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Demographic inference under a spatially continuous
coalescent model

TA Joseph1, MJ Hickerson1,2,3 and DF Alvarado-Serrano1

In contrast with the classical population genetics theory that models population structure as discrete panmictic units connected
by migration, many populations exhibit heterogeneous spatial gradients in population connectivity across semi-continuous
habitats. The historical dynamics of such spatially structured populations can be captured by a spatially explicit coalescent
model recently proposed by Etheridge (2008) and Barton et al. (2010a, b) and whereby allelic lineages are distributed in a two-
dimensional spatial continuum and move within this continuum based on extinction and coalescent events. Though theoretically
rigorous, this model, which we here refer to as the continuum model, has not yet been implemented for demographic inference.
To this end, here we introduce and demonstrate a statistical pipeline that couples the coalescent simulator of Kelleher et al.
(2014) that simulates genealogies under the continuum model, with an approximate Bayesian computation (ABC) framework for
parameter estimation of neighborhood size (that is, the number of locally breeding individuals) and dispersal ability (that is, the
distance an offspring can travel within a generation). Using empirically informed simulations and simulation-based ABC cross-
validation, we first show that neighborhood size can be accurately estimated. We then apply our pipeline to the South African
endemic shrub species Berkheya cuneata to use the resulting estimates of dispersal ability and neighborhood size to infer the
average population density of the species. More generally, we show that spatially explicit coalescent models can be successfully
integrated into model-based demographic inference.
Heredity (2016) 117, 94–99; doi:10.1038/hdy.2016.28; published online 27 April 2016

INTRODUCTION

Many populations of organisms are naturally spatially structured. For
instance, populations with continuous ranges but limited dispersal
ability exhibit marked spatial structure (Slatkin, 1985), whereas
geographic features such as rivers or mountain ranges may act as
barriers leading to disjoint patterns of population genetic structure
that may lead to speciation (Avise et al., 1987; Gompert et al., 2014).
However, population genetics studies traditionally treat geographically
separated populations as genetically panmictic units, oftentimes where
this assumption does not match the ecological attributes of the taxa
under study. Nonetheless, there has long been interest in using spatial
models for understanding processes underlying geographical variation
in genetic polymorphisms (Wright, 1946; Kimura and Weiss, 1964).
Spatial genetic models that investigate spatial and temporal dynamics
remain an active area of research in population genetics (see for
example Pieschl et al., 2013) and are becoming increasingly useful with
the widespread availability of genome-scale data and computational
power to generate more complex and realistic models that better
reflect biological reality (Gompert et al., 2014).
Traditionally, population structure has been modeled by dividing a

population into discrete subpopulations or demes that can be
interconnected via migration. Many variations of this type of model
exist, including the finite island model (Wright, 1943) and one- and
two-dimensional stepping stone models (Kimura and Weiss, 1964),

that differ in the assumption of how migration between demes occurs.
Backward-in-time discrete population structure can be modeled using
the structured coalescent that comes in several forms (Tellier and
Lemaire, 2014). Such discrete models of population structure have
been successfully incorporated into inferential methods such as
SPLATCHE (Currat et al., 2004) that explore complex demographic
scenarios. Yet, despite these significant advances since Wright’s key-
stone work, explicitly incorporating spatial structure into genetic
models remains a challenging task because a key feature of the
standard coalescent (Kingman, 1982), lineage exchangeability, does
not hold under the structured coalescent (Wakeley and Aliacar, 2001).
This is because the history of samples under a spatial framework
depends not only on the number of lineages that exist at any point in
time but also on their location (Wakeley and Aliacar, 2001).
Alternatively, population structure has been modeled under the

metapopulation paradigm, where demes undergo local extinction and
recolonization. The metapopulation paradigm was extended to
population genetics by Slatkin (1977) and later generalized by
Whitlock and McCauley (1990). In the latter model, a metapopulation
is divided into D equally sized demes with generations being discrete
and non-overlapping. At the start of a generation, a fraction of the
D demes go extinct, and are recolonized by either a migrant pool
(where gametes can be from different demes) or a propagule pool
(where all gametes are guaranteed to be from the same deme). Under
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this model, Whitlock and McCauley (1990) derived an analytical
formula for FST, and showed that FST is directly proportional to the
number of demes recolonized by the migrant pool.
Later, in a seminal paper, Wakeley and Aliacar (2001) showed that

