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SUMMARY

Cell walls are metabolically active components of plant cells. They contain diverse enzymes, including trans-

glycanases (endotransglycosylases), enzymes that ‘cut and paste’ certain structural polysaccharide mole-

cules and thus potentially remodel the wall during growth and development. Known transglycanase

activities modify several cell-wall polysaccharides (xyloglucan, mannans, mixed-linkage b-glucan and

xylans); however, no transglycanases were known to act on cellulose, the principal polysaccharide of bio-

mass. We now report the discovery and characterization of hetero-trans-b-glucanase (HTG), a transgly-

canase that targets cellulose, in horsetails (Equisetum spp., an early-diverging genus of monilophytes). HTG

is also remarkable in predominantly catalysing hetero-transglycosylation: its preferred donor substrates (cel-

lulose or mixed-linkage b-glucan) differ qualitatively from its acceptor substrate (xyloglucan). HTG thus gen-

erates stable cellulose–xyloglucan and mixed-linkage b-glucan–xyloglucan covalent bonds, and may

therefore strengthen ageing Equisetum tissues by inter-linking different structural polysaccharides of the

cell wall. 3D modelling suggests that only three key amino acid substitutions (Trp ? Pro, Gly ? Ser and Arg

? Leu) are responsible for the evolution of HTG’s unique specificity from the better-known xyloglucan-act-

ing homo-transglycanases (xyloglucan endotransglucosylase/hydrolases; XTH). Among land plants, HTG

appears to be confined to Equisetum, but its target polysaccharides are widespread, potentially offering

opportunities for enhancing crop mechanical properties, such as wind resistance. In addition, by linking cel-

lulose to xyloglucan fragments previously tagged with compounds such as dyes or indicators, HTG may be

useful biotechnologically for manufacturing stably functionalized celluloses, thereby potentially offering a

commercially valuable ‘green’ technology for industrially manipulating biomass.

Keywords: plant cell wall, hemicelluloses, cellulose, transglycosylation, hetero-transglycanase, enzyme evo-

lution, Equisetum.

INTRODUCTION

The morphology, size and strength of plant cells, and ulti-

mately of whole plants, are determined by the cell wall,

which is a complex fabric (Albersheim et al., 2011), some of

whose structural polysaccharides, including xyloglucan and

mixed-linkage (1?3, 1?4)-b-D-glucan (MLG), are re-mod-

elled in vivo by enzymes such as hydrolases, transgly-

canases and transglycosidases (Albersheim et al., 2011;

Frankov�a and Fry, 2013). Such remodelling is likely to adjust

the biophysical properties of the cell wall, and thus the

growth and strength of the plant. Known transglycanase

activities include xyloglucan endotransglucosylase (XET)

(Figure 1a), which grafts part of one xyloglucan chain onto

another (Fry et al., 1992, 2008a; Nishitani and Tominaga,

1992; Rose et al., 2002; Ekl€of and Brumer, 2010; Stratilov�a

et al., 2010; Maris et al., 2011), trans-b-mannanase

(Schr€oder et al., 2009) and trans-b-xylanase (Frankov�a

and Fry, 2011; Derba-Maceluch et al., 2014). Recently, a

unique hetero-transglycanase activity, MLG:xyloglucan
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endotransglucosylase (MXE), was discovered (Fry et al.,

2008a); this enzyme grafts a segment of MLG onto the non-

reducing terminus of a qualitatively different polysaccharide,

xyloglucan (Figure 1c). Among land plants, appreciable

extractable MXE activity (Fry et al., 2008a) and in-vivo MXE

action (Mohler et al., 2013) appear to be confined to Equise-

tum (horsetails).

Equisetum is a remarkable genus of ‘ferns’ (sensu lato;

monilophytes) that diverged from its closest living relatives

in the Upper Devonian period, more than 370 million years

ago (Pryer et al., 2001; Knie et al., 2015). It is probably the

most evolutionarily isolated of all land-plant genera. Since

its divergence from other land plants, it has acquired sev-

eral unusual biochemical features, including the polysac-

charide MLG (Fry et al., 2008b; Sørensen et al., 2008; Xue

and Fry, 2012), MXE activity (Fry et al., 2008a; Mohler

et al., 2013), and a high silica content (Kido et al., 2015).

Xyloglucan and MLG are hemicelluloses (Figure 1a,c), a

proportion of which are thought to coat and/or penetrate

the cellulosic microfibrils, and probably to tether adjacent

microfibrils in plant cell walls (Albersheim et al., 2011; Park

and Cosgrove, 2015). MLG is known to be abundant in

many members of the Poales (grasses, cereals, reeds etc.;

Smith and Harris, 1999) and Equisetum (Fry et al., 2008b;

Sørensen et al., 2008), but not other land plants (Xue and

Fry, 2012). [Some non-Equisetum ferns and Selaginella

have been reported to possess an MLG cross-reacting epi-

tope (Harholt et al., 2012; Leroux et al., 2015). However,

the monoclonal antibody BS-400-3 (formerly named BG1)

used is not completely specific for MLG: it also weakly

detects cellopentaose (Meikle et al., 1994). The reported

labelling of pteridophyte specimens with this antibody

may therefore indicate the presence of either MLG or some

other polysaccharide with a run of (1?4)-b-glucose resi-

dues. Neither Leroux et al. (2015) nor Harholt et al. (2012)

provided chemical evidence for MLG. Thus further work is

required before the presence of MLG in non-Equisetum

pteridophytes is proven]. Xyloglucan and cellulose, in

Figure 1. Three transglycanase activities of native Equisetum HTG.

(a–c) Three reactions catalysed by HTG, with labelled xyloglucan heptasaccharide (XXXGol) as acceptor substrate (for explanation of XGO nomenclature, see

Fry et al., 1993).

(d–f) Dot-blot assays. Donor substrates: PP, plain paper (cellulose); AP, alkali-washed paper; XP, xyloglucan-impregnated paper; MP, MLG-impregnated paper.

Acceptor substrate: XXXG–sulforhodamine. Enzymes blotted comprise a dilution series (100, 50, 25, 12.5% v/v) of (NH4)2SO4-precipitated proteins from a grass

(Holcus lanatus) or Equisetum (E. fluviatile and E. arvense). Polymeric reaction products were documented after sequential washing (d, e) and enzymolysis (f).
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contrast to MLG, are ubiquitous components of land plants

(Albersheim et al., 2011).

Polysaccharide-modifying enzymes may be valuable for

manipulating cell-wall architecture. Transglycanases cleave

one polysaccharide chain (the donor substrate) and then

graft a length thereof onto another poly- or oligosaccha-

ride (the acceptor substrate) (Figure 1a–c) (Frankov�a and

Fry, 2013). XET (Figure 1a) is termed a homo-transgly-

canase because the donor and acceptor are both xyloglu-

can. Plant enzymes possessing predominantly XET activity

(Figure 1a) and/or the corresponding endohydrolase activ-

ity are termed XTHs (xyloglucan endotransglucosylase/hy-

drolases) (Rose et al., 2002). Remarkably, the Equisetum

enzyme exhibits MXE activity (Figure 1c) as its major activ-

ity, and is thus a predominant hetero-transglycanase

(donor MLG; acceptor xyloglucan) (Fry et al., 2008a; Moh-

ler et al., 2013). All other known plant hetero-transgly-

canase activities are considered to be side reactions of

predominant homo-transglycanases (Hrmova et al., 2007;

Stratilov�a et al., 2010), although laminarin:chitin hetero-

transglycanase activity has been observed in the yeast Sac-

charomyces cerevisiae (Cabib et al., 2008).

