
rspa.royalsocietypublishing.org

Research
Cite this article: Li S, Su Y, Li R. 2016 Splitting
of the neutral mechanical plane depends on
the length of the multi-layer structure of
flexible electronics. Proc. R. Soc. A 472:
20160087.
http://dx.doi.org/10.1098/rspa.2016.0087

Received: 5 February 2016
Accepted: 9 May 2016

Subject Areas:
mechanical engineering, mechanics

Keywords:
neutral mechanical plane, multi-layer
structure, flexible electronics, structure design

Authors for correspondence:
Yewang Su
e-mail: yewangsu@imech.ac.cn
Rui Li
e-mail: ruili@dlut.edu.cn

Splitting of the neutral
mechanical plane depends on
the length of the multi-layer
structure of flexible electronics
Shuang Li1, Yewang Su1,2,3 and Rui Li4

1State Key Laboratory of Nonlinear Mechanics, Institute of
Mechanics, Chinese Academy of Sciences, Beijing 100190,
People’s Republic of China
2Department of Civil and Environmental Engineering, and
3Department of Mechanical Engineering, Northwestern University,
Evanston, IL 60208, USA
4State Key Laboratory of Structural Analysis for Industrial
Equipment, Department of Engineering Mechanics, Dalian
University of Technology, Dalian 116024, People’s Republic of China

YS, 0000-0002-5961-0490

Multi-layer structures with soft (compliant)
interlayers have been widely used in flexible
electronics and photonics as an effective design
for reducing interactions among the hard (stiff)
layers and thus avoiding the premature failure of
an entire device. The analytic model for bending
of such a structure has not been well established
due to its complex mechanical behaviour. Here,
we present a rational analytic model, without any
parameter fitting, to study the bending of a multi-
layer structure on a cylinder, which is often regarded
as an important approach to mechanical reliability
testing of flexible electronics and photonics. For the
first time, our model quantitatively reveals that, as
the key for accurate strain control, the splitting of the
neutral mechanical plane depends not only on the
relative thickness of the middle layer, but also on the
length-to-thickness ratio of the multi-layer structure.
The model accurately captures the key quantities,
including the axial strains in the top and bottom
layers, the shear strain in the middle layer and the
locations of the neutral mechanical planes of the top
and bottom layers. The effects of the length of the
multi-layer and the thickness of the middle layer are
elaborated. This work is very useful for the design
of multi-layer structure-based flexible electronics
and photonics.
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Figure 1. (a) Stacking and bending test of three hard PZT-based piezoelectric MEHs. (b) Conformable piezoelectric pressure
sensor with multi-layer structures. (c) Finger-tip electronics with multi-layer structures. (d) Flexible glass photonic device with
multi-layer structures. (Online version in colour.)

1. Introduction
Multi-layer structures are encountered in various engineering applications such as aerospace
vehicles, marine vessels and civil infrastructures. Such structures have been investigated
extensively in recent years, focusing on the static and dynamic behaviour, mechanical failure,
structural design and manufacture [1–4]. The most popular multi-layer structures are lightweight
sandwich panels that are based on two stiff face sheets separated by a soft foam core and that
have unique mechanical properties such as high rigidity, high impact energy absorption, stable
deformation mode and adaptation to loading conditions. In flexible electronics and photonics,
multi-layer structures with both soft (compliant) and hard (stiff) materials are also widely used
in order to reduce the strains in the hard layers, which are often composed of functional devices
[5–7]. Such applications include flexible piezoelectric mechanical energy harvesters (MEHs) [8]
(figure 1a), conformable piezoelectric pressure sensors [9] (figure 1b), finger-tip electronics [10]
(figure 1c), flexible glass photonic devices [11] (figure 1d), etc. However, incorrect stacking of the
layers would cause premature failure of the entire device. Therefore, it is necessary to explore
effective designs of the laminated structures so that they can undergo large deformation during
fabrication and use.