genealogical processes in a metapopulation commonly involve a
separation of timescales. This backward-in-time process includes
two phases: a ‘scattering phase’, where each sampled deme contains
multiple sampled lineages that either migrate between demes or
coalesce, and a ‘collecting phase’, essentially the Kingman coalescent
rescaled to a different effective size according to the number of demes.
Using simulations these authors derived expectations for the number
of segregating sites and the distribution of the site frequency spectrum
under this model for different migration, extinction and recoloniza-
tion rates. Later, Wakeley (2004) showed that gene genealogies from
the Whitlock and McCauley (1990) model have the same structure as
Wakeley and Aliacar (2001) when the number of demes is large, and
hence that simulated gene genealogies under the Wakeley and Aliacar
(2001) model can be used for historical inference in systems that meet
the assumptions of Whitlock and McCauley (1990). Indeed, similar
models based on the work of Slatkin (1977) have also been used to
quantify genetic differentiation and to analyze the consequences of
population turnover on effective population size (see, for example,
Wade and McCauley, 1988).
In the absence of better analytical alternatives, metapopulation and

island models rely on defining deme-specific migration rates to
capture explicit spatial structure. However, deme-specific migration
rates are limiting in that they require a large number of parameters to
be defined, and do not allow for changes in spatial distribution of
existing demes through time. In addition, if migration rates between
demes are uneven, fixing population size introduces the problem of
conservative migration (Wakeley, 2009), where the number of lineages
migrating out of a deme is not necessarily equal to the number of
lineages migrating into it.
More recently, Etheridge (2008) and Barton et al. (2010a, b)

provided an analytical solution to the spatially explicit coalescent by
developing a model of extinction and colonization in a spatial
continuum. Here denoted as the continuum model, this model is
similar to metapopulation models in that it uses patterns of extinction
and recolonization to create a coalescent that captures spatial patterns.
However, in contrast to strict metapopulation models, the continuum
model allows individuals to be freely distributed in continuous space
instead of grouped in spatially fixed demes. In doing so, the effective
population size of local demes and migration rates between demes are
no longer of concern. In addition, the continuum solves several long-
standing problems with coalescent models in continuous space.
In particular, defining a coalescent model with a uniformly dense
population where lineages move in two-dimensional continuous
random walk and coalesce when sufficiently close has been shown
to be inconsistent (Barton et al., 2010a). This is because lineages that
move independent of population density violate the assumption of
uniform density (Barton et al., 2010a).
The genealogical process for the continuum model has been well

characterized, and therefore could be useful for inference based on
spatially explicit genealogical reconstruction of genetic data. Specifi-
cally, this model has the capability of detecting spatial effects on
demographic histories, and in so doing, more accurately elucidate
realistic demographic processes. However, the empirical utility of the
continuum model for demographic inference has not been explored,
and hence its value for inference of real biological populations remains
uncertain. To address this issue, we incorporate the spatial continuum
model into an approximate Bayesian computation (ABC) framework

for parameter estimation using genomic data. We choose to estimate
two population genetic parameters: neighborhood size (NS) and
dispersal radius (R).
Neighborhood size (Wright, 1946) was originally introduced as a

continuous space analog to effective population size in Wright’s
isolation-by-distance model (Charlesworth and Charlesworth, 2010).
In this model individuals are assumed to be uniformly distributed
along a line or plane. The birthplace of an individual is typically
assumed to be a normal random variable with the center of the
distribution at the parent’s point of origin. In this way, birth events
take on the characteristics of a random walk. This leads to a natural
way to define Ns. In the Kingman coalescent the rate of coalescence for
a pair of lineages is 1

2N, where N is the effective population size.
Therefore, it is reasonable to define 1

2Ns
as the rate of coalescence under

isolation-by-distance model. A calculation shows that in two dimen-
sions NS= 4πs2D, where D is the effective population density and σ
the s.d. of the random variable above. From here it can be seen that NS

is the number of individuals within a circle of radius 2σ (Charlesworth
and Charlesworth, 2010). The s.d., σ, is referred to as the dispersal
rate. Additional theoretical results show that small neighborhood sizes
correspond to high genetic differentiation between localities, whereas
large neighborhood sizes of approximately ⩾ 1000 individuals corre-
spond to lower genetic differentiation between localities (Charlesworth
and Charlesworth, 2010). Whereas this definition of neighborhood
size is not without the difficulties mentioned above, Barton et al.
(2013) provide a new definition of Ns for the continuum model that
can be similarly used to infer spatial structure.
In the continuum model, dispersal radius has a slightly different

