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Abstract

 Objective—We tested the hypothesis that osmotherapy with hypertonic saline (HS) attenuates 

cerebral edema following experimental cardiac arrest (CA) and cardiopulmonary resuscitation 

(CPR) by exerting its effect via the perivascular pool of aquaporin-4 (AQP4). We used mice with 

targeted disruption of the gene encoding α-syntrophin (α-Syn-/-) that demonstrate diminished 

perivascular AQP4 pool but retain the minor endothelial pool.

 Design—Laboratory animal study.

 Setting—University animal research laboratory.

 Interventions—Isoflurane-anesthetized adult male wild type (WT) C57B/6 or α-Syn-/- mice 

were subjected to CA/CPR and treated with either a continuous intravenous (IV) infusion of 0.9% 

saline (NS) or various concentrations of hypertonic saline (HS). Serum osmolality, regional brain 

water content, blood-brain barrier (BBB) disruption, and AQP4 protein expression were 

determined at 24 hr after CA/CPR.

 Measurements and Main Results—7.5% HS treatment significantly attenuated water 

content in the caudoputamen (CP) complex and cortex as compared with NS-treatment in WT 

mice subjected to CA/CPR. In contrast in α-syn-/- mice subjected to CA/CPR, 7.5% HS treatment 

did not attenuate water content. Treatment with 7.5% HS attenuated BBB disruption at 24 hr 

following CA/CPR in WT mice but not in α-Syn-/- mice. Total AQP4 protein expression was not 

different between NS and HS-treated WT mice.

 Conclusions—Following experimental CA/CPR: 1) continuous HS therapy maintained to 

achieve serum osmolality of ∼350 mOsm/L is beneficial for the treatment of cerebral edema; 2) 
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perivascular pool of AQP4 plays a critical role in water egress from brain; 3) HS attenuates BBB 

disruption via perivascular AQP4 pool.
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hypertonic saline; osmotherapy; global cerebral ischemia; cardiac arrest; cerebral edema; 
aquaporins

Cardiac arrest (CA) is a leading cause of mortality and poor neurologic outcome (1-4). The 

pathophysiological mechanisms of brain injury following CA are complex and 

multifactorial, including the primary ischemic neuronal injury and secondary injury from 

consequent cerebral edema (5-8).

Aquaporin-4 (AQP4), the predominant water channel in brain, has been implicated in the 

pathogenesis of ischemia-evoked cerebral edema (9-14). There are three AQP4 pools in the 

brain: a major perivascular pool localized to the astrocytic endfeet, a minor endothelial pool, 

localized to the endothelial non-endfeet pool localized in astrocytic processes in the neuropil 

(14) and an ependymal pool (15). In addition, AQP4 is expressed in subpial astrocytic 

processes. The astrocytic endfoot pool of AQP4 is anchored by the dystrophin associated 

protein complex (16) and is deleted in mice with targeted disruption of the gene encoding α-

syntrophin (α-Syn-/-). α-Syn-/- mice show a reduced severity of cerebral edema after 

ischemic stroke (12) and thus it has been suggested that the perivascular pool of AQP4 is 

rate limiting for water influx during ischemia-evoked edema formation.

Thus far limited data are available on treatment for CA-evoked cerebral edema. 

Hyperosmolar therapy with hypertonic saline (HS) solutions is a commonly used treatment 

for cerebral edema from diverse etiologies (17-19). We have demonstrated in well-

characterized animal models of focal ischemia that continuous intravenous (IV) HS infusion 

to target serum osmolality levels of ∼350 mOsm/L attenuates cerebral edema, ameliorates 

blood-brain barrier (BBB) disruption, and improves mortality and these actions are 

dependent on the presence of perivascular AQP4 (20, 21).

Using α-syn-/- mice and their WT counterparts in a well-characterized murine model of 

brain injury following experimental CA,we tested the hypotheses that: 1) HS attenuates 

cerebral edema; 2) the perivascular pool of AQP4 is selectively involved in the elimination 

of water from the brain with HS; and 3) HS protects the integrity of the BBB.

