −1. This specific type of 

physiological epistasis is complementary epistasis as in Table 1. In the classical terminology 

of epistasis, aa is epistatic to B– and bb is epistatic to A–. In Fig. 1A, each dashed line 

represents the deviation (distance) of each phenotypic value from the population mean. We 

assume random mating and linkage equilibrium with allele frequencies of A and B both 

equal to 0.459 so that the mean phenotypic value in the population equals 0. The average of 

the squared deviations equals the total genetic variance, which in this example equals 1.0. 

(The example is taken from Crow and Kimura (1970, p. 126), where the calculations of the 

variance components are described in detail.)

In Fig. 1A it is obvious that much of the total genetic variance results from the physiological 

epistasis between the two genes. If this were a simple Mendelian trait with contrasting 

phenotypes (for example, of +1 corresponded to purple flowers and −1 to white flowers), 

then classical genetic crosses would reveal the genotype-phenotype correspondence and the 

physiological epistasis would be revealed.

With multifactorial quantitative traits in natural populations, the genotype-phenotype 

correspondence is unknown. Any genetic effects of a gene (or a pair of genes) on a trait must 

be inferred from population studies, in particular from correlations between relatives. 

Prominent among these is the parent-to-offspring correlation, which is a function of the 

additive genetic variance of the trait, which as indicated above is the variance among the 

phenotypic values predicted by an additive a model of gene action in which each allele of 

each gene has a phenotypic effect on the trait, and the phenotypic effects are additive with 

heterozygote genotypes having a phenotype exactly intermediate between the alternate 

homozygotes. The predicted phenotypic values in an additive model are shown by the black 

spheres in Fig. 1B, which lie on a plane that, in practice, is fitted to the actual phenotypic 

values by least squares. The additive genetic variance is the variance among these predicted 

values, which in this case equals 0.582. The deviations from the additive model are again 

shown as brown dashed lines, and on average they are much shorter than in Fig. 1A. This 

means that more than half of the variance among genotypes in Fig. 1A is included in the 

additive genetic variance, even though in this example all of the phenotypic variability 

derives from physiological epistasis

In population studies, the correlation between certain types of relatives, such as siblings, is a 

function of the additive genetic variance but also of the dominance variance. As noted above, 

the dominance variance is the variance among the phenotypic values predicted by a model of 

gene action in which the heterozygous genotypes can have a phenotype that is not exactly 

intermediate between the corresponding homozygous genotypes. Such a model for our 

example is shown in Fig. 1C, in which the dashed red lines depict the deviations from the 

additive model due to dominance. The dominance variance is the average of the squares of 

these deviations. In this example the dominance variance equals 0.247, and so almost a 

quarter of the variance among genotypes in Fig. 1A is included in the dominance variance.
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Note in Fig. 1C that the lengths of the dashed brown lines are very much diminished from 

those in Fig. 1A. It is these lines that depict the statistical (epistatic) variance. In this 

example, the statistical variance is only 0.171. What’s worse, in a more realistic model of 

complementary epistasis in a complex disease in which the population frequency of −1 

phenotypes is 1%, the epistatic variance equals a mere 0.25% of the total genetic variance. 

In other words, although the genotypes exhibit a great deal of physiological epistasis (Fig. 

1A), there is relatively little statistical epistasis. The statistical epistasis is minimized owing 

to the hierarchical allocation of variance components, the first share is allocated to the 

additive genetic variance, the next portion to dominance variance, and the leftovers to the 

epistatic variance (statistical epistasis).

Low values of statistical epistasis are not unique to any particular type of physiological 

epistasis. Hill and colleagues (Hill et al., 2008; Mäki-Tanila and Hill, 2014) have analyzed 

several models of multilocus epistasis including multilocus complementary epistasis; 

duplicate factor epistasis, in which a particular phenotype results from homozygosity at two 

or more loci; and diminishing-returns epistasis based on a model in which the phenotype is 

proportional to the flux of substrate through a linear metabolic pathway. For two loci and a 

U-shaped distribution of allele frequencies, each of these models of epistasis results in the 

additive variance accounting for a high proportion (70–90%) of the total genetic variance; 

however as the number of loci increases this proportion decreases, in extreme cases to 0. But 

as the authors point out, the extreme models do not explain the covariance between siblings 

(which requires a nonzero additive variance), the approximate linear response to artificial 

selection, or the near linear decrease in fitness with degree of inbreeding (inbreeding 

depression) (Hill et al., 2008). The overall conclusion is that physiological epistasis is 

unlikely to produce much statistical epistasis because much of the variance due to 

physiological epistasis is allocated to the additive genetic variance.