interpretation than the dispersal rate of the isolation-by-distance
model. Dispersal radius in the former model, denoted R, refers to
the maximal distance an offspring is born away from its parent’s place
of origin. Hence, the dispersal radius is an upper bound for dispersal,
whereas in the isolation-by-distance model, dispersal rate is not.
To demonstrate the utility of the continuum model for demo-

graphic inference, we simulate gene genealogies using the Discsim
simulator (Kelleher et al., 2014). We then use the retained gene
genealogies to generate corresponding DNA sequences that could be
compressed into an array of classical summary statistics that have no
information about space or deme identity (Alvarado-Serrano and
Hickerson, 2015). Subsequently, we use this simulation pipeline to
build an ABC framework for the estimation of the two parameters of
interest: neighborhood size and dispersal radius. Finally, we apply our
method to a shrub species endemic to the Little Karoo, Berkheya
cuneata, to infer neighborhood size and dispersal radius of the
population.

MATERIALS AND METHODS
To expand the capability of the continuum model for inferring relevant
demographic parameters that determine population structure under a spatial
coalescent framework, we coupled the spatial coalescent continuum model—
simulated using the Python library Discsim (Kelleher et al., 2014) and its
software dependency Extinction/Recolonization Simulator (ERCS, Kelleher
et al., 2013)—with a DNA sequence simulator, Seq-Gen (Rambaut and
Grassly, 1997) and an ABC analysis routine (Csilléry et al., 2012). The accuracy
and utility of this procedure was first tested through simulation-based cross-
validation (Bertorelle et al., 2010) and then through an empirical
implementation.
Although several variations on the continuum process exist, we focus here on

the ‘disc model’, for which the corresponding coalescent model is implemented
in Discsim. Briefly, a population of D individuals is distributed uniformly upon
a torus of side length L. Movement and reproduction are captured through
disc-shaped events that occur throughout the sample area. Forward in time,
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individuals within the radius of an event are removed with probability u, and
replaced by a Poisson-based number of offspring that are placed within the
affected area. Recombination between adjacent loci occurs with a fixed
probability (r). Events occur at random locations with a specified event radius,
R, and at an exponentially distributed rate λ. Individuals are assumed to remain
stationary throughout their adult lifetime, as would be the case with plants and
many marine invertebrates.
Following the convention proposed by Kelleher et al. (2016), we define

generation time as the expected time until an individual is removed by an event.
Thus, 1 generation is equal to L2

lupR2 units of simulation time (Kelleher et al.,
2014, 2016). For this reason, the event radius can be equated with a ‘dispersal
radius’. Dispersal radius refers to a lineage’s ability to move away from their
point of origin between generations (that is, the maximal distance an individual
born in an event is placed away from its parents).
Backward in time, the coalescent process for a sample of n individuals

proceeds event by event (Kelleher et al., 2014) as the ancestors of each individual
are traced through time. Events occur at a rate λ, and land at uniform random
locations within the landscape. A single event may or may not affect an
individual, depending on how close the event center is to individual lineages and
the removal probability. If an individual is removed, it is replaced by its parents

at uniform random locations within the radius of the event. A coalescent event
occurs when two or more samples are removed by the same event. Events where
only a single individual is removed represent between-generation movement
within the landscape. If a population with two parents is simulated, loci are
distributed to parents based on the recombination rate. In some cases this means
all loci descend from a single parent (that is, no recombination occurs), and in
others this means loci descend from two parents (that is, recombination occurs).
In this model the compound parameter neighborhood size (Wright, 1946),

here denoted NS (denoted N in Barton et al., 2013; Kelleher et al., 2014), is
directly related to the removal rate u. For populations with v parents, NS is
defined to be NS ¼ v

u (Barton et al., 2013). Going backward in time, the number
of parents (v) determines how many ancestors replace individuals removed by
an event, and therefore determines the maximum number of ancestors that loci
can be distributed to. Thus, neighborhood size refers to the number of
individuals within the area of an event of radius R. The resulting gene genealogy
for each simulated locus is retained and can be used for further analyses.
To test the ability of our pipeline to estimate NS, we defined a torus with a