We have purified and characterized the protein responsi-

ble for MXE, an activity that has been demonstrated previ-

ously only in total Equisetum plant extracts (Fry et al.,

2008a). We identified the corresponding gene and showed

that the encoded protein acts not only on MLG and

xyloglucan but also, surprisingly, on cellulose, the world’s

most abundant organic material (Teeri et al., 2007), thus

exhibiting cellulose:xyloglucan endotransglucosylase

(CXE) activity (Figure 1b). This promiscuity led us to re-

name the protein hetero-trans-b-glucanase (HTG). The

potential biological, evolutionary and biotechnological sig-

nificance of HTG is discussed.

RESULTS

CXE activity of extracted Equisetum protein

Equisetum extracts exhibited a high MXE:XET ratio (Fig-

ure S1c). Unexpectedly, they also possessed an enzyme

activity that we had not previously observed. We refer to

this activity as CXE (Figure 1b), using cellulose as the

donor substrate and labelled xyloglucan oligosaccharides

(XGOs, e.g. the heptasaccharide XXXGol), fluorescently

tagged with sulforhodamine or radioactively tagged with
3H, as the acceptor substrate, creating cellulose–XGO

bonds. Previous work reporting CXE-like activity used sol-

uble derivatives [hydroxyethylcellulose and cellulose sul-

fate; the latter is produced by esterifying cellulose with

H2SO4 (Fehling, 1845; Whistler and Spencer, 1963) and is

sometimes referred to as ‘H2SO4-swollen cellulose’] rather

than cellulose itself (Hrmova et al., 2007; Kos�ık et al.,

2010). In contrast, the principal donor substrate tested by

us was Whatman filter paper, which comprises highly puri-

fied, insoluble cotton cellulose containing only traces of

xylans, mannans and arabinogalactans.

Clear evidence for CXE activity in Equisetum extracts

(E. fluviatile and E. arvense) is shown in Figure 1(e) (rows

Ef and Ea), on plain paper or paper pre-treated with alkali

(‘PP’ and ‘AP’), on both of which these extracts produced

an alkali-stable fluorescent spot of cellulose–XGO–sul-
forhodamine. The resistance of the fluorescent product to

6 M NaOH indicates covalent cellulose–XGO bonding.

Attachment of trace non-cellulosic polysaccharides of

paper to the XGO would have yielded alkali-soluble pro-

ducts such as xyloglucan–XGO. A comparable extract of an

angiosperm, the grass Holcus lanatus, exhibited negligible

CXE activity (row Hl), as did pure buffer (row B) (Fig-

ure 1e).

The grass extract was included as a control, and was

expected to contain XET but not MXE or CXE activity. In

accordance with this, the grass extract generated a fluores-

cent polymer (xyloglucan–XGO–sulforhodamine) only if

the paper had been impregnated with xyloglucan (Fig-

ure 1d, ‘XP’ paper). The identity of this ethanol-insoluble

fluorescent polymer as xyloglucan–XGO–sulforhodamine

is confirmed by its solubilization on washing in 6 M NaOH

(Figure 1e, ‘XP’ paper). The absence of MXE activity in the

grass extract is confirmed by the lack of an MLG-depen-

dent fluorescent product (Figure 1d, compare ’MP’ with

‘PP’ and ‘AP’).

The Equisetum extracts produced fluorescent polymers

on all four papers (Figure 1d). Based on this result alone, it

is not possible to discriminate between CXE, MXE and XET

activities. However, washing the papers in 6 M NaOH

removed the MXE and XET products (MLG–XGO–sulforho-
damine and xyloglucan–XGO–sulforhodamine respec-

tively). Thus the fluorescence in Figure 1(d) minus that in

Figure 1(e) equates to the MXE or XET product, and fluo-

rescence in Figure 1(e) represents the CXE product. On this

basis, we conclude that the Equisetum extracts possess all

three activities, and, judged by the fluorescence, CXE activ-

ity exceeded XET and MXE activity. Comparison of Fig-

ure 1(d) with Figure 1(e) also indicated that the xyloglucan

or MLG present in the paper partially competes with cellu-

lose for utilization by CXE activity, suggesting that MXE,

XET and CXE activities are all attributable to a single HTG

protein. A proportion of the Equisetum CXE product even

resisted cellulase treatment (Figure 1f), implying that the

cellulose–XGO was integrated within the paper fibres.

Filter paper was somewhat more effective as a donor

substrate if pre-treated with alkali (Figure 1; ‘AP’), which

converts cellulose I to the anti-parallel cellulose II

allomorph (Kroon-Batenburg and Kroon, 1997), and simul-

taneously removes contaminating non-cellulosic polysac-

charides.

Further evidence of the cellulose–XGO nature of the

reaction product was provided by determination of its
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solubility properties (Table S1). The radioactively labelled

CXE product (cellulose–[3H]XGO) readily dissolved in LiCl/

dimethylacetamide, a cellulose solvent, and then re-precip-

itated when diluted into 6 M NaOH (an excellent solvent for

hemicelluloses but not cellulose), confirming that the

material obtained was not a hemicellulose–[3H]XGO con-

taminant. Our approach clearly demonstrates covalent

attachment of cellulose to an XGO. As the (labelled) reduc-

ing terminus of the oligosaccharide remains present, the

only plausible explanation is the reaction shown in Fig-

ure 1(b).

Purification and partial characterization of native

Equisetum HTG

All three activities (MXE, XET, CXE) approximately co-mi-

grated during native gel electrophoresis (Figure S1d), sup-

porting the idea of a single promiscuous HTG protein. The

slight mis-match between the three bands was probably

due to the difficulty of manually aligning three separate

strips of gel on the different test papers.

We further characterized the native HTG protein from

Equisetum by several complementary approaches, in each

case monitoring the protein on the basis of its (insepara-

ble) MXE and XET activities. First, HTG pelleted in 20%-

saturated (NH4)2SO4 (Figure S1c), implying a relatively

hydrophobic protein. Second, HTG eluted from a cation-

exchange chromatography column at pH 4.1 (Figure S1a),

indicating a highly acidic protein. Third, on gel-perme-

ation chromatography, HTG eluted with an apparent Mr of

approximately 104 (Figure S1b), which, in the light of the

SDS–PAGE results (see below), suggests an unusual affin-

ity for the polyacrylamide matrix of Bio-Gel P-100. Fourth,
by isoelectric focusing (IEF), HTG was confirmed to be

highly acidic (isoelectric point, pI, of approximately 4.1;

Figure 2a,b), whereas standard Equisetum XTHs (possess-

ing XET activity but negligible MXE or CXE activity) had
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Figure 2. Characterization of native Equisetum HTG.

(a, b) MXE activity (red) and XET activity (green) of protein fractions obtained by preparative isoelectric focusing (IEF) from E. fluviatile shoots in May (a) or

September (b); selected fractions were also assayed for CXE activity (values indicated in cyan).

(c) Lectin affinity chromatography of HTG; an MXE-active fraction from Bio-Gel P-100 (Figure S1b) was applied to concanavalin A–Sepharose and eluted with

methyl a-mannopyranoside. The MXE activity (red) and XET activity (green) co-eluted.

(d) Acceptor substrate specificity of IEF-resolved MXE and XET activities. Four fractions from (a) were assayed with two donor and three acceptor substrates.

(e) SDS–PAGE of IEF-purified HTG [fraction 9 from (b)].

© 2015 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2015), 83, 753–769

756 Thomas J. Simmons et al.



pI values in the range 6.6–9.0 (Figure 2a). Finally, HTG

was found to bind to a concanavalin A affinity chro-

matography column (Figure 2c), indicating the presence

of N-glycosylation.
Of the MXE-active fractions tested, all were also shown

to be CXE-active (e.g. Figure 2b).

After HTG had been partially purified by IEF, it ran as a

31-kDa protein on SDS–PAGE (Figure 2e).