 Does statistical epistasis account for missing (“phantom”) heritability?

Since virtually anyone will concede that physiological epistasis is important and pervasive, 

why does it matter whether statistical epistasis is or is not a significant part of the genetic 

variance? It matters because of the assumption that tracing the sources of genetic variation 

will reveal metabolic and regulatory networks for complex diseases to improve disease risk 

prediction and also highlight new drug targets for prevention or therapeutic intervention. 

Genome-wide association studies have already identified more than 6000 genetic factors 

associated with more than 500 quantitative traits and complex diseases in humans (Robinson 

et al., 2014). Yet for most complex diseases, the genetic risk factors result in a modest (10–

50%) increase in risk, and in the aggregate they account for only part (typically less than 

50%) of the phenotypic variation attributable to the additive effects of genes (i.e., the 

heritability) (Manolio et al., 2009). For example, the top 40 gene contributing to variation in 

adult human height account for less than 10 percent of the heritability (Manolio et al., 2009), 

and a total of 697 genetic factors with statistically significant effects on adult height explain 

only about 20 percent the heritability (Wood et al., 2014a).

The part of the heritability not accounted for by identified genetic risk factors has become 

known as the “missing heritability,” and many explanations have been offered. Among the 
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hypotheses put forward to account for the missing heritability are lack of sufficiently 

powerful statistical methods to detect causal variants (Golan et al., 2014; Yang et al., 2015), 

common variants with effects too small to detect with typical sample sizes (Manolio et al., 

2009), rare variants with large effects (Manolio et al., 2009), dominance (Zhu et al., 2015), 

physiological epistasis (Manolio et al., 2009; Hemani et al., 2013; Zuk et al., 2012), tandem 

repeat polymorphisms (Hannan, 2010), and epigenetic effects (Trerotola et al., 2015).

Some authors argue that the missing heritability is not really missing but “phantom” owing 

to an overestimation of heritability from phenotypic correlations among relatives, notably 

comparison of identical versus same-sex fraternal twins (Zuk et al., 2012). Estimates of 

heritability from family studies can be biased upward by interactions between genes 

(physiological epistasis), by genotype-by-environment interactions in which some genotypes 

are more sensitive than others to environmental influences, and by unrecognized correlations 

in environments among relatives.

Other authors argue that the fraction of the heritability that went missing is in reality rather 

small. The evidence is that, when all genetic factors are taken into account, including those 

whose effects do not reach statistical significance, then a high proportion of the heritability 

for complex traits and diseases can be explained (Lee et al., 2011; Yang et al., 2013). 

Hundreds or thousands of genetic factors of small effect might therefore contribute to 

complex traits and diseases. In one study, Yang and colleagues (2015) used genetic 

relationship matrices stratified by minor allele frequency and linkage disequilibrium to 

impute about 17 million causal variants affecting adult height and body mass index among 

44,126 unrelated individuals. Taking into account the likely overestimate of heritability 

based on family studies, the imputed genetic factors accounted for 80–90% of heritability for 

adult height and 70–90% of heritability for body mass index (Yang et al., 2015). Some 25–

50% of the genetic variation in these traits could be attributed to common variants.

The approach of Yang et al. (2015) has been criticized on grounds that its heritability 

estimates are inaccurate even when the model assumptions are met exactly, and that they are 

biased and unstable in the presence of population stratification and measurement error in 

either the phenotype or the genetic relatedness matrix (Krishna Kumar et al., 2016a). Yang et 

al. (2016) rebut the first criticism by showing that Krishna Kumar et al. (2016a) incorrectly 

impute assumptions not required by the model, and they also suggest that the second 

criticism arises from failure to remove cryptic relatedness. The debate continues about the 

accuracy of procedures to remove related individuals, the effects of noisy estimates of the 

genetic relatedness matrix on filtering cryptic relatedness, and ultimately on estimates of 

heritability (Krishna Kumar et al., 2016b).