side length (L) of 100 arbitrary units. We then placed 8 individuals at fixed
locations within the torus (Figure 1). Each sample had 10 freely recombining
loci. The resulting gene genealogies were then used to simulate DNA sequences
for ten 1000-bp loci using the program Seq-Gen (Rambaut and Grassly, 1997).
DNA evolved according to the Hasegawa, Kishino and Yano (HKY; Hasegawa
et al., 1985) mutation model, with parameters for the mutation model (Table 1)
selected from Posada and Crandall (2001) and an assumed mutation rate of
1.1 × 10− 8 mutations per generation (Roach et al., 2010). Variation in the
resulting sequences was summarized by six classical population-level summary
statistics (Supplementary Table S1) calculated using the program Arlequin
(Excoffier et al., 2005). We ran 100 000 replicates to test the pipeline’s ability to
estimate NS (Table 1). Simulations took ∼ 2 days on a 12-core computer. In
these simulations, event radius, R, was fixed to 2.0 space units, and event rate, λ,
was fixed to 1.0 units of simulation time. For each replicate, NS was randomly
drawn from a discrete uniform distribution between 3 and 200 individuals
within the area of an event.
Finally, we coupled the genetic data simulated under our models (Table 1) into

an ABC framework (Csilléry et al., 2012) to formally estimate NS. We assessed
parameter estimation performance based on ABC cross-validations. We ran 100
cross-validation replicates with a 5% tolerance and a local-linear regression
algorithm (Beaumont et al., 2002) using the ‘leave-one-out’ procedure imple-
mented in the cv4abc() function in the ‘abc’ R package (Csilléry et al., 2012).
Performance of the cross-validation replicates was assessed using the overall
cross-validation prediction error that corresponds to the sum of the square
difference between the true and estimated parameter values, divided by the
variance of the true parameter times the number of cross-validation replicates
(Csilléry et al., 2012). All ABC calculations were carried out in R v. 3.0.2 (R
Development Core Team, 2013) using the package ‘abc’ (Csilléry et al., 2012).

Empirical application
The Little Karoo is an approximately 290 km wide by 60 km long valley that is
part of the Greater Cape Floristic Region in South Africa. It is located between
the Langeberg and Outeniqua mountains to the south and the Witteberg and
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Figure 1 Sample placement within the landscape. Starting sample
coordinates of 8 individuals within a torus with side length 100. These
sample coordinates were used to assess the ability to estimate
neighborhood size.

Table 1 Mutation model and simulation parameters

Mutation model Mutation rate % A % C % G % T Substitution ratio

Mutation model parameters
HKY 1.1×10−8 35 15 25 25 Tr/Tv=2

No. of samples No. of replicates Torus side length No. of loci No. of parents r λ R NS

Simulation parameters
8 100 000 100 10 2 0.5 1.0 2.0 U (3, 200)

33 100 472 200 2 2 0.5 1.0 U (1.0, 10.0) U (10, 1000)

Top: Mutation model parameters used to simulate DNA sequences with Seq-Gen. Bottom: Simulation parameters used to simulate genealogies in Discsim. The first set of parameters were used to
estimate neighborhood size (NS). The second set of parameters were used to estimate radius (R) and NS for Berkheya cuneata.
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Swartberg mountains to the north (see Figure 1 in Potts et al., 2013). Berkheya
cuneata, of the family Asteraceae, is a small perennial shrub endemic to this
region. B. cuneata is insect pollinated, wind-dispersed and widely distributed
within the basin (Potts et al., 2013). The distribution and endemism of B.
cuneata make it a well-suited study system for the use of the continuum model.
For our analysis we use the data generated by Potts et al. (2013) who collected
samples of 47 individuals across 34 sites in the Little Karoo together with GPS
coordinates for all samples. From these samples, Potts et al. (2013) extracted
genomic DNA and sequenced two chloroplast DNA loci, trnQ(UUG)-5rps16 and
psbD-trnT(GGU) (Shaw et al., 2007), as well as one nuclear DNA locus from the
ITS region of the 18S-26S cistron.
Using our inferential approach, we estimated NS and R of B. cuneata, and

thus were able to roughly approximate the local population density of
B. cuneata. For this analysis, the length of the side of the torus was defined
to be 200, where 1 unit simulation distance was equal to 1 km. Thus, a side
length of 200 simulation units corresponds to 200 km, the approximate
range of B. cuneata (Potts et al., 2013). Nuclear loci were phased using the
program fastPhase (Scheet and Stephens, 2006). Because of computational
limits only a single individual per sampling location was used. A total of 33
samples were placed at locations in the simulation area corresponding to
their GPS coordinates (one sampling location was removed because of lack
of nuclear data). Because relatively little is known about the full dispersal
range of B. cuneata, dispersal events had a variable radius (R) between 1.0