Table S2 shows a representative balance-sheet for HTG

purification from Equisetum. The purified enzyme was

quantified and assayed for MXE activity at optimal sub-

strate concentrations. The catalytic efficiency (kcat/KM) was

very high compared with conventional XTHs (Table 1).

Purified HTG was also unusual in preferring non-galactosy-

lated oligosaccharides as acceptor substrates (for both

MXE and XET activities; Figure 2d), whereas the approxi-

mately neutral Equisetum XTHs preferred galactosylated

XGOs, as do most dicot XTHs (Fry et al., 1992, 2008a;

Steele and Fry, 2000; Ekl€of and Brumer, 2010; Maris et al.,

2011).

Sequencing Equisetum HTG

Tryptic digestion of E. fluviatile (Ef) HTG purified by IEF fol-

lowed by SDS–PAGE yielded major oligopeptides with m/z

values of approximately 963.43 and 1548.59 [(M + 1)+; Fig-

ure S2a]. On LC–MS/MS, these oligopeptides gave frag-

mentation mass spectra matching the predicted spectra

of two inferred tryptic peptides (LYPNGFPR and

SFPNNEAIGVPYLK) from among the in-silico translation

products of an Ef transcriptome (Figure S2b,c).

We obtained a full-length sequence of EfHTG by per-

forming 50- and 30-RACE on E. fluviatile cDNA. The in-silico

translation product (non-glycosylated and minus the pre-

dicted signal sequence; Figure S3a) has predicted Mr and

pI values (29 500 and 4.66, respectively) that are compara-

ble to those of native HTG. The sequence places HTG

within XTH group I/II (Figure S4), all other members of

which possess XET activity but negligible MXE and CXE

activity (Rose et al., 2002; Hrmova et al., 2007; Ekl€of and

Brumer, 2010; Stratilov�a et al., 2010; Maris et al., 2011).

HTG-like genes occur in other Equisetum species (Fig-

ure S3b), but have not been detected in other land plants,

agreeing with the finding that MXE activity is apparently

confined to Equisetum (Fry et al., 2008a; Mohler et al.,

2013). The predicted protein has 28 acidic residues (the

mean number for all Arabidopsis XTHs is 28.7) and 21

basic residues (the mean number for all Arabidopsis XTHs

is 36.6); thus HTG’s acidity is due to a lack of basic resi-

dues. HTG has four conserved cysteine residues, which are

typical of XTHs, and one predicted N-glycosylation site.

Enzymic activities of heterologously produced Equisetum

HTG

When HTG (without its signal-encoding sequence) was

expressed in the yeast Pichia pastoris, the EfHTG protein,

detected by western blotting at approximately 36 kDa (Fig-

ure 3), had catalytic properties (Figure 4) that were notably

different from those of typical XTHs. HTG had an MXE:XET

activity ratio of approximately 7:1, whereas the ratio for

Poaceae XTHs is typically approximately 0.002:1 (Hrmova

Table 1 Turnover number (kcat) and catalytic efficiency (kcat/KM) of Equisetum HTG compared with XTHs having predominantly XET activity

Enzyme
Donor substrate
(mg ml�1) Acceptor substrate kcat (min�1)

KM (lM) for the indicated acceptor
substrate

kcat/KM

(mM
�1 min�1)

XET
activity

MXE
activity

CXE
activity

HTG ex Pichia 5.0a XXXG 3.9 � 0.5 1.4 � 0.1
HTG ex Pichia 5.0a XXXGol 0.266e 3.4 � 0.4 0.52 � 0.06 510e

HTG ex Pichia 1.5a XXXGol 0.77 � 0.13 0.85 � 0.07
HTG ex Pichia 0.5a XXXGol 0.91 � 0.04 0.58 � 0.14
HTG ex Pichia Approximately 900b XXXGol 2.7 � 0.5
Native Equisetum
HTGc

MLG, 5.0 XXXGol 0.086, 0.069 [0.52]d 170, 130

HTG ex Pichia MLG, 5.0 XXXG 0.270 [0.52]d 520
Poplar XETf XyG Glc8-based XGO

mixture
4.8 400 12

Barley HvXET5g XyG XXXGol 0.34, 0.38 69 4.9, 5.6

a

Soluble donor substrate: tamarind xyloglucan or barley MLG, as appropriate.
b

Insoluble donor substrate: 18.6 mg cellulose (alkali-washed paper) + 20 ll total aqueous solution.
c

Data for two independent preparations of Equisetum fluviatile HTG.
d

Assumed.
e

The value given is for MXE activity.
f

Data from Baumann et al. (2007).
g

Data from the erratum to Hrmova et al. (2007).
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et al., 2007; Fry et al., 2008a). Iceland moss (Cetraria islan-

dica) MLG, largely comprising cellotriosyl repeat units (Fig-

ure 1c), was a poor donor substrate. Thus HTG probably

recognizes cellotetraosyl repeat units, which occur in MLG

from barley (Hordeum vulgare) and predominate in Equise-

tum MLG (Fry et al., 2008b; Sørensen et al., 2008; Xue and

Fry, 2012). This, together with our previous characterization

of MXE products (Mohler et al., 2013), indicates that the

reaction catalysed when HTG acts onMLG plus an XGO is

. . .G4G4G3G4G4G4G3G4G4G. . . + [3H]XXXGol ?

. . .G4G4G3G4G4G4-[3H]XXXGol + G3G4G4G. . .

where G represents b-D-glucose, 3 represents a (1?3)

bond, and 4 represents a (1?4) bond.

Cellohexaose, the largest water-soluble fragment of cel-

lulose, was not a donor substrate (Figure S5), suggesting

that the enzyme needs to recognize a larger stretch of its

donor substrate. In addition, water-soluble cellulose acet-

ate was a poor donor substrate (Figure 4b). However,

Pichia-produced HTG (like native Equisetum HTG) had

remarkable CXE activity on the cellulose of filter paper,

especially when this donor substrate had been pre-treated

with alkali and when the HTG was supplemented with

bovine serum albumin (BSA) as an inert ‘carrier protein’

(Figure 4b). BSA had little effect when the donor substrates

were water-soluble, i.e. when MXE and XET were assayed

(Figure S6).

As expected, the CXE product (cellulose–[3H]XXXGol)

was partially digested by xyloglucan-inactive cellulase to

release water-soluble 3H (Figure 5a). The cellulase did not

completely digest the filter paper, even though paper is

almost pure cellulose, because no synergistic enzyme such

as a cellobiohydrolase was added. Nevertheless, the cellu-

lase released stainable cello-oligosaccharides from the fil-

ter paper (Figure 5c, inset), and 12.3% of the radioactivity

was slowly released into solution, indicating gradual diges-

tion of some of the peripheral cellulose chains of the paper

fibres (Figure 5a,b). A buffer-only control released no 3H

(Figure 5a). These observations confirm that the HTG had

indeed formed a covalent cellulose–[3H]XXXGol bond. A

further 50% of the initial 3H in the CXE product was

subsequently solubilized by trifluoroacetic acid (TFA),

and the remaining 37.7% by H2SO4 (Figure 5b). The

resistance of some of the cellulose–[3H]XXXGol to cellu-

lase and even TFA confirms the conclusion from the

results shown in Figure 1(f): some of the cellulose–XGO

was well integrated within the paper fibres and thus

shielded from cellulase.