Estimates of heritability and the contribution of genotypic effects to complex traits are more 

easily carried out in model organisms such as Drosophila or yeast. In Drosophila, for 

example, studies of various quantitative traits such as life-history traits, olfactory response, 

or startle behavior in crosses or in artificial laboratory populations derived from sequenced 

inbred lines indicate that, while most of the genetic variation is additive, the majority of 

genetic factors influencing each trait participated in at least one epistatic interaction (Huang 

et al., 2012). The type of epistasis is largely suppressing epistasis (Swarup et al., 2012), in 
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which the common variant buffers against the effects of new mutations. Most of the genetic 

factors associated with such traits do not replicate across populations (Mackay and Moore, 

2014), suggesting that genetic background effects are common, although it is difficult to rule 

out the possibility that this could be due in part to false positives and lack of statistical 

power. Epistasis also figures importantly in some of the 46 quantitative traits studied among 

the progeny of a yeast cross (Bloom et al., 2013); while genetic factors with significant 

effects accounted for most of the additive genetic variance, some traits also showed 

significant epistatic variation. It must be emphasized, however, that in both Drosophila and 

yeast the artificial populations are contrived to have nearly equal allele frequencies at all 

segregating loci, which contrasts markedly with the U-shaped or J-shaped allele-frequency 

distributions expected in natural populations (Hill et al., 2008). This distinction alone would 

make statistical epistasis more readily detectable in artificial populations of model organisms 

than in natural human populations.

In any case, statistical epistasis is not difficult to find in artificial populations of model 

organisms, which is unsurprising given the ubiquity of physiological epistasis. However, 

there is little evidence that statistical epistasis is readily detectable in human populations, 

despite considerable attention to this problem (reviewed in Wei et al., 2014). Even when 

significant statistical epistasis can be identified, as in a recent study searching for 

associations between pairs of SNPs and gene expression in peripheral blood in a large cohort 

(Hemani et al., 2014), alternative additive explanations are difficult to rule out completely 

(Wood et al., 2014b). Taken as a whole, the search for statistical epistasis affecting complex 

traits in humans strongly suggests that interaction effects of similar magnitude to main 

(additive) effects do not exist. Although methods for detecting epistasis are generally 

underpowered (Wei et al., 2014), and it is difficult to rule out very weak pairwise 

interactions, there is little evidence that statistical epistasis contributes a substantial amount 

to the total genetic variance (Wei et al., 2014). Even in twin studies, for the majority of 

traits, the observed twin correlations can be ascribed to a simple model with only additive 

variance and are inconsistent with large effects due to shared environment, dominance, or 

epistatic variance (Polderman et al., 2015). The finding that, when all contributing genetic 

factors are taken into account for complex traits, most of the missing heritability reappears, 

is also consistent with a model of largely additive genetic variance. (Full disclosure: the 

additive genetic variance also includes the additive-by-additive components of the epistatic 

variance, if any.) Considering all the data presently available from genome-wide association 

studies of a large number of quantitative and complex traits, Fisher’s (1918) model of 

genetic correlations being due to the additive effects of a large number of genes of mostly 

small effect was singularly prescient. A low level of statistical epistasis found in population 

studies does not imply that physiological epistasis is unimportant. It is still critically 

important for disease understanding, prediction, prognosis, prevention, and treatment. But it 

does imply that the interactions underlying physiological epistasis are unlikely to be 

discovered by looking for statistical epistasis.

 Conclusions

The importance of genotypic context and understanding the various modes of epistasis is 

increasingly important given the clear relevance to personalized medicine (Collins, 2010). 
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We argue that understanding the biology of genotypic context requires clearly distinguishing 

between physiological epistasis that affects the expression of particular genotypes in 

individuals and statistical epistasis that describes genetic variation in populations.