 Material and Methods

 General Preparation and Animal Surgery

The experimental protocol was approved by the Institutional Animal Care and Use 

Committee and conformed to the National Institutes of Health guidelines. WT C57B/6 

(Charles River, Hollister, CA, USA) mice were used as controls. α-syntrophin (α-Syn-/-) 

mice were bred on a C57B/6 background more than 10 generations to avoid effects of 

differing genetic strains (22).
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 Cardiac Arrest Model

The experimental procedures in WT and α-Syn-/- (20-28 g) were performed randomly by a 

single investigator blinded to treatment, as previously described (23-25). Briefly, all surgical 

procedures were performed in mice anesthetized (induction with 5% isoflurane and 

maintenance with 2% isoflurane in 20% oxygen/80% air) via face mask under controlled 

rectal temperature of 37 °C. An internal jugular venous catheter was placed for intravenous 

access. Mice were endotracheally intubated with a 22G IV catheter, and mechanically 

ventilated (Minivent, Hugo Sacs Elektronik, March-Hugstetten, Germany) and CA was 

induced by IV injection of 50μL cold 0.5 mol/l KCL. This well-characterized and unique 

animal model utilizes selective heating of the animal's head to a target temporalis muscle 

temperature of 39 °C while cooling the body temperature to 29 °C during CA as described 

previously (23). Cardiopulmonary resuscitation (CPR) was initiated 8 min after induction of 

CA by slow injection of 0.5 mL of epinephrine (8μg), chest compressions (approximately 

300/min), and ventilation with 100% oxygen. Thirty minutes after return of spontaneous 

circulation (ROSC) and confirmation of sufficient spontaneous breathing (> 30/min), the 

endotracheal tube was removed.

 Assessment of Regional Brain Edema

Brains were removed at desired endpoints and dissected into 4 regions (cortex, 

caudoputamen (CP) complex, hippocampus and cerebellum). Brain edema was assessed by 

comparing wet-to-dry ratios (WDR) as described previously (20, 21, 26).

 Assessment of BBB Integrity

BBB permeability was assessed by the Evans blue (EB) extravasation method (27) with 

modifications (20) and quantified as nanograms per whole brain.

 Assessment of Serum Osmolality

At the end of the experiment, serum osmolality (mOsm/L) was determined with an 

automated freezing point depression micro-osmometer (Advanced Instruments, Inc., 

Norwood, MA) (20, 21).

 Neurobehavioral Assessment

Neuro-behavioral testing and scoring was performed after completion of treatment by an 

investigator (EM) blinded to the experimental group and scores summed for consciousness, 

interaction, eye appearance, breathing, food/water intake and overall activity (0 = no 

impairment and 20 = maximum impairment) (24, 28).

 Immunoblotting for AQP4

AQP4 protein expression was determined with a Western blot protocol for AQP4 as 

previously described with modifications (29) following sub-dissection of the CP complex, 

hippocampus, cerebral cortex, and cerebellum from WT mice treated with normal saline or 

7.5% HS or sham operation.
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 Experimental Groups

In the first series of experiments, WT mice (n=90) subjected to CA were randomized to 

receive either continuous IV infusion via a programmable infusion pump KDS 250 (KD 

scientific Inc., Holliston, PA, USA) of 0.9% saline (NS; 308 mOsm/L), 3% HS (1023 

mOsm/L), 5% HS (1900 mOsm/L), or 7.5% HS (2310 mOsm/L). α-Syn-/- mice (n=38) 

subjected to CA were randomized to receive either continuous IV infusion of NS or 7.5% 

HS. Sham-operated mice subjected to all surgical procedures (intubation and vascular 

catheterization) except for CA in both strains served as controls. HS was instituted as a 

mixture of acetate:chloride (50:50; pH=6.5–7.0) to avoid hyperchloremic acidosis. All 

infusions were given at rate of 1 ml/kg/hr. Treatments were started 30 min after ROSC and 

continued for 24 hr. Serum osmolality and regional brain water content by WDR were 

determined at the end of the experiment.

In the second series of experiments, WT (n=25) and α-Syn-/- (n= 28) mice subjected to CA 

were randomized to receive continuous IV infusion of NS or 7.5% HS for 24 hr. BBB 

integrity was assessed by EB extravasation method at the end of the experiment. Sham-

operated WT and α-Syn-/- mice served as controls (n=7 each).

In the third series of experiments (n=12), WT mice subjected to CA and treated with IV 

infusion of NS or 7.5% HS for 24 hr were used to determine AQP4 protein expression. 

Sham-operated WT mice and naïve WT mice served as controls (n=4 each). AQP4 

expression in α-Syn-/- mice was not analyzed because the total level of AQP4 is normal in 

brain of α-Syn-/- mice (16).