Recently, a novel local-neutral-axis design (figure 1d) was implemented to render the structure
highly mechanically flexible, enabling repeated bending of the photonic device down to sub-
millimetre bending radii without any measurable degradation in optical performance [11]. This
design is also referred to as the splitting of the neutral mechanical plane [8]. It is known that
the neutral mechanical plane is a layer within a structure where the material is not under stress,
either compression or tension. That is, strain in the neutral mechanical plane is zero when the
structure bends. For the design of flexible electronics and photonics, one always expects accurate
strain control in the brittle device. Therefore, it is very useful to split the neutral mechanical plane
into each hard layer where the brittle device is placed. In this way, the strength of each layer is
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reached almost simultaneously. This could avoid premature failure. Some simplified theoretical
models were developed to quantitatively study the pure bending and buckling behaviour of the
multi-layer structures, where a large modulus mismatch among the different layers is a distinctive
feature [8,11–13]. Actually, previous studies simply incorporated the effects of the thickness and
elastic modulus, and there have been no discussions on the effects of the length of the structure
due to the modelling complexity induced by coupling deformation. However, as illustrated in
the following, our finite-element analysis (FEA) reveals that the influence of the length cannot
be neglected. Therefore, an accurate mechanics model incorporating the length effect is critically
needed to comprehensively grasp the mechanical behaviour, which can provide guidelines for
the design of such structures against mechanical failure.

In this paper, we establish an approach to accurate analytic modelling of multi-layers with
moduli of very different orders of magnitude (e.g. silicon and polydimethylsiloxane, which have
elastic moduli of five orders of magnitude difference), where the classical beam theory [14]
with plane cross-sectional assumption fails. A very important application of the model is the
characterization of the bendability of the flexible electronics and photonics, in which the key
index is the minimum bending radius of the device. This could be realized by attaching the
device to cylindrical surfaces with different radii. The index is the minimum cylindrical radius
at which the device remains intact. Such a bending test is illustrated in figure 1a, where a stack
of three hard lead zirconate titanate (PZT)-based piezoelectric MEHs are laminated, with a soft
adhesive in between [8], and bent to fit a glass cylinder. For convenience, we focus on the three-
layer sandwich structure, which has two hard layers with a soft adhesive in between. The analytic
model is established and an accurate solution is obtained to quantitatively capture the structural
behaviour as well as to provide guidelines for the refined design of flexible devices against
premature failure.

2. The model
Figure 2 shows a three-layer sandwich structure with length 2L and thicknesses ht, hm and hb
from top to bottom at the natural, stress-free state (figure 2a) and the deformed state on a cylinder
with radius R (figure 2b). Young’s moduli and Poisson’s ratios for the layers are Et, Em and Eb,
and vt, vm and vb, respectively. The middle layer is much softer than the other layers and serves
as the shear lag whose large shear deformation is the dominant mechanical behaviour. This is the
main difference from multi-layers with similar elastic properties. Owing to the symmetry of the
structure, only the right half model with length L is considered.

Multi-layer structures for flexible electronics and photonics are generally long and thin [15–18].
Therefore, the thickness change of the layers is neglected. As shown in figure 2, x is the curvilinear
coordinate along the central axis of a layer, with the origin O at the axis centre. Let ut and ub denote
the displacement increments at the central axes of the top and bottom layers during deformation.
The corresponding membrane strains (εt and εb) and bending curvatures (κt and κb) are

εt = dut

dx
, κt = 1

R + hb + hm + ht/2
, εb = dub

dx
and κb = 1

R + hb/2
. (2.1)

As shown in figure 3, the shear strain of the middle layer, γm, is obtained by

γm ≈ γm1 + γm2

2
≈

�
BC + �

AF
2AB

=
�
BD − �

CD + �
AE − �

EF
2AB

= 1
hm

[
R + hb + hm/2

R + hb/2
(x + ub) − R + hb + hm/2

R + hb + hm + ht/2
(x + ut)

]
. (2.2)