and 10.0 km. A variable removal rate equivalent to NS between 10 and 1000
individuals was used. The event rate (λ) was fixed to 1.0 unit of simulation
time. Simulations were run using two parents and two loci, treating all
chloroplast DNA loci as a single haploid unit to match expected patterns of
inheritance. A total of 100 472 simulations were run over 36 days across
two 10-core computers. The mutation rate was set to 1.25 × 10 − 8 mutations
per generation for chloroplast DNA and 3.475 × 10 − 8 mutations per
generation for nuclear DNA with a 5-year generation time (Wolfe et al.,
1987). Summary statistics for the B. cuneata data set were calculated with
Arlequin (Excoffier et al., 2005), and used to estimate NS following an ABC
procedure implemented in the R package abc() under the 5% tolerance and
the standard rejection algorithm (Tavare et al., 1997). We choose the
rejection algorithm, rather than local linear regression, because the local
linear regression algorithm transformed all inferred parameter values
outside of the prior distribution (Wegmann et al., 2010). To test
the robustness of our inference, we simulated an additional 5000 replicates
drawing from the posterior distribution of inferred parameters,
and performed a graphical check using principal component analysis
(Chan et al., 2014).

RESULTS

Estimator performance
Our ABC pipeline showed a strong ability to estimate the NS

parameter. Analysis of 100 cross-validation replicates showed a strong
association between true NS, the value used to run the simulation, and
the NS estimated by our pipeline (Figure 2). The cross-validation
prediction error, a measurement that quantifies the difference between
the true and estimated parameter values, was 0.13. Accordingly, the
R2 of a regression between the true and estimated parameters for N
was 0.87 (P-value o2.2× 10− 16).

Empirical application
ABC analysis of the B. cuneata samples yielded estimates of median
R of 7.33 (95% highest posterior density interval (HPDI) 2.44–9.86;
Figure 3) and a median NS of 502.50 (95% HPDI 56.03–962.00;
Figure 3). Density plots of the prior parameter values for R and NS

showed uniform coverage of the prior parameter space, whereas
retained posterior simulations showed distinct peaks in parameter
values (Figure 3). This is a strong indication of our summary statistics
power to differentiate between sets of parameter values, and supports
the quality of our inference.
To test the goodness of fit of our model and investigate whether our

model can generate the empirically observed data, we performed a
principal component analysis on the summary statistics of 5000
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Figure 2 Performance of ABC parameter estimation across 100 cross-
validation replicates. ABC performance for estimating neighborhood size
(NS). The x axis is the parameter value used to run the simulation; the y axis
is the corresponding parameter estimated by ABC. The diagonal line is a 1:1
line. Cross-validation prediction error for these data is 0.13.
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Figure 3 Posterior density plots of estimated parameters. Posterior density plots of retained simulations for the B. cuneata data set obtained using a rejection
algorithm with a tolerance of 5%. The dotted line is the prior density. The solid line is the posterior density. Vertical lines indicate the median parameter
value. (a) Posterior parameter density retained for the event radius, R. (b) Posterior parameter density retained for neighborhood size, NS.
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posterior replicates. Parameters of the posterior replicates were drawn
from the inferred posterior distribution of our pipeline. A plot of the
first two principal components (Figure 4), which together explained
over 99% of the variance within this data set, along with the principal
component-projected observed data set, showed that the observed data
set closely matched that of the posterior replicates, and hence our
model does fit the observed data.

DISCUSSION

Our results indicate that we can successfully estimate NS with a high
degree of accuracy. Ability to estimate neighborhood size is important
for several reasons. First, our tool can test hypotheses of spatial
structure as NS directly relates to this quantity. Second, neighborhood
size is a proxy for two biological meaningful parameters, population
density and population size. Because neighborhood size in the
continuum is the number of individuals within the area of an event,
this parameter, along with event radius, is a proxy for population
density. As expected, a large neighborhood size corresponds to dense
populations. Although nontrivial in practice, if the distribution of a
population is well known, density gives an approximation of the total
population size within this predefined area. In our simplified example,
the event radius, and thus dispersal radius, was fixed. Although this
may seem like an oversimplification in a model intended to be a proof
of concept, fixing R is not unreasonable if there is information about
the dispersal ability of the population of interest. For instance, the
event radius could be set to the maximum dispersal potential of an
individual.
Another important advance that comes out of this study is a new