In the fourth series of experiments, physiological parameters (blood pressure, arterial blood 

gases) during CA/CPR were measured at baseline and 30 min after ROSC in WT and α-

Syn-/- mice (n=5 each).

 Statistical Analysis

All values are expressed as mean ± SEM. Physiologic parameters, CA-related parameters, 

plasma osmolality, differences in regional brain water content, and EB extravasation among 

treatment groups were determined by one-way analysis of variance (ANOVA) with post hoc 

Student-Newman-Keuls test. Survival rates among groups were analyzed by Chi-square 

Test. Neuroscore is presented as median (with 25% and 75% quartiles) and analyzed by the 

non-parametric Mann-Whitney U test. Densitometric analysis of AQP4 expression in 

different treatment groups was analyzed by Student's t test. P < 0.05 was considered 

statistically significant.

 Results

 Assessment of Serum Osmolality and Regional Brain Water Content

In the first series of experiments conducted to determine if HS attenuates regional cerebral 

edema associated with CA/CPR, 5 mice were excluded from the final analysis because of 

dislocation of the venous catheter. Serum osmolality was elevated in WT mice treated with 

HS in a dose-dependent manner (NS: 314±1; 3% HS: 318±2; 5% HS: 326±2; 7.5% HS: 

Nakayama et al. Page 4

Crit Care Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



345±5 mOsm/L; Table 1). Similarly, serum osmolality was significantly elevated in α-Syn-/- 

mice treated with 7.5% HS compared with NS treatment (7.5% HS: 351±7, NS: 316±4; 

Table 2). Serum sodium concentration was significantly elevated in mice treated with 5% HS 

and 7.5% HS compared with NS and 3% HS treatment (Table 1). In WT mice treated with 

NS, 3% HS, and 5% HS, CA led to an increase in brain water content in the CP complex and 

cortex as compared with those in sham-operated mice. While 3% HS and 5% HS treatment 

did not attenuate water content in WT mice subjected to CA/CPR, 7.5% HS treatment 

significantly attenuated water content as compared with NS treatment (cortex:78.6±0.1% vs 

79.2±0.2%; CP complex: 77.9± 0.3% vs 79±0.4%, P < 0.05; Figure 1). Water content 

increased in both NS- and 7.5% HS-treated α-Syn-/- mice subjected to CA/CPR in the CP 

complex but not in the cortex, hippocampus, or cerebellum as compared with those in sham-

operated mice. In contrast to WT mice, 7.5% HS treatment in α-Syn-/- mice did not attenuate 

regional brain water content compared to NS treatment (Figure 2). No differences were 

observed in mortality rates in both strains treated with HS as compared with NS.

 Assessment of BBB integrity

In the second series of experiments conducted to determine if HS attenuates BBB disruption 

following CA, in the absence and presence of perivascular AQP4 pool. Following sham 

operations, the fluorescent quantification of Evans Blue showed that BBB disruption was not 

different between WT and α-Syn-/- mice. The severity of BBB disruption following CA was 

similar in WT and α-Syn-/- treated with NS. Treatment with 7.5% HS attenuated BBB 

disruption in WT mice but not in α-Syn-/- mice (Figure 3).

 AQP4 expression with Western blotting

In the third series of experiments conducted to determine if HS modulates AQP4 expression 

24 hr after CA/CPR. There were no significant difference in AQP4 expression in all brain 

regions between NS and 7.5% HS-treated WT mice (Figure 4).

 Cardiac Arrest and Cardiopulmonary Resuscitation Related Parameters

Body weight, CPR duration, epinephrine dose, and survival rate were not different (Table 1 

and 2). In the fourth series of experiments conducted to determine if α-Syn deletion alters 

physiologic parameters during CA/CPR experiment, temporal profiles of mean arterial 

pressure during CA/CPR were similar between WT and α-Syn-/- mice groups (Figure 5). 

Blood analyses including blood gases, pH, base excess, blood glucose, sodium and 

potassium levels at baseline and at 30 min after ROSC were similar between WT and α-

Syn-/- mice (Table 3).