The variational approach [19,20] is used to yield the governing equations in terms of the
displacements. The total elastic energy, U, of the right half structure consists of the membrane
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Figure 2. Theoretical model of a three-layer sandwich structure. (a) The natural, stress-free state. (b) The deformed state on a
cylinder. (Online version in colour.)
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Figure 3. Schematic illustration of the shear strain of the middle layer. (Online version in colour.)

energy and bending energy of the top and bottom layers as well as the shear energy of the middle
layer. We have

U =
∫L

0

(
1
2

EItκ
2
t + 1

2
EAtε

2
t

)
dx +

∫L

0

(
1
2

EIbκ2
b + 1

2
EAbε2

b

)
dx +

∫L

0

1
2

Ghmγ 2
m dx, (2.3)

where EIt = Eth3
t /[12(1 − ν2

t )], EAt = Etht/(1 − ν2
t ) and EIb = Ebh3

b/[12(1 − ν2
b)], EAb = Ebhb/(1 −

ν2
b) are the beam theory-based effective bending stiffnesses and tensile stiffnesses of the top and

bottom layers, respectively [21]; G = Em/[2 (1 + νm)] is the shear modulus of the middle layer.
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Substituting equations (2.1) and (2.2) in equation (2.3), we have

U =
∫L

0

[
1
2

EIt
1

(R + hb + hm + ht/2)2 + 1
2

EAt

(
dut

dx

)2
]

dx

+
∫L

0

[
1
2

EIb
1

(R + hb/2)2 + 1
2

EAb

(
dub

dx

)2
]

dx

+
∫L

0

1
2

Ghm

{
1

hm

[
R + hb + hm/2

R + hb/2
(x + ub) − R + hb + hm/2

R + hb + hm + ht/2
(x + ut)

]}2
dx. (2.4)

Variation of equation (2.4) δU = 0 gives the governing equations

d2ut

dx2 − aG

EAthm
[(a − b)x + (aut − bub)] = 0

and
d2ub

dx2 + bG

EAbhm
[(a − b)x + (aut − bub)] = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.5)

and the boundary conditions

ut(0) = 0, ub(0) = 0

and
dut(L)

dx
= 0,

dub(L)
dx

= 0,

⎫⎪⎬
⎪⎭ (2.6)

where a = (R + hb + hm/2)/(R + hb + hm + ht/2) and b = (R + hb + hm/2)/(R + hb/2). Equation
(2.6) implies that there is no axial displacement at the plane of symmetry and no axial strain
at the right-hand end of the top and bottom layers.

The general solution of equation (2.5) is

ut = − ac
b

(C1 + C2) cosh
[√

d(b2 + ca2)
x

hm

]
− ac

b
(C1 − C2) sinh

[√
d(b2 + ca2)

x
hm

]

+
[

b
a

(C3 + 1) − 1
]

x + b
a

C4

and ub = (C1 + C2) cosh
[√

d(b2 + ca2)
x

hm

]
+ (C1 − C2) sinh

[√
d(b2 + ca2)

x
hm

]
+ C3x + C4,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.7)

where c = Ebhb(1 − ν2
t )/[Etht(1 − ν2

b)] and d = Ghm(1 − ν2
b)/(Ebhb). The constants C1–C4 are

determined by substituting equation (2.7) into equation (2.6), which yields

C1 = − b(a − b)
b2 + ca2

hm√
d(b2 + ca2) cosh

[√
d(b2 + ca2)(L/hm)

] ,

C2 = b(a − b)
b2 + ca2

hm√
d(b2 + ca2) cosh

[√
d(b2 + ca2)(L/hm)

] ,

C3 = b(a − b)
b2 + ca2

and C4 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)
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Thus ut and ub are obtained as

ut = ac(a − b)
b2 + ca2

⎧⎪⎪⎨
⎪⎪⎩

sinh
[√

d(b2 + ca2)(x/hm)
]

√
d(b2 + ca2) cosh

[√
d(b2 + ca2)(L/hm)