We have previously shown (Mohler et al., 2013) that

MLG–[3H]XXXGol, a polymeric product of MXE activity,

may be hydrolysed by lichenase to yield a radioactive

oligosaccharide comprising the original XGO with two

additional glucose residues:

. . .G3G4G4G4G3G4G4G-[3H]XXXGol [lichenase] ? MLG

oligosaccharides + G4G–[3H]XXXGol

Applying a similar strategy but with xyloglucan-inactive

cellulase instead of lichenase, we expect to obtain compa-

rable radiolabelled oligosaccharides from cellulose–[3H]
XXXGol. As predicted, the cellulase-solubilized 3H had a

mobility on TLC (Figure 5c) that was identical to that of

G4G–[3H]XXXGol, which is its most likely identity, gener-

ated thus:

. . .G4G4G4G4G4G4G4G–[3H]XXXGol—[cellulase]? cello-

oligosaccharides + G4G–[3H]XXXGol

On paper chromatography, the same oligomeric product

had a mobility much lower than that of XXXGol (Fig-

ure 5d), indicating that the cellobiose tail (G4G) confers a

strong ability to hydrogen bond to paper in the chromatog-

raphy solvent used (Figure 5a). The observations confirm

the previous conclusion, reached from the results in Fig-

ure 1(d–f) and Table S1, that HTG catalyses the CXE reac-

tion shown in Figure 1(b).

Of 19 radiolabelled oligosaccharides tested, XGOs were

by far the best acceptor substrates (Figure 4f,g). MLG-
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derived oligosaccharides [regardless of whether the

non-reducing terminal glucose residue was (1?3)- or

(1?4)-linked] (Figure 6) and cello-oligosaccharides were

weak acceptor substrates. Thus, while HTG accommodates

both MLG and cellulose as donor substrates, MLG- and

cello-oligosaccharides cannot readily re-enter the enzyme’s

active site as acceptor substrates. Importantly, HTG pos-

sesses only slight MLG:MLG and cellulose:cellulose homo-

transglucanase activities.

Non-galactosylated XGOs were the preferred acceptor

substrates (Figure 4g). Surprisingly, GXXGol was highly

effective, again distinguishing HTG from conventional

XTHs, which require xylose at subsite +1 (for definition see

Table S3) (Saura-Valls et al., 2006). HTG does require

xylose at subsite +2, as demonstrated by its inability to uti-

lize GGXXXGol, cello-oligosaccharides and MLG-oligosac-

charides as acceptor substrates.

HTG had a much higher affinity for XGOs (KM < 3.4 lM
XXXGol; Figure 4d) than do conventional XTHs [KM vakues

of approximately 50–200 lM XXXGol (Steele and Fry, 2000;

Rose et al., 2002; Hrmova et al., 2007) or 1.1 mM XXXG–8-
aminonaphthalene-1,3,6-trisulfonate (Saura-Valls et al.,

2006)]. The range of apparent KM values that we observed

for HTG (0.52–3.4 lM XXXGol) probably arose because

non-radioactive xyloglucan, unlike MLG, competes with

[3H]XXXGol as an acceptor substrate. The range of accep-

tor substrate KM values narrowed to become consistently

<1 lM in the presence of lower donor substrate concentra-

tions (Table 1). High XXXGol concentrations inhibited

Pichia-produced EfHTG (Figure 4d), as observed in Equise-

tum extracts (Fry et al., 2008a), possibly because this

oligosaccharide competed with the polysaccharides for

binding to the enzyme’s negative subsites without being

able to serve as a donor substrate.

Homology modelling of HTG

To explore the basis of HTG’s unique substrate specificity,

we modelled it alongside the established 3D structures of

two angiosperm XTHs (Johansson et al., 2004; Mark et al.,

2009) with the dodecasaccharide XXXGXXG in subsites �4

to +3 (Figure 7). Strikingly, HTG has no predicted interac-

tions with negative subsite xyloses, but has additional

interactions with negative subsite glucoses (Table S3),

matching its ability to utilize cellulose as a donor substrate.

All three proteins have multiple predicted interactions with

the +2 subsite xylose, but HTG lacks one such interaction

with the +1 subsite xylose, consistent with HTG’s ability to

utilize GXXGol but not GGXXXGol as an acceptor sub-

strate (Figure 7e,f).

Bacterial lichenase (PDB ID 1U0A) (Gaiser et al., 2006)

accommodates a G4G4G3G block of its substrate, MLG, in

subsites �4 to �1, but G4G4G3G does not fit in the equiva-

lent position of HTG. Instead, and consistent with our

conclusion that the MXE product is . . .G4G4G3G4G4G4-

XXXGol, we propose that G3G4G4G fits into HTG subsites

�4 to �1, with the �4 glucose positioned approximately

where the �4 xylose of xyloglucan would lie (Figure 7d).

The interactions that XTHs make with the glucose residues

of xyloglucan are shared with those of MLG in subsites �3

to +1 of HTG; therefore HTG makes more interactions with

MLG than do XTHs, consistent with the near inactivity of

XTHs on MLG.

DISCUSSION

HTG is a highly unusual enzyme, mainly exhibiting hetero-

transglucanase activity with cellulose or MLG as preferred

donor substrates and XGOs as acceptor substrates (i.e. CXE

and MXE activity; Figure 1b,c). It also has limited XET (a

homo-transglucanase) activity, but negligible cellulose:cel-

lulose or MLG:MLG homo-transglucanase activities. Given

the intermediary nature of the structure of cellulose

between xyloglucan and MLG (xyloglucan = cellulose with

side chains; MLG = cellulose with backbone linkage varia-

tion; Figure 1a–c), it is perhaps unsurprising that an enzyme

capable of catalysing both MXE and XET activities is able to

utilize cellulose as its donor substrate, exhibiting CXE activ-

ity. The lax donor substrate specificity of HTG somewhat

resembles the substrate specificity of an angiosperm b-glu-
canase (Populus trichocarpa endoglucanase 16; PtEG16)

that hydrolyses water-soluble cello-oligosaccharides, MLG,

xyloglucan and artificial cellulose derivatives (its ability to

hydrolyse cellulose has not been reported) (Ekl€of et al.,

2013). However, there are major differences between

PtEG16 and HTG: only the latter catalyses detectable

hetero-transglycosylation, and HTG recognizes a lengthy

section of the cellulose chain such that water-soluble

cello-oligosaccharides are not effective donor substrates.

Furthermore, PtEG16 and HTG are only distantly related

based on their sequences (maximum 31% amino acid iden-

tity). The MXE:XET activity ratio of Equisetum HTG is

approximately 3500-fold higher than that of known XTHs

(Hrmova et al., 2007; Fry et al., 2008a; Maris et al., 2011),

including those from Equisetum, marking it out as a unique

enzyme.

We characterized native Equisetum HTG and the corre-

sponding protein heterologously produced in the yeast

Pichia. Studying the enzyme extracted from Equisetum

provides reliable information on the natural plant protein,

with correct post-translational modifications, e.g. N-glyco-
sylation, while use of the Pichia-produced protein ensured

that no contaminating proteins acting on plant polysaccha-

rides are present.

HTG has an extremely high affinity for its XGO acceptor

substrates (KM < 1 lM) and a high catalytic efficiency

(Table 1). Its affinities for its soluble donor substrates (Fig-

ure 4e) are comparable to those of known XTHs. It is

impossible to provide precise kinetic data (e.g. KM) for its

insoluble donor substrate, cellulose; however, Figure 4(b)
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shows that, at a high cellulose concentration, HTG has a

CXE activity that is comparable to its MXE activity.

Filter paper is a cellulosic donor substrate for HTG. Pre-

treatment of the paper with NaOH (increasing the purity of

the cellulose and converting it to the cellulose II allo-

morph; Kroon-Batenburg and Kroon, 1997) rendered it a

better donor substrate for the Pichia-produced enzyme

(Figure 4b). This NaOH effect was less pronounced for the

native Equisetum enzyme (Figure 1e; ‘PP’ versus ‘AP’). The

presence of an inert protein, BSA, increased the ability of

Pichia-produced HTG to act on cellulose (Figure 4b), proba-

bly because BSA prevented irreversible binding of HTG to

the paper and consequent loss of its ability to move to

new cellulose sites where catalysis may continue. In sup-

port of this interpretation, the BSA effect was much less

pronounced during the first few minutes of the reaction,

and was negligible when soluble donor substrates were

tested (Figure S6).