 Discussion

This study demonstrates several important findings. First, in WT mice, brain water content 

in the cortex and the CP complex following CA/CPR is attenuated with continuous HS 

infusion when serum osmolality is maintained at level of ∼350 mOsm/L. In contrast, in 

mice that lack perivascular AQP4 (α-Syn-/-), brain water content is not altered with HS 

treatment. Second, HS attenuates BBB disruption depending on the presence of the 

perivascular pool of AQP4. These findings provide evidence that the perivascular pool of 
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AQP4 mediates the effect of osmotherapy with HS on cerebral edema following CA/CPR 

and implicate that this pool constitutes a therapeutic target to reduce cerebral edema and to 

protect the integrity of BBB.

Cerebral edema is an important modulator of outcome following brain injury from CA/CPR; 

pathophysiological mechanisms include elevations in intracranial pressure from cerebral 

edema formation leading to diminution in cerebral blood flow with consequent loss of brain 

function (30, 31). Thus far, limited treatment strategies aimed at CA-evoked cerebral edema 

are available including osmotic agents, and mechanisms of beneficial effects of osmotherapy 

are not fully elucidated. For example, a previous study demonstrated no improvement in 

functional and histopathological outcome at 7 days following a single bolus injection of 

hypertonic saline hydroxyethyl starch 1.5 min following ROSC in a rat model of CA despite 

accentuating local cerebral blood flow (32). In our previous studies, osmotherapy with 

continuous infusion of HS ameliorated stroke-evoked cerebral edema following 

experimental focal ischemia (20, 26, 29). The beneficial effect of HS was not observed in 

mice genetically engineered to lack perivascular pool of AQP4 expression (21). In keeping 

with these previous studies, results from the present study demonstrate that HS attenuates 

regional cerebral edema following CA/CPR in WT mice but not in α-Syn-/- mice. While the 

pathophysiological mechanisms of edema formation may differ between the 2 injury 

paradigms (focal and global ischemia), HS was equally efficacious in attenuating brain water 

content via the perivascular pool of AQP4.

AQP4, the most abundant water channel in the brain (33), is known to contribute to water 

homeostasis in brain injury from diverse etiologies (34). In murine models of focal ischemia, 

AQP4 is up-regulated around the peri-infarct border early after stroke (35, 36). The degree 

of increase in AQP4 is correlated with the magnitude of cytotoxic cerebral edema (33). 

Conversely, different strategies to reduce the AQP4 pool, perivascularly (11, 12) or in the 

brain at large (9) prevent edema formation, indicating that the presence of AQP4 facilitates 

the entry of water in astrocytes. At later time points, AQP4 plays beneficial role in the 

clearance of water from the brain into blood vessels. In this edema resolution phase, AQP4 

expression in the peri-infarct zone is increased after 48 hr in focal ischemia models, which 

can facilitate resorption of excess brain water (35, 37). In a traumatic brain injury animal 

model that replicates vasogenic edema, AQP4 knockout mice develop more cerebral edema 

than WT mice because efflux of water from brain to blood vessels is limited in the 

transgenic animals (38). These results implicate that AQP4 plays dual role of water 

movement in a variety of brain injury paradigms. Although no specific inhibitor to block 

AQP4 has been available, the evidence from AQP4 deletion mice (9, 12) and knockdown of 

AQP4 expression using siRNA technique (39) suggests that AQP4 contributes to the 

regulation of edema formation and resolution of both cytotoxic and vasogenic cerebral 

edema. However, from a practical standpoint, different patterns of AQP4 expression and 

their alterations in a variety of pathological conditions make the treatment for cerebral 

edema complex and difficult.

Serum osmolality is a critical determinant of cerebral edema because hyperosmolar state 

causes water efflux from brain to blood vessels. HS solutions reappeared in clinical use in 

the 1980s and are increasingly being used for the treatment of cerebral edema resulting in 
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various brain injury paradigms (17, 40). In keeping with our previous studies with focal 

cerebral ischemia (26, 41), our study demonstrates that maintenance of serum osmolality ≥ 

350 mOsm/L with 7.5% HS attenuated both regional cerebral edema and BBB disruption 

following CA/CPR. Lower HS concentrations (3% or 5%), however, had no effect on 

reducing regional brain water content. These results suggest that maintenance of a constant 

osmotic gradient by maintaining a “euvolemic hyperosmolar” state to eliminate water from 

the injured and non-injured brain is important in ameliorating CA-evoked cerebral edema.