]hm − x

⎫⎪⎪⎬
⎪⎪⎭

and ub = b(a − b)
b2 + ca2

⎧⎨
⎩x −

sinh
[√

d(b2 + ca2)(x/hm)
]

√
d(b2 + ca2) cosh

[√
d(b2 + ca2)(L/hm)

]hm

⎫⎬
⎭ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

Substituting equation (2.9) into equations (2.1) and (2.2), we obtain the membrane strains of the
top and bottom layers as well as the shear strain of the middle layer,

εt = ac(a − b)
b2 + ca2

⎧⎨
⎩

cosh
[√

d(b2 + ca2)(x/hm)
]

cosh
[√

d(b2 + ca2)(L/hm)
] − 1

⎫⎬
⎭ ,

εb = b(a − b)
b2 + ca2

⎧⎨
⎩1 −

cosh
[√

d(b2 + ca2)(x/hm)
]

cosh
[√

d(b2 + ca2)(L/hm)
]
⎫⎬
⎭

and γm =
(b − a) sinh

[√
d(b2 + ca2)(x/hm)

]
√

d(b2 + ca2) cosh
[√

d(b2 + ca2)(L/hm)
] .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

The mode of deformation for the top and bottom layers is that of the slender beam because they
are hard, long and thin; this model is known as the Euler–Bernoulli beam, where the axial strains
are linearly distributed [22]. This yields

ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εt − κt

(
y − ht

2

)

= ac(a − b)
b2 + ca2

⎧⎨
⎩

cosh
[√

d(b2 + ca2)(x/hm)
]

cosh
[√

d(b2 + ca2)(L/hm)
] − 1

⎫⎬
⎭

− y − ht/2
R + hb + hm + ht/2

for 0 ≤ y ≤ ht,

εb − κb

(
y − ht − hm − hb

2

)

= b(a − b)
b2 + ca2

⎧⎨
⎩1 −

cosh
[√

d(b2 + ca2)(x/hm)
]

cosh
[√

d(b2 + ca2)(L/hm)
]
⎫⎬
⎭

−y − ht − hm − hb/2
R + hb/2

for ht + hm ≤ y ≤ hm + ht + hb,

(2.11)

where y is the distance in the normal direction from the top surface of the multi-layers. The
locations of the neutral mechanical planes of the top and bottom layers, yt and yb, are determined
by equating to zero the strains in equation (2.11), by which we have

yt = c(a − b)(R + hb + hm/2)
b2 + ca2

⎧⎨
⎩

cosh
[√

d(b2 + ca2)(x/hm)
]

cosh
[√

d(b2 + ca2)(L/hm)
] − 1

⎫⎬
⎭ + ht

2

and yb = (a − b)(R + hb + hm/2)
b2 + ca2

⎧⎨
⎩1 −

cosh
[√

d(b2 + ca2)(x/hm)
]

cosh
[√

d(b2 + ca2)(L/hm)
]
⎫⎬
⎭ + ht + hm + hb

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)
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For simplification, we now focus on the case in which Et = Eb = E, ht = hb = h and vt = vb = vm =
v. We have

a = R + h(1 + h̄m/2)

R + h(3/2 + h̄m)
, b = R + h(1 + h̄m/2)

R + h/2
, c = 1 and d = Emh̄m(1 − ν)

2E
, (2.13)

where h̄m = hm/h. The membrane strains of the top and bottom layers as well as the shear strain
of the middle layer become

εt = a(a − b)
a2 + b2

⎧⎨
⎩

cosh
[√

d(a2 + b2)(ρx̄/h̄m)
]

cosh
[√

d(a2 + b2)(ρ/h̄m)
] − 1

⎫⎬
⎭ ,

εb = b(a − b)
a2 + b2

⎧⎨
⎩1 −

cosh
[√

d(a2 + b2)(ρx̄/h̄m)
]

cosh
[√

d(a2 + b2)(ρ/h̄m)
]