Modelling the 3D structure of HTG in comparison with

two angiosperm XTHs suggested that evolution of HTG

from a presumed ancestral XTH gene involved relatively

few amino acid substitutions during the 370 million year

history of the Equisetopsida. The key amino acid substitu-

tions that are likely to account for HTG’s lax donor sub-

strate specificity are a replacement of a conserved Trp of

conventional XTHs by Pro at position 10 in EfHTG, replace-

ment of a conserved Gly by Ser at position 34, and replace-

ment of a conserved Arg by Leu at position 245

(Figure S3b).

It is unknown whether, during equisetopsid evolution,

the polysaccharide MLG pre-dated the enzyme HTG. How-

ever, as the glucose residues of cellulose, but not MLG,

occupy the same positions in the enzyme’s active site as

those of xyloglucan, it seems plausible that HTG targeted

cellulose before adapting to MLG.

In Equisetum, both MLG and cellulose predominate in

secondary walls, whereas HTG’s acceptor substrate (xy-

loglucan) predominates in primary walls (Leroux et al.,

2011). We suggest that the enzyme may inter-connect the

primary and secondary wall layers by forming cellulose–
xyloglucan and MLG–xyloglucan linkages, an action that

may play a unique strengthening role in the Equisetum

stem. In agreement with this hypothesis, extractable MXE

activity (and thus presumably the HTG protein and its

associated CXE activity) is maximal in ageing Equisetum

stems, and is much lower in young, fast-growing shoots

and in callus cultures (Fry et al., 2008a; Mohler et al.,

2013). This pattern is the converse of that observed for

XET activity (predominantly attributable to XTH proteins),

which peaks in growing tissues, especially the intercalary

meristem, the rapidly elongating and short-lived E. ar-

vense strobilus stem, and E. fluviatile callus (Mohler et al.,

2013).

HTG’s ability to form cellulose–xyloglucan and MLG–xy-
loglucan bonds potentially offers valuable new biotechno-

logical opportunities to stably ‘functionalize’ these

biomass polysaccharides without generating pollutant by-

products. The basis of such functionalization may include

covalently bonding cellulose or MLG to xyloglucan

oligosaccharides that have themselves previously been

derivatized by loading with a valuable ‘cargo’ such as a

dye. As an example, the HTG-generated orange spots in

Figure 1(e) are a paper–XGO–sulforhodamine covalent

complex, the colour of which remains during very harsh

treatments (6 M NaOH at 37°C, phenol/acetic acid at 70°C,
and boiling SDS). We suggest that, in addition to dyes, car-

goes may include disinfectants, tamper-proof markings for

legal documents, antibiotics, drugs, or laboratory reagents

(for indicator papers).

Furthermore, introduction of EfHTG into angiosperms

will potentially enable covalent MLG–xyloglucan bonding

(in cereals) and cellulose–xyloglucan bonding (in any land

plant), reactions that do not occur naturally in angios-

perms. Such bonding may enhance the mechanical

strength of crops, e.g. their resistance to damage by wind

and heavy rain.

In conclusion, we have characterized HTG, the first pre-

dominantly hetero-transglycanase from a plant and the

first transglycanase shown to target insoluble cellulose,

the major component of biomass. Although HTG appears

to be confined to a single genus of land plants, Equisetum,

potentially valuable biotechnological applications for crop

Figure 4. Enzymology of Pichia-produced HTG.

(a) Simplified summary of reactions catalysed by HTG (red) and typical XTHs (green). The size of the star indicates relative rate; a minus symbol indicates a neg-

ligible reaction; blank spaces indicate combinations that were not tested.

(b) HTG-catalysed transglycosylations with [3H]XXXGol as acceptor substrate and various donor substrates (WSCA, water-soluble cellulose acetate; PP, plain

paper; AP, alkali-treated paper). Plus symbols indicate that BSA was added.

(c) Transglycosylation with [3H]XXXGol but not [3H]cellotetraitol (GGGGol).

(d) Affinity of HTG for XXXGol.

(e) Affinity for donor polysaccharides. Vertical arrows indicate mean KM � SE. IM-MLG, Iceland moss MLG (‘lichenan’). The Vmax values (Bq kBq�1 h�1) were:

xyloglucan, 0.626 � 0.057; barley-MLG, 7.59 � 0.60; WSCA, 0.29 � 0.03; IM-MLG, 0.098 � 0.014.

(f) Thin-layer chromatography of 3H-oligosaccharides. Main image, fluorogram; M, malto-oligosaccharide ladder. ‘MLGO-ols’ are hepta- to decasaccharides from

barley MLG partially digested with lichenase (MLGO-ols A–C) or cellulase (MLGO-ols D–E). Other abbreviations are defined in Experimental procedures.

(g) HTG-catalysed transglycosylation with MLG or xyloglucan as donor substrate and various 3H-oligosaccharides as potential acceptors. Experiments 2 and 3

used Ni column-purified HTG.

© 2015 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2015), 83, 753–769

Hetero-trans-b-glucanase functionalizes cellulose 761



plants and their constituent polysaccharides may be pro-

posed.

EXPERIMENTAL PROCEDURES

Materials

Equisetum fluviatile (water horsetail), E. arvense (common horse-
tail) and Holcus lanatus (Yorkshire fog grass) were grown out-
doors in Edinburgh, UK.

The xyloglucan oligosaccharide names are abbreviated in the
usual way, e.g. G, Glc; Gol, glucitol; X, Xyl-Glc; L, Gal-Xyl-Glc (Fry
et al., 1993). Other oligosaccharide abbreviations include: Gal6-ol,
(1?4)-b-D-galactohexaitol; GalA6–ol, reduced (1?4)-a-D-galacturono-
hexaose; Malt6-ol, (1?4)-a–glucohexaitol; Man6–ol, (1?4)-b-D-man-
nohexaitol; Xyl6–ol, (1?4)-b-D–xylohexaitol. MLG oligosaccharides
are named as, for example, G4G4G3G, where G represents b-D-glu-
cose and 3 and 4 represent (1?3) and (1?4) bonds respectively.

Lichenase (from Bacillus subtilis), xyloglucan-inactive cellulase
(from Aspergillus niger), barley MLG (‘b-glucan’; medium viscosity),
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Figure 5. Characterizing the CXE product by cellulase digestion.

(a) Samples (28–31 mg) of CXE product (formed by Pichia-produced Equisetum HTG acting on alkali-treated filter paper) were incubated in buffer (with antimi-

crobial chlorobutanol) and, where indicated, xyloglucan-inactive cellulase. Solubilized radioactivity was assayed.

(b) Proportion of 3H in the CXE product solubilized sequentially by cellulase [as in (a)], by 2 M trifluoroacetic acid (110°C for 2 h), and by the Saeman H2SO4

hydrolysis method (Saeman et al., 1963).

(c) A portion of the 95 h digest [orange circle in (a)] was analysed by TLC (three ascents); strips were assayed for 3H (�SE of replicate counts) by scintillation

counting (black histogram). Pure [3H]XXXGol, chromatographed on the same plate, was monitored on a LabLogic (www.lablogic.com/) AR2000 plate scanner

(red histogram). Inset: malto-oligosaccharide marker mixture (MM) and a further portion of the cellulase digest (CD), run on the same plate as the radioactive

samples and stained with thymol/H2SO4; the image is accurately aligned with the x axis. Blue arrow: position of authentic GGXXXGol (Mohler et al., 2013) rela-

tive to maltononaose.