Another important finding of our study is that the osmotic action of HS depends on the 

presence of the perivascular pool of AQP4. Indeed, we observed that HS treatment failed to 

attenuate both cerebral edema and BBB disruption in mice that lack perivascular AQP4 (α-

Syn-/-). The lack of edema resolution observed in α-Syn-/- mice indicates that the water 

efflux from the brain is mainly mediated by the perivascular AQP4. Furthermore, the present 

findings are consistent with the notion that AQP4 mediates bidirectional water flux 

(12),where perivascular AQP4 helps to regulate not only the initial cerebral edema 

formation, but also subsequent edema resolution.

In addition to the water elimination with HS via the perivascular AQP4, severity of BBB 

disruption may have a significant impact on the magnitude of cerebral edema. We have 

shown that HS attenuates BBB disruption in the ischemic hemisphere after focal brain 

ischemia depending on the integrity of perivascular AQP4 pool (21). Likewise, we found 

that BBB disruption at 24 hr following CA/CPR was attenuated with HS treatment in WT 

mice but not in α-Syn-/- mice while BBB disruption was similar in both WT and α-Syn-/- 

mice with NS treatment. HS has been shown to have anti-inflammatory properties, which 

may lead to attenuation of BBB disruption (42-44). Taken together, it can be presumed that 

HS has its anti-inflammatory action, attenuating BBB disruption when the perivascular 

AQP4 exists after ischemic injury. This may further explain the beneficial effect of HS on 

eliminating water from brain to blood vessels across the intact BBB region.

We have demonstrated that cerebral edema is maximal at 24 hr and the BBB disruption is 

maximal at 48 hr in our model of CA in WT mice (unpublished data). We determined the 

effect of HS on regional cerebral edema at 24 hr following CA/CPR because there is 

selective vulnerability of certain brain regions following global cerebral ischemia; these 

include the medium sized neurons of the striatum (CP complex), CA1 neurons of the 

hippocampus, cerebral cortex, and the Purkinje cells of the cerebellum (45). At this time 

point where BBB remains relatively intact, cytotoxic edema component plays a dominant 

role. During this cytotoxic edema formation phase, up-regulation of AQP4 could facilitate 

water transport into the brain. However, we found no difference in AQP4 expression 

between mice subjected to sham surgery and CA. It is difficult to clearly differentiate 

cytotoxic and vasogenic edema components at the time point we observed. Nevertheless, the 

fact that the presence of perivascular AQP4 with osmotherapy ameliorated cerebral edema 

following CA/CPR implies that modulators of AQP4, together with the osmotic agents 

would offer a new therapeutic option to reduce post-CA cerebral edema and to protect the 

integrity of the BBB. Further studies are needed to elucidate the spatial and temporal 

patterns of AQP4 expression following global cerebral ischemia. The translational 

significance of the present study are significant, in that, regional brain water content was 
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attenuated by 1–2% in mice treated with HS which translates to > 90 ml reduction in human 

brain volume and can be life-saving for patients following CA (46, 47).

Our study has several limitations. First, the water flux across the BBB is not mediated 

exclusively by AQP4. There is a possibility that other water transporting molecules are being 

disrupted by the α-syn gene deletion. We have shown that α-syn gene deletion does not alter 

the expression of these known water transporting molecules (14). Second, the α-syn gene 

deletion may have affected the integrity of BBB; however, previous studies using AQP4-/- 

mice demonstrated no alteration of the BBB integrity (48). Our results also showed that 

BBB remains intact in α-Syn-/- mice, which concurs with our previous study in experimental 

focal cerebral ischemia (21). Moreover, BBB disruption was not induced following 

inhibition of AQP4 gene using RNA interference (39), and BBB remained intact in glial 

conditional AQP4-/- mice (49). Together, these data indicate that AQP4 deletion does not 

alter BBB integrity in the normal brain. Third, we did not explore long-term outcomes 

because we sought to determine the effect of HS on cerebral edema that was maximal at 24 

hr after CA/CPR in our preliminary experiments. Fourth, both HS treatment and CA insult 

could have altered ischemia-evoked changes in AQP4 expression in a time-dependent 

manner. The changes in AQP4 expression has never been examined in global ischemia 

models. It is suggested that severely damaged brain is unable to express sufficient AQP4 

proteins. For instance, in a model of more severe stroke following permanent vessel 

occlusion, an early up-regulation of AQP4 expression was not observed (50). Finally, our 

study cannot address if bolus administration of HS is more efficacious than continuous 

infusion (or combination) in this injury paradigm. Our study was not designed to study other 

effects of HS on physiological parameters such as augmentation of regional cerebral blood 

flow that may confer neuroprotection.