⎫⎬
⎭

and γm =
(b − a) sinh

[√
d(a2 + b2)(ρx̄/h̄m)

]
√

d(a2 + b2) cosh
[√

d(a2 + b2)(ρ/h̄m)
] ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

where ρ = L/h and x̄ = x/L. The normalized locations of the neutral mechanical planes of the top
and bottom layers are

ȳt = yt

h
= b(a − b)

a2 + b2

(
R
h

+ 1
2

) ⎧⎨
⎩

cosh
[√

d(a2 + b2)(ρx̄/h̄m)
]

cosh
[√

d(a2 + b2)(ρ/h̄m)
] − 1

⎫⎬
⎭ + 1

2

and ȳb = yb

h
= b(a − b)

a2 + b2

(
R
h

+ 1
2

) ⎧⎨
⎩1 −

cosh
[√

d(a2 + b2)(ρx̄/h̄m)
]

cosh
[√

d(a2 + b2)(ρ/h̄m)
]

⎫⎬
⎭ + h̄m + 3

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

3. Results and discussion
A typical multi-layer structure with the geometric parameters and mechanical properties R =
0.014 m, h = 10−5 m, E = 1000 MPa, Em = 100 KPa and v = 0.4 is examined. The membrane strains
in both the top and bottom layers are plotted in figure 4 for h̄m = 1 and ρ = 100, 200, 400, 1000
(figure 4a), and for ρ = 100 and h̄m = 0.5, 1, 2 (figure 4b). Excellent agreement is observed between
our analytic model and the FEA results (see appendix A for details of the FEA modelling). As
shown in figure 4a, the membrane strain is approximately linearly distributed in the hard layers
for a relatively short structure with small ρ and approaches the constant for a relatively long
structure with large ρ except around the end of the structure. The membrane strain increases
with an increase of ρ (figure 4a) and decreases with h̄m (figure 4b). This indicates that the thick
middle layer and the short multi-layer structure help to reduce the membrane strains in the hard
layers.

Figure 5 shows the shear strain distribution in the soft middle layer for h̄m = 1 and ρ = 100,
200, 400, 1000 (figure 5a), and for h̄m = 0.5, 1, 2 and ρ = 100 (figure 5b) and 1000 (figure 5c). FEA
perfectly validates the analytic results. At a given h̄m, the longer multi-layer structure helps to
reduce the shear strain around x̄ = 0 (figure 5a). It is interesting to observe that the shear strain
decreases with an increase of h̄m for a relatively short structure (figure 5b), but increases with h̄m

around x̄ = 0 for a relatively long structure (figure 5c). In general, a thick middle layer and a short
multi-layer structure help to increase the shear strain in most of the middle layer, which benefits
the transfer of strain energy to the middle layer such that the strains in the hard layers diminish.

The normalized locations of the neutral mechanical planes are plotted in figure 6 for h̄m = 1
and ρ = 100, 200, 400, 1000 (figure 6a), and for ρ = 100 and h̄m = 0.5, 1, 2 (figure 6b). The analytic
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Figure 4. Membrane strain distribution in both the top and bottom layers for (a) h̄m = 1 and (b) ρ = 100. (Online version in
colour.)
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Figure 5. Shear strain distribution in themiddle layer for (a) h̄m = 1, (b)ρ = 100 and (c)ρ = 1000. (Online version in colour.)

solutions agree very well with FEA. It is seen that the neutral mechanical planes shift towards the
centre of the hard layers with decreasing ρ and with increasing h̄m, which implies that a short and
thick adhesive helps to split the neutral mechanical plane and thus could avoid premature failure
of the entire device.