(d) As (c) but paper chromatographic analysis; 1- or 2-cm strips of the paper were assayed for 3H by scintillation counting. Note that the cellulase digestion pro-

duct does migrate (albeit slightly) in this chromatography solvent and is therefore oligomeric, not polymeric: the sample was loaded on the chromatogram as a

1-cm-diameter spot centred at ‘0 cm’; undigested polysaccharide would have been distributed equally between the ‘�1 to 0 cm’ strip and the ‘0 to +1 cm’ strip,

and none would have been present in the ‘+1 to +2 cm’ strip.
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Figure 6. Characterizing MLG oligosaccharides (MLGOs) and their stability in the presence of purified HTG.

(a) Pichia culture filtrate as a tool to probe non-reducing termini. Non-radioactive oligosaccharides were incubated with culture filtrate for 0–48 h, then analysed

by TLC (one ascent). MLGOnC and MLGOnL are oligosaccharides with degree of polymerization n, produced by digestion of MLG with cellulase (C) or lichenase

(L); M2–M7, malto-oligosaccharide ladder. Oligosaccharides with a (1?3) bond at the non-reducing end lost a glucose residue, giving a faster-migrating

oligosaccharide plus free glucose (indicated by green arrows), indicating (1?3)-b-glucosidase action; those with a (1?4) bond at the non-reducing end were

stable. The figure shows two TLC plates (left and right), which have been aligned as accurately as possible.

(b) Crude Pichia culture filtrate attacks [3H]MLGO-ols with a (1?3) bond at the non-reducing end. Fluorographs of a thin-layer chromatogram (with single ascent)

of substrates (left) and products after 40 h incubation with Pichia filtrate (right). MLGOs were produced by incomplete digestion of MLG with lichenase (A–C) or
cellulase (D, E); estimated degrees of polymerization are 10 (A), 9 (B), 8 (C), 10 (D) and 8 (E). A–C were essentially stable; D and E almost completely disappeared

and were replaced by a 3H-labelled product that is one degree of polymerization smaller owing to exo-(1?3)-b-glucosidase action (e.g. G3G4G4G

4G3G4G4G4Gol ? Glc + G4G4G4G3G4G4G4Gol). The precise sequence of mid-chain (1?3) and (1?4) bonds was not defined.

(c) Nickel affinity-purified EfHTG (ex Pichia) does not hydrolyse 3H-oligosaccharides with a (1?3) bond at the non-reducing end. Left, substrates; right, products

after 41 h incubation. Fluorograph of a TLC (three ascents). The degrees of polymerization of MLGO-ols D and E are 10 and 8, respectively. Cellulase-generated

MLGO-ol F has estimated degree of polymerization of 7. This observation confirms that the inability of MLGO-ols to act as acceptor substrates for HTG is not

simply due to hydrolysis (instability) of these acceptor substrates.
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Iceland moss MLG (‘lichenan’) and most oligosaccharides were
obtained from Megazyme Inc. (http://www.megazyme.com/) Sub-
strates prepared in-house included water-soluble cellulose acetate
(Fry et al., 2008a), galacto-oligosaccharides (Popper and Fry, 2008),
galacturono-oligosaccharides (Garc�ıa-Romera and Fry, 1994) and
xyloglucan oligosaccharides (Hetherington and Fry, 1993). MLG
oligosaccharides (MLGOs) with non-reducing terminal (1?3)- or
(1?4)-linkages were prepared by digestion of barley MLG with
cellulase or lichenase, respectively, and purified on Bio–Gel P-2 or
P-4 (Bio-Rad Inc.; http://www.bio-rad.com/).

Most [3H]oligosaccharidyl alditols were prepared by reduction
of the oligosaccharides with NaB3H4 (Hetherington and Fry, 1993),
and purified by TLC or paper chromatography (Fry, 2000). [3H]
GGXXXGol was prepared as described by Mohler et al. (2013).
[3H]GXXGol was produced by digestion of [3H]XXXGol with a-
xylosidase (Figure S2 in Frankov�a and Fry, 2012). The [3H]
oligosaccharides obtained were typically of specific radioactivity
40–900 MBq lmol�1.

Merck silica gel 60 TLC plates were obtained from VWR (https://
uk.vwr.com/). Solvents were obtained from Fisher Scientific
(www.fisher.co.uk/). Most other chemicals were obtained from
Sigma–Aldrich (www.sigmaaldrich.com/united-kingdom.html).

HTG purification from Equisetum fluviatile

Fresh late-season E. fluviatile stems were ground with a pestle
and mortar in 300 mM succinate, 10 mM CaCl2, 20 mM ascorbic
acid, 15% v/v glycerol, containing 3% w/v polyvinylpolypyrroli-
done, pH 5.5 (Na+), at 5°C. Solid (NH4)2SO4 was added slowly
with stirring. In 10%-saturated (NH4)2SO4 increments, precipi-
tated proteins were pelleted by centrifugation (8000 g at 4�C
for 15 min), re-dissolved in 50 mM succinate (Na+), pH 5.5, and
stored at �80°C. Protein contents were estimated by the Brad-
ford micro-assay (Bradford, 1976).

The 20%-saturated (NH4)2SO4-precipitated fraction was sub-
jected to gel-permeation chromatography on Bio-Gel P-100 [bed
volume 87 cm3, equilibrated with 300 mM citrate (Na+), pH 6.3].
The column was calibrated using 5–40 MDa dextran, cyto-
chrome c551 (Ambler, 1974; kindly provided by the late Professor
R.P. Ambler; University of Edinburgh) and CoCl2.

Jack-bean (Canavalia ensiformis) concanavalin A–Sepharose
4B beads (1-ml bed) were washed for 1 h with 50 mM citrate (Na+,
pH 6.3) containing CaCl2, MnCl2 and MgCl2 (1 mM each). Pooled
MXE-active fractions from Bio-Gel P-100 (Figure S1b) were supple-
mented with BSA (10 mg ml�1), applied to the column, and eluted
in wash buffer containing 0–500 mM methyl a-D-mannopyranoside.
MXE and XET activities in fractions were corrected for the slight
inhibitory effect of each eluent.

A Rotofor IEF apparatus (Bio-Rad) was used according to the
manufacturer’s instructions. Internal surfaces of the equipment
were washed with 0.25% v/v Triton X-100. Electrophoresis was
performed at 10 W until the voltage and current stabilized. The pH
of the fractions was immediately measured, and the fractions

were stored at �80°C. For broad-range IEF, shoot extracts of E. flu-
viatile gathered in May were dialysed against 10 mM succinate
(Na+, pH 5.5), and mixed with Bio-Lyte ampholytes (pH 3–10; Bio-
Rad Inc.). For narrow-range IEF, shoot extracts of E. fluviatile gath-
ered in September were precipitated with 10–20%-saturated
(NH4)2SO4, then electrophoresed in Servalyte ampholytes (pH 3–5;
Serva; http://www.serva.de/) containing 0.05% Triton X-100. In
both cases, 20 ll of each fraction was assayed for MXE and XET
activity, and 5 ll of selected fractions was assayed for CXE.

SDS–PAGE was performed as described by Laemmli (1970). The
stacking and resolving gels were 4% and 12% respectively; elec-
trophoresis was performed at 75 V for approximately 15 min, then
100 V for approximately 75 min.