way to accommodate space into historical population genetic inference
while relaxing the necessity to assign individual genotypes into demes.
Ideally, one could extend this pipeline to incorporate environmental
and spatial heterogeneity in habitat suitability over time and space
while accommodating historical cycles in demographic parameters
(Alvarado-Serrano and Hickerson, 2015), analogous to the way
SPLATCHE (Currat et al., 2004) incorporates environmental hetero-
geneity. In this way more complex scenarios that better capture the
natural complexity of biological systems could be modeled. Such

increased complexity may introduce new theoretical difficulties,
namely, theoretical results become difficult to generalize or even to
derive, as the model gets closer to any specific empirical system.
Such cases could however be easily explored using our proposed
simulation pipeline and modifications to the Discsim package. Hence,
our coupled ABC pipeline is expected to provide a valuable tool
for implementing model-based demographic inference of spatially
structured populations under these novel coalescent models.

Empirical application
Our results showed that B. cuneata in the Little Karoo have the ability
to disperse a median of 7.3 (95% HPDI 2.4–9.8 km), and have a
median estimated neighborhood size of 502.50 (95% HPDI 56.03–
962.00) individuals within their dispersal range. Although the point
estimates would lead us to perhaps expect to observe ∼ 3.0 individuals
per km2 on average, the densities are likely to be substantially higher
based on empirical evidence. Although B. cuneata is common in Little
Karoo, and in some cases hundreds of individuals can be found within
a hectare (A Potts, personal correspondence), our estimate of
population density is dependent on the effective population size of
breeding individuals rather than actual sizes, and hence the effective
densities of B. cuneata could indeed be much lower than the observed
number of individuals. In addition, the continuum model assumes
that the population is uniformly distributed, but B. cuneata has
recently experienced a range contraction (Potts et al., 2013), and
because of geographic barriers it has a patchy distribution. Therefore,
our estimates are best interpreted as an average across the entire region
including unoccupied areas.
Investigation of the posterior density of the dispersal radius

R showed a tighter distribution when compared with the NS,
indicating a better ability of our pipeline to estimate this parameter
given the observed data. Given the empirical data, the HPDI for
R covered 82% of the prior, whereas the HPDI for NS covered 92% of
the prior. Inspection of the principal component analysis indicated
that our observed data set fell close to, if not within, the range of data
sets simulated from the posterior predictive distribution, thereby
indicating that our inferential model can generate data close to the
observed data. An increased number of simulations and using wider
priors would presumably allow for better resolution of posterior
densities, as the retained simulations would more closely match the
observed data set.
Because of computational limits, it is not efficient to simulate

sufficiently large numbers of samples from priors that span overly
large NS values as the waiting times to coalescence in space increases
nonlinearly. However, several alternatives exist. Discsim allows for
simulations in either one- or two-dimensional space. Simulations in
one dimension take place along a circle, rather than a torus, and are
much more computationally efficient. This allows efficient modeling
of continuous populations with large densities, but does lose some
spatial information. In addition, new methods such as ‘approximate
approximate Bayesian computation’ (Buzbas and Rosenberg, 2015) are
potentially able to estimate the posterior distributions inferred by ABC
methods with substantially fewer simulations and when this novel
approach becomes sufficiently developed may prove to be ideally
suited to make inference under the continuum model.
Barton et al. (2013) outlines an analytical approach for estimating

NS based on observed recombination events along long sequence
blocks, and use this to date coalescent events. They show that for large
NS this approach works well, but estimation is more difficult over
smaller NS. This is because NS partially determines the local rate of
coalescence. If lineages coalesce too quickly, recombination events go
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from 5000 replicates simulated from parameter values drawn from the
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unobserved because there are no mutations to distinguish them. Our
method here demonstrates that if a sufficient number of individuals
are sampled we can accurately infer smaller NS, and that it is
computationally tractable to do so.
Although here we provide the first inferential application under

the spatial continuum, current work by Guindon et al. (2016) involves
an alternative method to estimate similar parameters under the
continuum model using an MCMC approach without the torus
assumption. These novel approaches are a promising indication of
the utility of the continuum model for understanding the spatial
dynamics of demographic history underlying population genetic
structuring.
Genetic simulation methods that incorporate two-dimensional space

are inherently computationally expensive. Our statistical pipeline is a
promising first step in overcoming these difficulties, and our results
give a strong indication that this will soon be possible. Ideal
applications of our method are on semi-continuous as well as spatially
and temporally heterogeneous populations where the expected density
is low; under these assumptions we expect the method to perform well.
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