To date, there is relatively little evidence for substantial amounts of statistical epistasis in 

human populations or most natural populations of other organisms. This conclusion is 

supported by a number of lines of evidence, including the observation that genome 

prediction models, which typically do not include higher-order interactions (although this is 

changing, e.g., Hu et al., 2011), are remarkably efficient at predicting population-level 

phenotypes in both human disease (e.g., Lee et al., 2011; Yang et al., 2013) and agricultural 

contexts (e.g., Hayes et al., 2009; Desta and Ortiz 2014).

In contrast, in model organisms or those used in agriculture, studies of genetic crosses and 

experimental populations reveal substantial statistical epistasis, in some cases amounting to 

25% or more of the total phenotypic variance. What accounts for the difference? Are 

humans different from other organisms? Not likely. In our opinion, the difference between 

natural and artificial populations lies in the typically J-shaped or U-shaped distribution of 

allele frequencies, which minimizes the effects of statistical epistasis. When the allele 

frequencies are more nearly equal, as they are in artificial populations, the effects of 

statistical epistasis are maximized. It is also possible that the genetic basis of human disease 

traits differs qualitatively from the genetic basis of quantitative traits. For example, genetic 

variation in disease traits may be maintained largely by mutation-selection balance whereas 

genetic variation for quantitative traits is maintained by stabilizing selection for an 

intermediate optimum. This may be true but irrelevant if, as we believe, statistical epistasis is 

low in human populations because the effects of physiological epistasis largely vanish under 

hierarchical variance partitioning.

Importantly, a low level of statistical epistasis in human populations does not imply that 

physiological epistasis is either weak or rare. In fact, evidence from model organisms in 

particular suggests that physiological epistasis is ubiquitous (Dworkin et al., 2009; Corbett-

Detig et al., 2013; He et al., 2014; Chow et al., 2015; Vu et al., 2015), often encompassing 

more than pairwise gene-by-gene interactions to include higher-order effects (Weinreich et 

al., 2013; Hartl, 2014) and even gene-by-genome interactions. But then, with so little 

statistical epistasis detectable in human populations, on what basis can one predict how 

genotypic context influences phenotypic expression in a particular individual? The low level 

of statistical epistasis is a conundrum and a disappointment. Probably the best that one can 

do under the circumstances, using present methods, is to make predictions based on the 

main, additive effects of alleles, recognize the uncertainty of such predictions, and hope for 

the best.
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Fig. 1. 
Hierarchical fitting of variance components obscures physiological epistasis in population 

studies. (A) Genotype-phenotype correspondence in a model of complementary epistasis, in 

which the phenotypes of genotypes A– B– are assigned values of +1 and genotypes aa ––, 

–– bb, and aa bb are assigned values −1 (as in Table 1). Genotypes are represented as brown 

spheres, and the deviation of each phenotypic value from the population mean is shown as a 

brown dashed line. The frequencies of A and B both set equal to 0.459, as in Crow and 

Kimura (1970, p. 176). The average of the squared deviations is the total genetic variance, in 

this case equal to 1.000. (B) The plane is the least-squares fit to an additive model of gene 

action. The black spheres are the predicted phenotypes based on an additive model, and the 

additive genetic variance is the variance among these predicted phenotypes (in this example 

0.582). (C) The red spheres depict the predicted phenotypes based on a model that includes 

additive as well as dominance effects, but no epistasis. The dashed red lines are the 

deviations from the additive model due to dominance. The dominance variance equals the 

average of these squared deviations, in this case 0.247. After allocating the additive and 

dominance variance, the remaining variance is the epistatic variance (statistical epistasis), 

which is a mere 17.1% of the total genetic variance.
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Table 1

Phenotypic values with complementary epistasis at two diploid loci

AA Aa aa

BB
w22

m1 + m2 + e22

1

w12

m2 + d1

1

w02

m2 ? m1 + e02

−1

Bb
w21

m1 + d2

1

w11

d1 + d2 + e11

1

w01

−m1 + d2

−1

bb
w20

m1 − m2 + e20

−1

w01

−m2 + d1

−1

w00

−m1 −m2 + e00

−1
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