Native gel electrophoresis was performed at 6°C with 4.3%
acrylamide in 67 mM Tris (phosphate�, pH 6.7) as the stacking
gel, 7.5% acrylamide in 376 mM Tris (Cl�, pH 8.9) as the resolving
gel, 5 mM Tris and 38 mM glycine (pH 8.3) as the electrode buffer,
with a current of 20 mA for 25 min then 40 mA for 3 h. Three
lanes of the gel were excised, rinsed for 2 9 15 min in 0.3 M

citrate (Na+, pH 6.3), placed on Whatman No. 1 dot-blot test
papers (see below), and incubated for 1 h. The papers were then
washed in acidified ethanol until free of unreacted XXXG–sul-
forhodamine, and photographed under 254-nm UV. A fourth lane
was stained using Coomassie brilliant blue. To estimate HTG
concentration, we silver-stained SDS gels of two independent
preparations of 31-kDa Equisetum HTG alongside a dilution ser-
ies of ovalbumin (30, 15, 7.5, 3.8, 1.9 and 0.94 ng per well), and
quantified the bands using LABWORKS 4.6 IMAGE ANALYSIS (http://
www.perkinelmer.co.uk/) and IMAGEJ (http://imagej.nih.gov/ij/)
Software.

Mass spectrometry

The full details for mass spectrometry are given in Methods S1.
Coomassie-stained bands from SDS gels were digested with tryp-
sin, and solubilized peptides were collected. A trypsin-only blank
allowed internal calibration. Aliquots of the digests were analysed
by MALDI–TOF MS with an a-cyano-4-hydroxycinnamic acid matrix
on a Voyager DE-STR MALDI–TOF MS (Applied Biosystems;
www.appliedbiosystems.com/). For LC–MS analysis, the sample
was de-salted (Rappsilber et al., 2003) and passed through an Agi-
lent (www.agilent.co.uk/) 1200 Series HPLC with a PicoTip emitter
(FS 360-100-8-N-20-C12, New Objective; http://www.newobjective.
com/). Processed spectra were searched against the National Cen-
ter for Biotechnology Information non-redundant database and an
E. fluviatile transcriptome database via in-house-licensed MASCOT

software.

Equisetum transcriptome sequencing

Lateral shoot tissue (approximately 500 mg) of a single E. fluvi-
atile individual was finely ground in liquid N2 and mixed with
3 ml TRIzol (Invitrogen; www.lifetechnologies.com/). The suspen-
sion was centrifuged at 12 000 g (4°C, 5 min), and extracted with

Figure 7. Modelled interaction of substrates with the active site in HTG and classical XTHs.

(a–c) Substrate binding pocket of EfHTG and two XTHs (PttXET and TmNXG1). Grey ribbon, protein backbone; line drawing, XXXGXXG; sticks with green car-

bons, side chains lining the active-site cleft; magenta carbons, residues that are functionally non-conserved between HTG and both PttXET and TmNXG1. Resi-

dues that differ in their xyloglucan interactions between EfHTG (or its homologues in other Equisetum spp.) and both PttXET and TmNXG1 (Table S3) are

numbered.

(d) Two substrates modelled in EfHTG. Black carbons, XXXGXXG (a xyloglucan oligosaccharide); blue carbons, G3G4G4G4G3G4G (an MLG oligosaccharide).

(e) Cumulative enzyme–sugar interactions (see Table S3).

(f) Diagram of EfHTG and PttXET showing strong interaction (tick symbol) or weak interaction (cross) with polysaccharides and potential acceptor substrates;

black and white arrowheads indicate bonds that are actually or potentially cleaved. Predicted interactions that are not present in a comparator are shown in red.
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0.2 volumes of chloroform. The aqueous phase was mixed with
0.54 volumes of ethanol and RNA purified from it by use of a Pure-
Link RNA Mini Kit (Life Technologies; www.lifetechnologies.com).
cDNA was synthesized and normalized with Mint and Trimmer kits
(Evrogen; www.evrogen.com/) and used for 454 sequencing
(Roche; www.454.com) at Edinburgh Genomics (https://ge-
nomics.ed.ac.uk). Raw data were assembled with Roche Newbler
assembler version 2.5 (268 000 reads; length 249 � 111 nucleo-
tides; mean � SD).

Gene amplification and cloning

30- and 50-RACE yielded full-length EfHTG cDNA sequences; full
details are provided in Methods S1. PCR products were ligated
into pJET1.2 vector (Life Technologies) (map available from http://
www.bioinfo.pte.hu/f2/pict_f2/pJETmap.pdf), which was used to
transform Escherichia coli strain DH5a. Ampicillin-resistant colo-
nies were screened by PCR, and PCR products of appropriate sizes
were used directly in Sanger DNA sequencing.

To express EfHTG as a fusion protein from the Pichia pPICZaA
vector (Life Technologies), we amplified cDNA with Phusion (New
England Biolabs; www.neb.com) polymerase and HTG-specific pri-
mers, which introduced a 50 EcoRI site immediately upstream of
the sequence encoding the putative N-terminus of mature EfHTG,
and replaced the EfHTG stop codon with an XbaI site. PCR prod-
ucts were cloned in DH5a in the pJET1.2 vector, and a recombi-
nant vector lacking PCR-induced mutations was purified from a
single colony. The EfHTG gene was then excised from the recom-
binant vector by complete digestion with XbaI and partial diges-
tion with EcoRI (as EfHTG contains an internal EcoRI site), gel-
purified, ligated into pPICZaA, and cloned into E. coli strain DH5a.

Recombinant EfHTG production in Pichia pastoris

Full details for heterologous protein production are given in Meth-
ods S1. E. coli carrying recombinant pPICZaA was selected on zeo-
cin. Purified recombinant pPICZaA vector from a single colony
was linearized by digestion with SacI, and used to transform
Pichia pastoris strain SMD1168H by electroporation, with selection
on zeocin. Positive colonies were confirmed by PCR with EfHTG-
specific primers, and grown overnight in a liquid medium. Cells
were recovered by centrifugation, and re-suspended in expression
medium (containing 1% methanol). After 16 h, cell-free medium
was assayed for transglucanase activities.

The recombinant EfHTG carried a C-terminal His6 tag allowing
purification by affinity chromatography on Ni2+-charged chelating
Sepharose (GE Healthcare; www3.gehealthcare.co.uk/). Two elu-
tion protocols were successfully used: one for testing substrate
specificity (Figures 4g and 6c) and one for Western blotting (Fig-
ure 3) (see Methods S1).

Modelling the three-dimensional structure of HTG

We used the iTASSER server (Zhang, 2008) to create an initial
HTG homology model. This was then superposed onto the struc-
tures for PttXET (Johansson et al., 2004) and TmNXG1 (Mark
et al., 2009) (PDB IDs 1UMZ and 2VH9, respectively). We created
the complete XLLGXLG (pentadecasaccharide) substrate molecule
by merging the XLLG ligand present in the TmNXG1 crystal
structure with the XLG ligand present in the PttXET structure,
manually adjusting the sugar residue in the �1 position to a 1S3
skew-boat conformation and creating a b-(1?4) covalent bond.
We energy-minimized this molecule using MAESTRO version 9.3
(Schr€odinger; www.schrodinger.com) to clear steric clashes, then
removed the three b-galactose residues to create XXXGXXG. We

added this dodecasaccharide molecule to the HTG model, and
manually adjusted the positions of HTG side chains observed to
interact with the ligand to match their positions in the appropri-
ate ligand-bound structure, by first selecting the nearest rotamer
present in the PyMOL rotamer library using the PYMOL MOLECULAR

GRAPHICS SYSTEM version 1.6.0.0 (Schr€odinger), then making fine
adjustments by hand. We then maximized favourable protein–li-
gand interactions by energy-minimizing this complex. Complexes
of PttXET and TmNXG1 with XXXGXXG were created in a similar
manner for comparison.

Thin-layer chromatography

TLC was performed on Merck silica gel plates in butan-1-ol/acetic
acid/water (2:1:1). A malto-oligosaccharide ladder plus glucose
was used as the marker mixture. Sugars were stained with thy-
mol/H2SO4 (Jork et al., 1994); radioactive spots were detected fluo-
rographically.