A meaningful discussion of the extreme cases from equation (2.15) is helpful in the design of
the multi-layer structure. (i) The middle layer is soft enough such that Em → 0 and thus d → 0.
In this case, ȳt → 1/2 and ȳb → h̄m + 3/2, which means that both the top and bottom layers bend
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layer forρ = 100. (Online version in colour.)

as independent single layers and splitting of the neutral mechanical plane is achieved. (ii) The
middle layer is hard enough such that Em → ∞ and thus d → ∞. In this case, ȳt → (1/2) h̄m + 1
and ȳb → (1/2)h̄m + 1 for R � h and hm, which means that the plane section holds for the entire
multi-layer structure and there is only one neutral mechanical plane. (iii) The length of the
structure is much larger than its thickness such that ρ → ∞. In this case, the result is the same
as that in case (ii). (iv) The length of the structure is much smaller than its thickness such that
ρ → 0. In this case, the result is the same as that in case (i). (v) The thickness of the middle layer
is much smaller than that of the top and bottom layers such that hm → 0. In this case, the result is
the same as that in case (ii).

It should be noted that, taking y = 0 and hm + ht + hb in equation (2.11), respectively, the axial
strains at the top and bottom surfaces of the multi-layers are readily obtained:

εtop surface = ac(a − b)
b2 + ca2

⎧⎨
⎩

cosh
[√

d(b2 + ca2)(x/hm)
]

cosh
[√

d(b2 + ca2)(L/hm)
] − 1

⎫⎬
⎭ + ht/2

R + hb + hm + ht/2

and εbottom surface = b(a − b)
b2 + ca2

⎧⎨
⎩1 −

cosh
[√

d(b2 + ca2)(x/hm)
]

cosh
[√

d(b2 + ca2)(L/hm)
]
⎫⎬
⎭ − hb/2

R + hb/2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

This is very useful to rapidly predict the extreme strains in the structure.

4. Conclusion
In summary, we have established a sufficiently accurate, FEA-validated analytic model for
cylindrical bending of a multi-layer structure with soft interlayers for flexible electronics and
photonics, in which we incorporate the length effect, for the first time, in depicting the mechanical
behaviour of such structures. The axial strains in the top and bottom layers as well as the shear
strain in the middle layer are analytically obtained and the locations of the neutral mechanical
planes of the top and bottom layers are pinpointed. We analyse a typical multi-layer structure in
detail to reveal the effects of the normalized length of the multi-layers and normalized thickness
of the middle layer. In general, a short and thick adhesive helps to split the neutral mechanical
plane and thus can avoid the premature failure of the entire device. It should be noted that the
three-layer sandwich structure is adopted for demonstration and similar structures with more
layers can be analysed with the same method, which will yield the same conclusion. The work
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Figure 7. The finite-elementmeshes and strain distribution of themodel (h̄m = 2,ρ = 100). (a) Themesh of themulti-layers.
(b) The axial strain distribution of the hard layers. (c) The shear strain distribution of the soft layer. (Online version in colour.)

in this paper is expected to serve as a benchmark model for designing multi-layers with very
different elastic properties.
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Appendix A. Finite-element analysis modelling
FEA modelling using the ABAQUS software package was conducted to validate the analytic
results of equations (2.12) and (2.13). The bottom surface of the three-dimensional sandwich
structure was attached to an extremely hard three-dimensional shell without friction or
delamination. The shell was bent to realize the bending of the multi-layers. With the same
length and thickness as those in the analytic model for the multi-layers, the symmetric boundary
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condition was imposed on the FEA model and only the right half was analysed. The displacement
along the width direction was restricted to realize the plane strain state. The displacement along
the length direction was restricted on the left-hand side of the multi-layers while the left-hand side
of the shell was clamped. In-plane rotation with angle L/R was imposed on the right-hand side
of the shell. Without any assumption of plane section or shear lag, the 20-node quadratic brick
element C3D20R was employed for the multi-layer structure and the 8-node doubly curved thick
shell element S8R was adopted for the shell. As an example, figure 7a shows the finite-element
meshes of all of the multi-layers for h̄m = 2 and ρ = 100. The numbers of uniform grids for each
layer are 80 in the length direction (x), eight in the thickness direction (y), and one in the width
direction (z). Figure 7b,c shows the axial strain and shear strain distribution, respectively.
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