 Conclusions

In summary, this is the first study to demonstrate in a well-characterized murine model of 

CA/CPR that HS infusion maintained to achieve serum osmolality ∼350 mOSm/L 

attenuates cerebral edema and BBB disruption via the perivascular pool of AQP4. These 

results suggest that treatment with HS targeted to the perivascular pool of AQP4 is a 

promising approach for ameliorating CA/CPR-evoked cerebral edema.
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Figure 1. 
% Regional brain water contents in the caudoputamen (CP) complex, cortex, hippocampus, 

and cerebellum of WT mice treated with NS, 3% HS, 5% HS, or 7.5% HS for 24 hr 

following 8 min CA/CPR. * P < 0.05 versus surgical shams. †P < 0.05 versus CPR with NS 

treatment.
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Figure 2. 
% Regional brain water contents in the caudoputamen (CP) complex, cortex, hippocampus, 

and cerebellum of α-Syn-/- mice treated with NS or 7.5% HS for 24 hr following 8 min CA/

CPR. * P < 0.05 versus surgical shams.
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Figure 3. 
Blood brain barrier disruption as estimated by EB extravasation in various treatment groups 

at 24 hr following CA/CPR. * P < 0.05 versus NS treatment in WT mice.
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Figure 4. 
Immunoblot of membrane protein isolated from the surgical shams or 8min CA mice treated 

with either NS or 7.5% HS for 24 hr. Naïve WT mice were used as controls. AQP4 was 

identified as a major band at ∼ 30 kDa. Densitometric analysis (intensity ratio) for the AQP4 

protein was corrected to a standard protein (β–actin).
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Figure 5. 
Mean arterial pressure in WT and α-Syn-/- mice at baseline (B1), 8 min of CA (CA2 to 

CA8) and CPR (R 2.5 to R 30 in min).
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Table 2

Physiologic variables in α-Syn-/- mice used for experiments on brain water content at 24 
hr following CA/CPR

NS Surgical Shams NS CA/CPR 7.5% HS Surgical Shams 7.5% HS CA/CPR

N 6 12 6 14

Body weight (g) 24.5±0.4 24.1±0.6 24.7±0.5 24.3±0.4

CPR duration (sec) 65±5 64±6

Epinephrine (μg) 8.9±0.2 9.0±0.2

Survival rate (%) 100% 75% 100% 71%

Sodium (mmol/L) at end of experiment 145±1 146±1 152±2* 157±4*

Osmolality (mOsm/L) at end of experiment 316±3 316±4 340±5* 351±7*

Neuroscore 7 (7–9) 8 (5.5–8.5)

Neuroscore is presented as median with 25 and 75% quartiles.

All other data indicates mean ± standard error of the mean (SEM).

CA/CPR, cardiac arrest and cardiopulmonary resuscitation; NS, 0.9% saline;

HS, hypertonic saline.

*
P < 0.05 vs. NS treatment groups
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Table 3
Blood gas analysis, serum sodium, and Glucose data at baseline 10 min before induction 
of CA and at recovery (30 min after ROSC)

WT (n=5) α-Syn-/- (n=5)

pH

 Baseline 7.35 ± 0.02 7.35 ± 0.02

 Recovery 7.12 ± 0.02 7.02 ± 0.03

PaCO2, mm Hg

 Baseline 37.9 ± 3.2 37.4 ± 2.3

 Recovery 44.3 ± 3.9 42.8 ± 2.6

PaO2, mm Hg

 Baseline 170.6 ± 6.1 163.8 ± 5.6

 Recovery 287.4 ± 8.4 269.0 ± 6.7

Base Excess, mEq/L

 Baseline -5.1 ± 1.2 -4.6 ± 0.5

 Recovery -14.3 ± 1.8 -15.9 ± 0.6

Sodium, mmol/L

 Baseline 146.0 ± 1.4 147.6 ± 1.3

 Recovery 146.4 ± 2.3 147.6 ± 1.3

Potassium, mmol/L

 Baseline 4.1 ± 0.1 4.1 ± 0.1

 Recovery 4.6 ± 0.2 4.6 ± 0.2

Glucose, mg/dL

 Baseline 176 ± 11 174 ± 4

 Recovery 204 ± 11 208 ± 10

No significant difference between experimental groups

CA= Cardiac Arrest; ROSC=Return of Spontaneous Circulation
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