Radiochemical transglucanase assays

Reaction mixtures (Fry et al., 1992, 2008a) with soluble donor sub-
strates (e.g. xyloglucan or MLG) typically contained non-radioac-
tive soluble polysaccharide (1–10 mg ml�1) or cellohexaose (7.6–
76 mM), 1–2 kBq [3H]XXXGol (100–900 MBq lmol�1), an enzyme
source, 0.2% chlorobutanol (an antimicrobial agent) and buffer
[25–200 mM succinate (Na+), pH 5.5, or citrate (Na+), pH 6.3], final
volume 20–150 ll, and were incubated for 1–60 h at 20°C. The
reaction was stopped with 20 ll formic acid.

When MLG or xyloglucan was used as the donor substrate,
3H-labelled products were dried onto 4 9 6 cm of Whatman
(http://www.fisher.co.uk/1/3/whatman-qualitative-filter-paper) 3MM
paper, which was then washed for 1–2 days in running tap-
water and dried; 3H-labelled polymers that remained bound
were assayed by scintillation counting in GoldStar ‘O’ scintilla-
tion fluid (Meridian; www.meridian-biotech.com/). Counting effi-
ciencies of XET, MXE and CXE products were 24.6, 9.0 and
6.9% respectively, as determined in representative samples after
acid hydrolysis and scintillation counting in water-miscible scin-
tillant (ScintiSafe 3; Fisher Scientific) with quench correction.
The differences in efficiency indicate that the XET product was
confined to the surface of the paper fibres, whereas the prod-
ucts of the other two activities were more intimately integrated
within the fibres.

To determine the KM of HTG for XXXGol, we mixed [3H]XXXGol
with non-radioactive XXXGol to various final specific radioactivi-
ties and thus various final concentrations. To determine kcat, we
assayed IEF-purified native Equisetum HTG at near-optimal sub-
strate concentrations (20 lM XXXGol, 7.4 mg ml�1 MLG).

When cellohexaose was the potential donor substrate, 3H-la-
belled products were sought by TLC followed by fluorography.
When water-soluble cellulose acetate was the potential donor, the
reaction was stopped with 1 M NaOH, which removes acetyl ester
groups; the resulting cellulose was washed by repeated resuspen-
sion in water until the supernatant was no longer radioactive,
and assayed for bound 3H.

For CXE assays, where insoluble cellulose was the donor, 20 ll
of a solution containing the soluble components (3H-labelled
acceptor substrate, enzyme, buffer, chlorobutanol and, in some
experiments, 1.1 mg ml�1 BSA) was pipetted onto 24–25 mg of
dry Whatman No. 1 paper, and the moist paper was incubated in
a tightly closed vial. In some experiments, the paper had been
pre-treated for 16 h at 20�C in 6 M NaOH, rinsed in water and
dried (weight loss approximately 1.2%). The enzymic reaction was
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stopped with 20 ll formic acid; the paper was washed for 1–2 d in
water, dried and assayed for bound 3H.

In the case of 3H-labelled acceptor substrates that themselves
hydrogen-bond to cellulose (cello-, xylo-, manno- and large MLG-
oligosaccharides), and thus fail to completely wash off paper,
transglucanase products were not dried onto paper. Instead the
reaction was stopped with 500 ll of 8% formic acid (containing
non-radioactive carrier polysaccharides: 0.7 mg ml�1 blue dextran,
0.35 mg ml�1 barley MLG and 0.35 mg ml�1 tamarind (Tamarin-
dus indica) xyloglucan), and the mixture was then made up to
70% ethanol. After at least 16 h storage, the polysaccharides were
pelleted by centrifugation (4500 g for 10 min), re-dissolved with
gentle warming in 3 ml of 1% aqueous ammonium formate, and
re-precipitated with ethanol. Dissolution and precipitation were
repeated twice more, and the final pellet was dissolved in 2 ml
water and assayed for 3H in ScintiSafe 3.

Cellulase digestion of radiolabelled CXE product

A 31-mg sample of CXE product (formed by Pichia-produced
Equisetum HTG acting on filter paper pre-treated with alkali) was
thoroughly washed in 6 M NaOH (containing 1% NaBH4) at 20°C
for 48 h, then washed with water until neutral, dried and incu-
bated at 20°C in 500 ll buffer (pyridine/acetic acid/water; 1:1:98 v/
v/v, pH 4.7) containing 0.5% chlorobutanol, with or without 0.5
units of xyloglucan-inactive cellulase. A 28-mg control sample of
CXE product was incubated with buffer/chlorobutanol alone. After
72 h, 2.5 units of cellulase were added to each sample, and incu-
bation continued. Solubilized radioactivity was assayed at inter-
vals by scintillation counting at 33% efficiency. A portion of the
95-h digest was analysed by TLC (three ascents), and strips were
assayed for 3H by scintillation counting. A further portion of the
same digest was run on the same TLC plate and stained with thy-
mol/H2SO4. A third portion was analysed by paper chromatogra-
phy on Whatman No. 1 paper in butan-1-ol/pyridine/water (4:3:4;
with 105 h development by the descending method). Strips of the
paper (1 or 2 cm) were assayed for 3H by scintillation counting.

Dot-blot transglucanase assays

Visual assays for transglucanase activities were based on the dot-
blot method (Fry, 1997). Paper (Whatman No. 1) was bathed in 1%
w/v tamarind xyloglucan (‘XP’), 2% barley MLG (‘MP’), water (‘PP’)
or alkali (6 M NaOH, ‘AP’) with gentle rocking for 1–8 h. AP sheets
irreversibly shrank to 61% of their original area, but have an
increased fibre surface area (Kalia et al., 2011). The papers were
then washed thoroughly in water until neutral, dried, cut to
7 9 7 cm, quickly dipped in 4.8 lM XXXG–sulforhodamine (Miller
et al., 2007) in 50% acetone and re-dried; fluorescent acceptor sub-
strate was thereby impregnated into the paper at approximately
1.3 lmol m�2. Aliquots (4.5 ll, or 6.5 ll in the case of AP) from a
dilution series of enzymes precipitated from an extract of grass
(H. lanatus) or horsetail (E. fluviatile or E. arvense) with 20%-satu-
rated (NH4)2SO4 were pipetted onto the papers with 1-cm centre-
to-centre spacing; buffer-only controls were also included. After
21 h incubation at 20°C under humid conditions, unreacted
XXXG–sulforhodamine was washed out with ethanol/formic acid/
water (3:2:2 v/v/v), and insoluble fluorescent products of polysac-
charide-to-oligosaccharide transglycosylation were recorded
under 254-nm UV excitation. In principle, PP and AP reveal only
CXE activity, XP reveals XET + CXE activity, and MP reveals MXE
+ CXE activity. However, the grass extract contained traces of
xyloglucan, and thus yielded a faint fluorescence on papers other
than XP. The same papers were sequentially washed in 6 M NaOH
(16 h at 20°C, solubilizing xyloglucan and MLG), water, 4% SDS

(10 min at 98°C, then 16 h at 20°C), water, phenol/acetic acid/water
(2:1:1 w/v/v; 16 h at 20°C), water and acetone. The papers were
then incubated with lichenase [1 U ml�1 in pyridine/acetic acid/
water (1:1:98 v/v/v, pH 4.7) containing 0.5% chlorobutanol] for
16 h at 20°C, and finally with cellulase (1 U ml�1, same condi-
tions). After each step, papers were re-photographed, always with
identical UV exposure, camera settings and brightness/contrast
adjustment. As expected, lichenase had no effect, as any MLG had
been removed by NaOH. XP, MP and PP test papers shrank in
NaOH; images are adjusted to uniform size. The difference in fluo-
rescence between papers washed in ethanol/formic acid/water or
NaOH indicates XET or MXE reaction products; residual fluores-
cence after NaOH treatment indicates CXE product (cellulose–
XXXG–sulforhodamine conjugate).
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